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die ich in dieser Zeit erfahren habe, möchte ich mich bei einigen Menschen bedanken.
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Introduction

Optimisation is an everyday term used frequently to describe all sorts of improvements
and enhanced modifications. However, optimisation also describes one specific field of
mathematics which provides theory, models and methods to formalise, handle, and solve
complex problems emerging from various applications such as logistics, production or
telecommunication.

One sector of telecommunication are wireless communication networks which still gain
more and more importance, for instance, due to already six billion mobile cellular tele-
phone subscribers world wide [40] with an upward trend; the world population numbers
seven billion. Mathematical optimisation is in particular capable of tackling one major
challenge inherent to all sorts of wireless communication networks, which are scarce re-
sources. These resources such as frequency spectrum or data rate have to be subdivided as
efficiently as possible. An optimisation problem that models a limited budget constraint is
the so-called knapsack problem, which is one of the most fundamental and diverse prob-
lems in discrete optimisation.

A crucial aspect of modelling real-life problems mathematically are the simplifications
necessary to standardise complex processes. A common simplification is the disregard of
dynamics and uncertainties intrinsic to numerous real-world applications. For example,
in wireless communication networks the performance of radio links is prone to variations
due to external factors like weather, users are not static but move, and also demands such
as bit rate requirements fluctuate especially by the daytime.

Stochastic and robust optimisation are special fields of mathematical optimisation pro-
viding methodologies to handle data uncertainty. These two approaches are suitable for
different types of randomness. If the uncertain data obeys a previously known probability
distribution, this version of uncertainty can be modelled by stochastic optimisation. Con-
versely, robust optimisation can handle uncertain data which is, for instance, based on a
finite discrete set of historical information. The knowledge of a probability distribution is
not essential for this methodology.

The aim of robust optimisation is to find an optimal solution, which is feasible for every
realisation of uncertain data that lies in a previously defined uncertainty set. For many vari-
ants, the theoretical complexity of the non-robust problem is thereby not increased since
there exist compact reformulations, which are only polynomially larger but still computa-
tionally tractable.

The object of research of this thesis is the study of diverse robust optimisation ap-
proaches as well as one variant of stochastic optimisation, which is related to robust op-
timisation, in the context of wireless network planning. The application of robustness to
radio communication requires the development of precise sophisticated models and algo-
rithms to solve the problems. Apart from this modelling aspect, the performance improve-
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Introduction

ments proposed in this thesis have a wide application spectrum for a variety of problems.
Additionally, we provide a novel complexity result for a robust version of the knapsack
problem. All theoretical investigations are supported by several (comprehensive) compu-
tational studies performed on realistic test instances.

Contributions Parts of this thesis are based on prior publications and numerous con-
ference talks which originated from various collaborations. Those previously published
works comprise the following. In [46, 47, 51], we have studied chance constraints in the
framework of fixed broadband wireless networks, while we have investigated Γ-robustness
for the planning of wireless access networks in [48, 49, 50]. Moreover, in the work [52],
which is currently under peer-review, we have achieved new results for the multi-band ro-
bust knapsack problem. Finally, in [53] we have investigated robust metric inequalities for
fixed networks.

The main contributions of this thesis comprise theoretical as well as applied achieve-
ments and are briefly summarised in the following listing.

• The modification of existing and the development of novel approaches to model
interference in wireless access networks approximately as well as exactly.

• The modelling of link outages in fixed broadband wireless networks via chance con-
straints obtaining reliable solutions and the development of valid inequalities and a
primal heuristic improving miscellaneous formulations.

• The incorporation of demand uncertainties in the wireless network planning problem
by means of Γ-robust optimisation economising base stations and a detailed study of
this robustness concept and the enhancements gained by valid inequalities.

• The design of a branch-and-price algorithm for the Γ-robust network planning prob-
lem, including the development of various performance improvements, which yields
a better linear program solution than the corresponding compact formulation.

• The modelling of multi-band robustness in the context of a wireless network plan-
ning problem including a numerical study of this robustness approach, which demon-
strates the achievement of further economisations of base stations.

• The proof of novel complexity results for the multi-band robust knapsack problem
via dynamic programming algorithms.

• The development of a Lagrangian relaxation approach for a subproblem of the two-
band robust wireless network planning problem which exploits a dynamic program
for the multi-band robust knapsack problem and provides a fast algorithm to obtain
good approximate solutions.

• The application of recoverable robustness to the wireless network planning prob-
lem with the result of energy savings by the temporary deactivation of base stations
during low traffic times.

2



Structure This thesis is subdivided into the following five parts.
In Part I. Mathematical Preliminaries and Wireless Communication Networks, we in-

troduce the mathematical as well as technical concepts, which form the basis of this thesis,
including respective literature overviews on related work and present formulations for the
two types of wireless communication networks investigated in this thesis. In Chapter 1,
we introduce the notation and the basics of mathematical optimisation. Additionally, we
summarise optimisation techniques applied in this thesis and state the classical knapsack
problem including important known results. Chapter 2 gives a review of optimisation un-
der data uncertainty comprising stochastic as well as robust methodologies. To apply the
chance constraints and robust optimisation concepts introduced in this chapter to wireless
communication networks, we summarise the relevant technical background in Chapter 3
while basic formulations of wireless cellular as well as fixed broadband wireless networks
are given in Chapter 4. A crucial topic in wireless cellular networks is interference. Hence,
in Chapter 5, we develop and study various approaches to model interference. This chap-
ter represents a digression, which is not related to optimisation under data uncertainty but
which is necessary for a complete description of cellular wireless networks.

In the subsequent part, Part II. Chance Constraints, we investigate chance constraints
which typify a stochastic optimisation methodology to handle data uncertainty. We give
a survey of related work and formalise this concept in Chapter 6. Then, in Chapter 7,
we apply chance constraints to the fixed broadband wireless network planning problem
to achieve reliable solutions, develop linear formulations and derive valid inequalities as
well as a primal heuristic. These formulations and improvements are investigated in com-
putational studies performed on the one hand, on grid networks and on the other hand,
on realistic network instances. The computational studies reveal the gains of the valid in-
equalities via improved solving times or optimality gaps, the effectiveness of the primal
heuristic, and a significant gain in reliability by our joint probability model.

We study one of the first and most commonly applied robust optimisation approaches
in Part III. Γ-Robustness, which constitutes the most elaborate part of this thesis and is
subdivided into three chapters. We first introduce the general concept of Γ-robust optimi-
sation including the Γ-robust counterpart, possibilities to evaluate robustness and proba-
bility bounds in Chapter 8. Moreover, this chapter contains an introduction to the Γ-robust
knapsack problem. In Chapter 9, we apply the Γ-robustness to the wireless network plan-
ning problem, on the one hand, in case of uncertain demands, and on the other hand, in
case of uncertain spectral efficiencies. For the formulation with uncertain demands, we
further derive valid inequalities, investigate their performance and the price of robustness
and compare robust solutions to conventional planning, while we study the second formu-
lation in terms of validity for interference modelling. We propose a reformulation of the
uncertain demand model in Chapter 10 by means of a branch-and-price approach. Addi-
tionally, we develop performance improvements whose effectiveness is investigated in a
computational study and compare the two formulations of the wireless network planning
problem with uncertain demands in a further computational study, which concludes the
part on Γ-robustness.

In Part IV. Multi-Band Robustness, we study a more general robustness concept. In
Chapter 11, we summarise the basics and state the robust counterpart. Afterwards, we
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present a theoretical study of the complexity of the multi-band robust knapsack problem
in Chapter 12, which in particular entails a dynamic programming algorithm of practical
applicability. In Chapter 13, we apply the multi-band robustness to the wireless network
planning problem and evaluate the gain of multi-band versus Γ-robustness. Moreover, we
use the dynamic program for the multi-band robust knapsack problem to efficiently solve
the Lagrangian relaxation of a subproblem of the wireless network planning problem.

In Part V. Recoverable Robustness, we study a two-stage robust optimisation concept.
The main idea including the recoverable robust counterpart and possibilities to evaluate
the recovery action are summarised in Chapter 14. We apply this methodology to the
wireless network planning problem in Chapter 15 and analyse the gain of recovery via
a computational study revealing significant savings via the deactivation of base stations
during low traffic times.

Finally, we present a critical discussion of the interpretation of computational studies
and give general concluding remarks and topics for future research.
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1. Basic Mathematical Concepts

In this chapter, we give a brief introduction to linear optimisation and the techniques ap-
plied in this thesis along with the used notation, some related work and some important
results utilised later on. Furthermore, we present one of the most important optimisation
problems, the knapsack problem, in the classic deterministic setting. This problem oc-
curs consistently in the investigation of various uncertainty concepts and in applications
considered in the remainder of this thesis.

1.1. Notation and Basics

First, we state some basic notation for sets of numbers. Let R, Z and N denote the sets of
real, integer and natural numbers, respectively. The subsets of positive, non-negative, neg-
ative, or non-positive numbers are denoted by the subscripts > 0, ≥ 0, < 0, ≤ 0, respect-
ively. For example, Z>0 = N.

Complexity theory As we will consider the complexity of some optimisation problems
in the remainder of this thesis, we give a brief informal introduction to complexity theory
in the following. Details and a formal introduction can be found, e. g., in the book of Garey
and Johnson [80].

To characterise the (time) complexity of an algorithm, we use the following notation.
A function f (n) is in O(g(n)) if there exists a constant c such that | f (n)| ≤ c|g(n)| for
all values n ≥ 0. If the time complexity function f (n) of an algorithm is O(p(n)) for a
polynomial function p, the algorithm is called a polynomial time algorithm. If the time
complexity function is bounded by the dimension and the magnitudes of the input data,
the algorithm is called a pseudo-polynomial time algorithm.

Definition 1.1. (Problem) A problem is a general question that is to be answered and that
possesses several parameters. By an instance we denote the specification of particular
values for all parameters. If the only possible solutions (answers) are “yes” and “no”, the
problem is called a decision problem. If the answers are the minimum or the maximum
value of a given objective function, the problem is an optimisation problem.

Note, for each minimisation (maximisation) problem, there exists a corresponding de-
cision problem deciding whether there can be found a solution that is less (greater) than a
given numerical bound.

In the following definition, we give a brief overview on important complexity classes.

7



1. Basic Mathematical Concepts

Definition 1.2. (Complexity classes)

P The class of all decision problems for which a polynomial
time algorithm exists that decides for every instance if the
solution is “yes” or “no”.

NP The class of all decision problems that can be solved by
a polynomial time non-deterministic algorithm. A non-
deterministic algorithm first guesses a solution and then veri-
fies it in a second step. Moreover, a “yes” instance of a deci-
sion problem in NP can be verified in polynomial time.

NP-complete The class of decision problems Π being in NP and every prob-
lem in NP can be polynomially transformed to Π. A polyno-
mial transformation is also called polynomial time reduction
and describes a polynomial time algorithm which attributes
one problem π1 to a second problem π2. If there exists an
algorithm to solve π2, then also π1 can be solved via the re-
duction.

strongly NP-complete The class of NP-complete problems that cannot be solved by
a pseudo-polynomial time algorithm unless P = NP.

NP-hard The class of problems for which any NP-complete problem
can be reduced to in polynomial time.

Polyhedral theory For A ∈ Rm×n and b ∈ Rm, we define the polyhedron

P(A, b) B {x ∈ Rn | Ax ≤ b},

where Ax ≤ b is a system of linear inequalities. A bounded polyhedron is called poly-
tope. By conv(P(A, b) ∩ Z), we denote the convex hull of all integer points of the poly-
hedron P(A, b) which encompasses the set of all convex combinations of integer vectors
in the polyhedron. The dimension dim(P(A, b)) is the maximum number of affinely in-
dependent vectors in the polyhedron minus one. An inequality πtx ≤ ρ with π ∈ Rn

and ρ ∈ R, is valid for P(A, b) if P(A, b) ⊆ P(π, ρ). The inequality is facet-defining
if dim(P̃(π, ρ) ∩ P(A, b)) = dim(P(A, b)) − 1 with P̃(π, ρ) B {x ∈ Rn | πtx = ρ}. We
are interested in facet-defining (valid) inequalities as they describe the polyhedron P(A, b)
completely.

A linear optimisation problem that maximises a (linear) objective c ∈ Rn over the poly-
hedron P(A, b) is called a linear program (LP) and has the form

max ctx
s.t. x ∈ P(A, b).

The standard form of this LP plus non-negativity which is most commonly used in this
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work is given as

max ctx (1.1a)
(P) s.t. Ax ≤ b (1.1b)

x ∈ Rn
≥0. (1.1c)

This problem has m constraints and n variables and is called the primal problem (P). A so-
lution vector x ∈ Rn

≥0 is called feasible if it satisfies (1.1b) and optimal if it also maximises
the objective (1.1a). There exists a corresponding problem to (P) called the dual problem
and it can be written as follows.

min bty (1.2a)
(D) s.t. Aty ≥ c (1.2b)

y ∈ Rm
≥0. (1.2c)

This problem has n constraints and m variables. Note, the dual problem of (D) is again the
primal problem (P).

Theorem 1.3. (Weak and strong duality) Let A ∈ Rm×n, b ∈ Rm and c ∈ Rn. For a feasible
solution x ∈ Rn of the primal LP (1.1) and a feasible solution y ∈ Rm of the dual LP (1.2)
it holds

ctx ≤ bty. (1.3)

Furthermore, there exist optimal solutions x∗ and y∗ for (1.1) and (1.2), respectively, with
finite objective values so that

ctx∗ = bty∗. (1.4)

If the feasible solutions of the LP (1.1) are restricted to integer values, i. e., x ∈ Zn
≥0,

the resulting optimisation problem is an integer linear program (ILP). The solving of ILPs
is strongly NP-hard [103] and remains so even if some of the variables are not required
to be integer yielding a mixed integer linear program (MILP). A generalisation of ILPs
and MILPs are integer programs (IPs) and mixed integer programs (MIP) which are not
necessarily linear. Relaxing all integrality constraints, we obtain the linear programming
relaxation of the ILP (LP relaxation). The following example depicts the corresponding
polytopes of an ILP and its LP relaxation.

Example 1.4. Let

A =

 5 4
−1 0

0 −1

 , b =

24
−3

2
−1

2


and define the polytopes P(A, b) B {x ∈ R2

≥0 | Ax ≤ b} and Pint(A, b) B {x ∈ Z2
≥0 | Ax ≤ b}.

The convex hulls of these two polytopes are displayed in Figure 1.1.

As an ILP is directly connected to its corresponding polytope, we also refer to the valid
inequalities introduced in Section 1.1 as valid inequalities for an ILP.
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1 2 3 4 5 6

1

2

3

4

5

x1

x2

Figure 1.1.: The polytope P(A, b) defined in Example 1.4 (thick outer triangle), its integer
points (dots) and the convex hull of these points (dashed inner triangle).

1.2. Optimisation Techniques

In this section, we briefly present some important optimisation techniques applied in this
thesis.

1.2.1. Branch-and-Bound

A well-established optimisation framework to solve ILPs is the branch-and-bound (B&B)
algorithm first introduced by Land and Doig [119]. This algorithm enumerates all candi-
date solutions systematically and discards unprofitable subsets of solutions on the fly by
means of upper and lower bounds. The solutions are constructed in a (binary) tree where
the root node is the optimum solution of the LP relaxation. If the LP relaxation is un-
bounded or has no solution, the same holds for the ILP, while an integer optimal solution
of the LP is also optimal for the ILP. In case of an optimal solution vector x∗ with at least
one non-integer entry x∗i < Z, the solution space is split into two solution subsets where x∗i
is bounded above by the next smaller integer (x∗i ≤ bx

∗
i c) in one of them and bounded below

by the next larger integer (x∗i ≥ dx
∗
i e) in the other. This splitting step is called branching.

The two newly created subproblems (nodes) are solved individually and the branching pro-
cedure is repeated recursively until all solution vectors in the leaves of the tree are integer.
However, this enumeration leads to an exponential number of nodes. Hence, lower and up-
per bounds are used to remove complete subproblems from the tree without solving them.
Every integer feasible solution found in any node of the tree is feasible for the original ILP,
hence yields a global lower bound in case of a maximisation problem. Furthermore, the
optimal solution of the LP relaxation in each node is a local upper bound for the current
subproblem. If this upper bound is below the global best known lower bound, this node
(and all its potential child nodes) can be discarded from the solution tree as this subprob-
lem cannot yield a better integer solution. This procedure is called bounding. A survey on
the early applications of the B&B approach can be found in Lawler and Wood [121].

10



1.2. Optimisation Techniques

1.2.2. Cutting Planes

An approach to tighten the LP relaxation of an ILP, which is for example computed in a
B&B algorithm, is to add inequalities which are valid for the ILP but are not satisfied by
the current (fractional) LP solution. Such inequalities are called cutting planes or simply
cuts as they cut an area of the polyhedron associated with the LP relaxation off, including
the current fractional solution. Though, no integer solution is excluded from the solution
space by adding these inequalities. One of the earliest paper introducing a complete cutting
plane algorithm was published in 1958 by Gomory [86]. Given a fractional LP solution, a
cut or a proof that no violated cut exists is determined by a so-called separation problem.
Grötschel et al. [90] show that a separation problem is polynomially solvable if and only
if the corresponding optimisation problem can be solved in polynomial time. There exist
numerous classes of cutting planes. We will present the class of cover inequalities which
are problem-specific cuts for the knapsack problem in Section 1.3.

The integration of the separation of cutting planes for a LP relaxation into a B&B algo-
rithm is called branch-and-cut (B&C) or cut-and-branch if cuts are computed only at the
root node of the B&B tree. The generation of cutting planes is sometimes also referred to
as row generation.

1.2.3. Column Generation

The complementary approach of generating valid inequalities or rows in the primal prob-
lem is the generation of columns (variables) in the dual problem by means of column
generation. We give a brief introduction to the general concept of column generation in
combination with a Dantzig-Wolfe decomposition [62] in the following, where a com-
prehensive overview can be found in Barnhart et al. [14], Desaulniers et al. [64] and the
references therein.

Let the compact or original minimisation LP be defined as

z∗ B min ctx (1.5a)
s.t. Ax ≥ b (1.5b)

Dx ≥ d (1.5c)
x ∈ Rn

≥0, (1.5d)

where constraints (1.5c) and (1.5d) can be replaced by x ∈ X with X B {x ∈ Rn
≥0 |Dx ≥ d}

defining the polyhedron of the subproblem (1.5c), (1.5d). We assume henceforth that X is
bounded.

The basic idea of Dantzig-Wolfe decomposition is to substitute the variables x by a
convex combination of the extreme points of the subproblem described by X. Thus, x is
replaced by

K∑
k=1

λkxk with
K∑

k=1

λk = 1, λk ≥ 0 ∀ k = 1, . . . ,K

and K denoting the number of extreme points xk. By this substitution, we obtain the

11
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following LP called master problem (MP).

z∗MP B min
K∑

k=1

(ctxk)λk (1.6a)

s.t.
K∑

k=1

(Axk)λk ≥ b (1.6b)

K∑
k=1

λk = 1 (1.6c)

λk ≥ 0 ∀ k = 1, . . . ,K. (1.6d)

Since the number of extreme points K can be huge constituting a huge number of variables,
the MP is restricted to a subset K′ ⊆ K and further variables are determined in a pricing
problem (PP). More precisely, the restricted master problem (RMP) with objective value z̄
is obtained by restricting the MP (1.6) to K′. Note that such a restriction is justified as
many variables will be set to zero in an optimal solution anyway. The optimality of a
solution of such a RMP is checked in the PP defined as follows.

c̄∗ B min (ct − πtA)y − π0 (1.7a)
s.t. Dy ≥ d (1.7b)

y ∈ R≥0, (1.7c)

where π denotes the dual of constraint (1.6b) and π0 of (1.6c). The problem (1.7) deter-
mines further necessary variables λk in K \ K′ if the objective c̄∗, which is called reduced
cost, is negative. If the matrix D has a block diagonal structure, this can be exploited in the
PP by dividing it into several subproblems; see [64] for details. Furthermore, the PP is a
separation problem for the dual of the RMP which reflects the complementarity of gener-
ating rows and columns. If no further column with negative reduced cost can be computed
by the pricing problem, the current solution of the RMP is optimal for the MP and the col-
umn generation routine is completed. This approach is usually applied to problems with a
huge number of variables and displayed schematically in Figure 1.2.

In case of integer variables, the column generation approach has to be combined with
a branching routine yielding the so-called branch-and-price (B&P) algorithm. A further
reason to apply B&P apart from the capability of handling huge numbers of variables is that
the LP solution found by the column generation approach can be significantly better than
the solution found for the LP relaxation of the corresponding original ILP formulation.

Proposition 1.5. (Vanderbeck [174])

z∗LP ≤ z∗MP ≤ z∗,

where z∗LP denotes the LP relaxation of (1.5) in case x ∈ Zn
≥0. The first inequality is strict

unless the extreme points of the LP relaxation of the PP (1.7) with y ∈ Zn
≥0 are integral,

i. e., conv({y ∈ Zn
≥0 |Dy ≥ d}) = {y ∈ Rn

≥0 |Dy ≥ d}.
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solve RMP

solve PP

Existence of
variable with

negative reduced
cost?

solution is
optimal for MP

solution

yes

add new
pricing
variable

no

Figure 1.2.: Schematic diagram of the column generation concept.

1.2.4. Lagrangian Relaxation

A dual approach to solve optimisation problems is Lagrangian relaxation, which has been
proposed in 1974 by Geoffrion [81]. In this approach, constraints are relaxed and their vi-
olation is penalised in the objective function. The following summary of the main concept
in combination with a subgradient algorithm is based on Geoffrion [81], Nemhauser and
Wolsey [142], and Wolsey [179].

Consider a general maximisation ILP given as

χILP B max ctx (1.8a)
s.t. Ax ≤ b (1.8b)

Dx ≤ d (1.8c)
x ∈ Zn

≥0, (1.8d)

where constraints (1.8b) are “nice” in the sense that a problem containing only these con-
straints can be solved easier than (1.8) and (1.8c) are “complicating” constraints. The
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1. Basic Mathematical Concepts

Lagrangian relaxation of (1.8) is defined as follows.

χLR(µ) B max ctx + µ(d − Dx) (1.9a)
s.t Ax ≤ b (1.9b)

x ∈ Zn
≥0 (1.9c)

with µ ∈ Rm
≥0 being the dual variable of (1.8c) which is also called Lagrange multiplier.

The complicating constraints (1.8c) are included in the objective function by means of
the penalty term µ(d − Dx). If a constraint (1.8c) is violated by a solution of (1.9), then
the penalty term is negative since µ ≥ 0 and decreases the objective value. Thus, if µ is
sufficiently large, it is beneficial to satisfy (1.8c) in an optimal solution of (1.9).

Remark 1.6. The Lagrangian relaxation yields an upper bound of the ILP (1.8), thus

χILP ≤ χLR(µ) ∀ µ ≥ 0.

The best upper bound for (1.8) is χLR(µ∗) with µ∗ being the optimal solution of the
Lagrangian dual problem

χLD B min
µ≥0

χLR(µ). (1.10)

The following proposition specifies the strength of the Lagrangian dual.

Proposition 1.7. (Nemhauser and Wolsey [142])

χILP ≤ χLD ≤ χLP, (1.11)

where χLP is the LP relaxation of (1.8).
If the extreme points of {x ∈ Rn

≥0 | Ax ≤ b} are integral, i. e., conv({x ∈ Zn
≥0 | Ax ≤ b}) =

{x ∈ Rn
≥0 | Ax ≤ b}, equality holds for the second inequality.

The Lagrangian relaxation approach is especially suitable for applications for which
a slightly modified infeasible solution of the Lagrangian dual becomes feasible for the
original problem with only a small degradation of the objective value.

The crucial task is now to solve (1.10), i. e., to find the optimal Lagrange multiplier µ∗.
One approach is a subgradient algorithm which we briefly present in the following.

Subgradient algorithm The subgradient algorithm is an iterative method to solve the
Lagrangian dual problem with initial vector µ0, where µ0 = 0 is a natural choice. For an
optimal solution xi of χLR(µi) at iteration i,

ξi B d − Dxi (1.12)

is a subgradient of χLR(µ) at µ = µi; see [142]. The Lagrange multiplier µi+1 of iteration i+1
is determined by the multiplier of the previous iteration i:

µi+1 =
(
µi − αiξ

i
)+
.
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Furthermore, αi ≥ 0 denotes the step length which has to be defined for every iteration i.
The most commonly used definition of the step length is

αi B δi
χLR(µi) − χi

‖ξi‖
2 ,

with χi denoting the primal lower bound and 0 < δi ≤ 2 a scaling parameter at iteration i.
Possible stop criteria for the described iteration are the following, where ε1, ε2, ε3 > 0

are predefined precision parameters.

• (χLR(µi) − χi)/χLR(µi) ≤ ε1; the desired quality ε1 is reached,

• χLR(µi)−χLR(µi−1) ≤ ε2; the upper bound was improved only marginally in one step
of iteration,

• αi ≤ ε3; the step length is too small.

If one of these criteria catches, the subgradient algorithm stops.

1.3. The Knapsack Problem

One of the most fundamental problems in mathematical optimisation is the classical (bi-
nary) knapsack problem (KP). It asks to select a subset of items i ∈ N = {1, . . . , n} having
a (positive) weight wi and a (positive) profit pi such that a given capacity B is not exceeded
and the total profit is maximised.

Definition 1.8. (Knapsack Problem) The classical (binary or 0-1) knapsack problem can
be formalised as

max
∑
i∈N

pixi (1.13a)

s.t.
∑
i∈N

wixi ≤ B (1.13b)

xi ∈ {0, 1} ∀ i ∈ N. (1.13c)

This problem is well studied, see [106, 135] for comprehensive surveys, since it is a
quite general problem that occurs in many applications such as scheduling, telecommu-
nication and logistics. However, it is difficult to solve in general as the corresponding
decision problem, which determines if a subset of items exists such that the sum of the
weights is less than or equal to a given capacity and the total profit exceeds a certain
threshold, is NP-complete. This characteristic of the KP was first shown in 1972 by Karp
[105]. Since then quite some research has been carried out solving the KP. We state just
the earliest publications of different approaches and refer to the books Kellerer et al. [106]
and Martello and Toth [135] for surveys on algorithms. The first B&B algorithm to solve
the KP exactly was proposed by Kolesar [114] in 1967. A variant of the B&B algorithm
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is a primal method which adds items to an empty knapsack until the capacity is exceeded.
The first primal framework was presented in 1974 by Horowitz and Sahni [96]. A further
exact solution approach is the concept of dynamic programming. In this method, only a
(small) subproblem of the KP is solved and then this solution is extended iteratively to a
solution of the complete problem. Two of the earliest works on dynamic programming
algorithms for the subset sum problem, which is a KP where the profits are equal to the
weights of the items, are Faaland [69] and Ahrens and Finke [5] published in 1973 and
1975, respectively. Even though many improvements of the just stated exact algorithms
exist and many standard knapsack instances from the literature can be solved, there exists
a variety of instances for which the knapsack is still hard to solve in practice; see Pisinger
[154].

As mentioned in Section 1.2.2, one approach to improve the upper bounds for the KP in
a B&B algorithm are cutting planes. A problem specific class of cutting planes for the KP
are cover inequalities.

Definition 1.9. (Cover) A subset C ⊆ N is called a cover if the weights of the items in the
cover exceed the knapsack capacity: ∑

i∈C

wi > B.

It is minimal if the removal of a single item j accounts for C\{ j} not being a cover anymore.
This means, ∑

i∈C\{ j}

wi ≤ B

for every j ∈ C.

Definition 1.10. (Knapsack Polytope) The knapsack polytope PKP is defined as the convex
hull of the set of feasible solutions of the KP (1.13):

PKP B conv

x ∈ {0, 1}n
∣∣∣∣∣∣∣∑i∈N

wixi ≤ B

 .
Lemma 1.11. (Balas [11], Hammer et al. [93], Wolsey [178]) For every (minimal) cover C,
the following inequality is valid for the knapsack polytope PKP.∑

i∈C

xi ≤ |C| − 1 (1.14)

Such an inequality is referred to as (minimal) cover inequality and is facet-defining if the
cover C is minimal and C = N.

The knapsack constraint (1.13b) can be replaced by all cover inequalities. This means,
an integer solution is feasible for the KP if and only if it satisfies every cover inequality.
However, since there exist (exponentially) many cover inequalities, it is not beneficial
to compute all inequalities in advance. Instead, they are usually separated on the fly as
described in the following.
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Separation of cover inequalities. The problem to decide whether there exists a vi-
olated cover inequality for a given LP solution is NP-hard [107]. A survey on exact and
heuristic separation algorithms of different types of valid inequalities for the (binary) KP is
given in Kaparis and Letchford [104]. Here, we present a well-established exact separation
routine; see, e.g., Balas [11].

Let xLP be the solution of the LP relaxation with at least one xLP
i < {0, 1}. Without loss

of generality, we assume that all weights wi as well as the capacity B are integer values
henceforth. We intend either to show that the solution xLP satisfies all cover inequalities
or to compute a most violated cover inequality. For this purpose, we solve the following
separation problem.

min
∑
i∈N′

(1 − xLP
i )yi (1.15a)

s.t.
∑
i∈N′

wiyi ≥ B + 1 (1.15b)

yi ∈ {0, 1} ∀i ∈ N′, (1.15c)

with N′ B N \ {i ∈ N | xLP
i = 1}. If the objective value corresponding to a solution y∗ is

greater than or equal to 1, then the LP solution xLP satisfies all cover inequalities. Other-
wise, we construct a violated cover inequality which has to be added to the problem. The
minimal cover C is defined as the set of items chosen in the solution y∗, i.e., C B {i ∈
N′ | y∗i = 1}. It is minimal, since the removal of an item cannot retain the cover property as
this would give a smaller solution value. Then a most violated cover inequality is given by∑

i∈C

xi ≤ |C| − 1.

The violation of this inequality can be computed as∑
i∈C

xLP
i − |C| + 1

which is maximised by the objective function (1.15a). Hence, the determined inequality is
a most violated.

Note, the separation problem (1.15) is a minimisation KP with real objective coeffi-
cients (1 − xLP

i ). It is equivalent to the KP∑
i∈N′

(1 − xLP
i ) −max

∑
i∈N′

(1 − xLP
i )zi

s.t.
∑
i∈N′

wizi ≤
∑
i∈N′

wi − B − 1

zi ∈ {0, 1} ∀i ∈ N′

with yi = 1 − zi. Hence, (1.15) is also NP-hard.
In general, cover inequalities are not facet-defining for PKP unless the cover is minimal
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and C = N. Nevertheless, they can be lifted/strengthened to define a facet of the knapsack
polytope [11, 93, 178]. One concept of strengthened inequalities which are not necessarily
facet-defining are so-called extended covers.

Definition 1.12. (Extended Cover) For a cover C we define the corresponding extended
cover as

E(C) := C ∪
{

i ∈ N \ C
∣∣∣∣∣ wi ≥ max

j∈C
w j

}
.

The extended cover inequality ∑
i∈E(C)

xi ≤ |C| − 1 (1.16)

is valid for the knapsack polytope PKP.

Necessary and sufficient conditions for (1.16) to be facet-defining are given in [11, 93,
178]. By Balas and Jeroslow [12], we know that a vector x ∈ {0, 1}n is in PKP if and
only if it satisfies the extended cover inequality (1.16) for every minimal cover C ⊆ N.
Note, the extended cover inequalities cannot describe the knapsack polytope completely.
A complete description of a special case of the binary knapsack polytope with specific
conditions on the weights can be found in Weismantel [176].

1.3.1. A Dynamic Program

As mentioned in the previous section, an exact algorithm to solve the KP is a dynamic
programming algorithm (DP). Such an algorithm solves the problem in pseudo-polynomial
time in the number of items n and the capacity B ∈ N. Hence, the KP is NP-hard in the
weak sense (or weakly NP-hard). We state a basic DP in the following from Toth [170]
which can also be found, e.g., in the books Kellerer et al. [106] and Martello and Toth
[135].

Let f ( j, b) denote the highest profit for a feasible solution of the KP (1.13) with total
weight equal to b ∈ {0, 1, . . . , B} and in which only the set of items {1, . . . , j} ⊆ N with j ∈
N are considered, i.e.,

f ( j, b) B max

 j∑
i=1

pixi

∣∣∣∣∣∣∣
j∑

i=1

wixi = b, xi ∈ {0, 1} ∀i ≤ j

 .
The DP then consists of the computation of all values of f by the recursive equation

f ( j, b) = max
{
f ( j − 1, b), f ( j − 1, b − w j) + p j

}
(1.17)

with initial values

f (1, b) =


0, if b = 0
p1, if b = w1

−∞, otherwise
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and j ∈ N, b ∈ {0, . . . , B}. Formally, the optimal solution value z∗ of (1.13) is determined
by Algorithm 1.

Algorithm 1 DP for KP
Input: A set of items N, capacity B ∈ Z, weights w ∈ Rn

≥0, and profits p ∈ Rn
≥0.

Output: An optimal solution value z∗ of the KP (1.13).
for b = 0 . . . B do

f (1, b) =


0, if b = 0
p1, if b = w1

−∞, otherwise
end for
for j = 2 . . . , n do

for b = 0, . . . ,w j − 1 do
f ( j, b) = f ( j − 1, b)

end for
for b = w j, . . . , B do

if f ( j − 1, b − w j) + p j > f ( j − 1, b) then
f ( j, b) = f ( j − 1, b − w j) + p j

else
f ( j, b) = f ( j − 1, b)

end if
end for

end for
z∗ B max

b∈{0,...,B}
f (n, b)

Lemma 1.13. The DP 1 solving the KP (1.13) has an overall running time of O(nB).

Proof. Each iteration over the n items j ∈ N contains B + 1 iterations for the capacity b ∈
{0, . . . , B} yielding an overall running time of O(nB). �

We would like to remark that Algorithm 1 only computes the optimal solution value z∗

and not the corresponding solution vector x∗. Nevertheless, it can be extended to compute
also the solution at the expense of a higher running time; cf. algorithm “DP-3” in [106].
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2. Optimisation under Uncertainty

Optimisation models, which formalise real-world problems mathematically, typically in-
clude assumptions and simplifications to reduce their complexity. One prevalent assump-
tion is the certainty of data. Many optimisation problems ignore fluctuations in the input
data. However, in real-world applications even a small variance in the input values can
strongly affect the quality of the computed solution, demonstrated by Ben-Tal and Ne-
mirovski [15]. A solution found while ignoring data uncertainty can actually be infeasible
or useless from a practical point of view. Therefore, a methodology which is capable of
handling data uncertainty is needed.

2.1. Data Uncertainty

Ben-Tal et al. [16] name the following three errors which are the most common reasons
for data uncertainty.

• prediction: Since some data is not known when the problem is solved, forecasts,
often based on historical data, are used instead.

• measurement: If some data cannot be measured exactly due to, e. g., physical lim-
itations, the actual values deviate from the measured values used in the problem
formulation.

• implementation: A decision variable cannot be implemented in the real-world ap-
plication exactly as computed. Or vice versa, the data cannot be represented in the
model as precise as given.

Sensitivity analysis is a traditional method of identifying data uncertainty in optimisation
problems. By such an analysis, the continuance property of an optimal solution of the
original problem, which is also called nominal solution, is investigated; see [15] for a sen-
sitivity analysis of LPs. In contrast, the following methodologies, which are discussed in
this thesis, deal with data uncertainty by building solutions that are resistant to uncertainty.

2.2. Stochastic Optimisation

If the uncertain data is random obeying a probability distribution which is known in ad-
vance, stochastic optimisation is suitable to handle this type of uncertainty. One of the
earliest works on optimisation under uncertainty was presented by Dantzig [61] in 1955
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2. Optimisation under Uncertainty

laying the foundations for stochastic optimisation. The proposed stochastic programs min-
imise the expected value of an objective function. Such a problem is usually referred to as
an one-stage stochastic program and can be written as

min E[ f (x,D)] (2.1a)
s.t. h(x) ≤ 0 (2.1b)

x ≥ 0, (2.1c)

where x ∈ Rn is the vector of decision variables, D ∈ Rk a vector of random variables
representing, e. g., uncertain demand, f : Rn×k → R is the objective function and h : Rn →

R is a constraint function; cf. also Shapiro et al. [164]. As an example, if f represents a
cost function, then the stochastic program minimises the expected total cost with respect to
the different realisations of D. If D has a finite number of realisations, then the stochastic
program (2.1) can be modelled as a deterministic optimisation problem where the expected
value is given as the weighted sum

E[ f (x,D)] =

I∑
i=1

pi f (x, di),

where I is the number of realisations and realisation di occurs with probability pi.
The stochastic program (2.1) is an one-stage concept, which can be extended to a multi-
stage stochastic program. Multi-stage programming is an approach of sequential decision
making where decisions of later stages may depend on determinations of earlier stages and
may also change those former decisions. One example of a two-stage stochastic optimisa-
tion model is the following.

min cx + E[φ(x,D)]
s.t. h(x) ≤ 0

x ≥ 0,

where φ(x, d) is an optimal value of a subproblem depending on realisation d of D and on x.
The expectation is with respect to the probability distribution of D. Here, the decisions in
the first stage (x) are made to meet the uncertain but known distribution of demand D
occurring in the second stage (subproblem). Hence, the expected value of the present
two-stage objective is the sum over the known cost c plus the expected value of costs
which depend on the demands of the second stage. A common solution method to solve
such a two-stage model is based on so-called scenarios [26]. When assuming that the
realisations d of D can be specified in the form of K scenarios d1, d2, . . . , dK occurring
with probabilities ρ1, ρ2, . . . , ρK the problem can be formulated as

min cx +

K∑
k=1

ρkφ(x, dk)
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s.t. h(x) ≤ 0
x ≥ 0.

Moreover, if the second stage is also divided into several stages, we have a multi-stage
optimisation problem.

2.3. Chance Constraints

In the one-stage stochastic program (2.1), the expected optimal value E[ f (x,D)] can be
considerably far from the actual cost f (x,D) for a particular realisation of the demand D.
Hence, we ask for an approach to limit the cost f (x,D) instead of averaging over all realisa-
tions. One possibility to limit the cost is to require f (x,D) ≤ δ, where δ > 0 is a threshold.
To include this inequality for every realisation d of D is quite restrictive, especially for
a large number of realisations. Instead, we limit the probability that f (x,D) exceeds the
threshold δ by ε ∈ (0, 1). This chance or probabilistic constraint can be written as

P { f (x,D) > δ} ≤ ε

or equivalently
P { f (x,D) ≤ δ} ≥ 1 − ε; (2.2)

see [164]. Adding the chance constraint (2.2) to the optimisation problem (2.1) leads to a
stochastic program that minimises the cost on average while ensuring that the probability
of f (x,D) staying below the threshold δ is large. Note, probabilistic constraints can also
be incorporated in an optimisation problem with an objective function c(x) which is not an
expectation. We discuss chance constraints in more detail in Part II.

2.4. Robust Optimisation

For the chance constraint (2.2), we can define the feasible set

{x ≥ 0 |P{ f (x,D) ≤ δ} ≥ 1 − ε}

which can be written equivalently as

{x ≥ 0 | f (x, d) ≤ δ, d ∈ D, P(d) ≥ 1 − ε}

by abusing the notation of the function f (x, ·); see [164]. The set D is any measurable
subset of Rn such that P(D ∈ D) ≥ 1 − ε. We can simplify this formulation by choosing a
fixed set Dε with P(Dε) ≥ 1 − ε, which represents a subset of realisations of the random
variable D and is also referred to as uncertainty set. Using this set and minimising the
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2. Optimisation under Uncertainty

objective function c(x), we can rewrite the optimisation problem as

min c(x)
s.t. f (x, d) ≤ δ ∀ d ∈ Dε

h(x) ≤ 0
x ≥ 0.

This formulation is a robust optimisation problem which includes a deterministic and set-
based uncertainty model. Since we are considering only linear problems in this thesis, we
only refer to the linear case henceforth. Robust linear optimisation goes back to Soys-
ter [167] who considered inexact linear programs in 1973. We refer to [16, 20] for the
following introduction on robust linear optimisation.

Definition 2.1. An uncertain linear optimisation problem is a collection of linear optimi-
sation problems

min ctx (2.3a)
s.t. Ax ≤ b (2.3b)

x ∈ Rn (2.3c)

with (c, A, b) ∈ U and U ⊂ Rn × Rm×n × Rm a given uncertainty set. A vector x ∈ Rn

is robust feasible if it satisfies all realisations of the constraints (2.3b) with (c, A, b) ∈ U,
thus, if

Ax ≤ b ∀ (c, A, b) ∈ U.

The aim is to find the best objective value among all robust feasible solutions. This can
be done by solving the so-called robust counterpart of the problem (2.3).

Definition 2.2. The robust counterpart of the uncertain LP (2.3) is defined as the optimi-
sation problem

min sup
(c,A,b)∈U

ctx (2.4a)

s.t. Ax ≤ b ∀ (c, A, b) ∈ U (2.4b)
x ∈ Rn. (2.4c)

An optimal solution of (2.4) is called a robust optimal solution of (2.3).

The uncertainty in the objective function can always be shifted to the constraints by
introducing an auxiliary variable; see Ben-Tal et al. [16]. Hence, we restrict ourselves to
uncertain LPs with certain objectives from now on and thus, (A, b) ∈ U ⊂ Rm×n × Rm.

Since robust optimisation constructs solutions which are resistant to the worst-case re-
alisation of the uncertainty in every constraint, we have to consider all worst-case realisa-
tions separately for each constraint unless we apply a multi-stage approach that allows for
modifications of earlier decisions. Therefore, the uncertainty set is extended to the direct
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product U = U1 × . . . × Um of its projections on the uncertain data of each constraint i
and the robust counterpart reads

min ctx (2.5a)
s.t. at

ix ≤ bi ∀ i = 1, . . . ,m,∀(ai, bi) ∈ Ui (2.5b)
x ∈ Rn, (2.5c)

where at
i is the i-th row in matrix A and bi is the i-th entry in vector b. Moreover, Ben-

Tal et al. [16] show that every robust feasible solution of (2.5) remains feasible if the
uncertainty sets Ui are extended to their convex hull conv(Ui) and to the closure of this
set. Therefore, the uncertainty set U is the direct product of closed and convex sets.
Examples of uncertainty sets (see Bertsimas et al. [20] and Poss [155]) are the following.

• Ellipsoidal: All uncertain vectors are described by an ellipsoid.

• Polyhedral: All uncertain vectors are described by a polyhedron.

• Cardinality constrained/budgeted/Γ-robustness: A special case of a polyhedral un-
certainty set, where the uncertain vectors are defined by nominal and deviation val-
ues and the number of simultaneous deviations is limited by a robustness parameter;
see Part III for a detailed description of the concept and applications.

• Variable budgeted: Generalises the budgeted uncertainty set so that the robustness
parameter depends on the solution; see Poss [155].

Light robustness A heuristic approach to model uncertainty is the combination of ro-
bust optimisation with a simplified two-stage stochastic programming approach, intro-
duced as light robustness in Fischetti and Monaci [70]. First, the maximum impairment of
the objective value of the nominal problem is fixed by means of an additional constraint.
Afterwards, robustness requirements, e. g., via Γ-robustness constraints, are introduced.
However, the resulting model is most likely infeasible. Slack variables are then introduced
to handle this infeasibility by allowing limited violations of the robustness requirements.
The objective of this approach is to minimise these slack variables.

Light robustness can be seen as the “flexible counterpart of robust optimisation” [70]
and is so far mostly used in timetabling problems; see, e. g., Fischetti et al. [74], Goerigk
et al. [82].

Recoverable robustness Just as in stochastic optimisation, there exist multi-stage
concepts in robust optimisation. A quite recent two-stage approach is recoverable robust-
ness. There, a first stage decision is made regardless of the uncertain data of the second
stage. Then for a realisation of the uncertainty, a recovery action can take place to adjust
a first-stage decision. The objective is to minimise the total cost of the first-stage decision
taking limited second-stage adjustments into account.

The notion of recoverable robustness was first introduced by Liebchen et al. [124] for
railway applications and will be discussed in more detail in Part V.
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3. Technical Background

In this chapter, we give a brief summary of the technical background on wireless commu-
nication networks which is needed for the remainder of this thesis. For more details on
wireless communication in general, we refer to the books by Goldsmith [83] and Tse and
Viswanath [171] which also form the basis of this chapter.

Wireless communication dates back to 1897 when Marconi sent the first wireless teleg-
raphy over open sea via a distance of six kilometres. The first radio transmission across the
Atlantic Ocean was performed in 1901. Since then different generations of networks were
developed. The first generation (1G) of mobile telephony introduced in the 1980s was an
analogue telecommunications standard. From the second generation (2G) on, the wireless
systems are digital and comprise also data services. Since the introduction of the third
generation (3G), wireless networks provide data rates sufficiently high for mobile internet
access. Fourth generation (4G) networks, which are IP-based systems meaning that tele-
phony is conducted via Voice over IP (VoIP), are the latest deployed mobile networks. The
employed techniques vary between the generations due to different requirements for voice
(high latency requirement) and data (transmitted intermittently). Currently, a new standard
(named 5G as a working title) is being developed; see news of standardisation authorities
such as [1, 100, 145]. According to Next Generation Mobile Networks (NGMN) [145],
the 5G network requirements comprise greater throughput, lower latency, ultra-high relia-
bility, higher connectivity density, and higher mobility range to provide support, e. g., also
to specific use cases such as Internet of Things.

In 4G, a complete communication network mainly consists of three sub-networks. The
access network connects users to transceivers, which are combined transmitters and re-
ceivers. These transceivers are then connected to each other by copper or fibre wired
connections or by microwave links. This network is denoted as the backhaul network
and is usually represented by a mobile telephone switching office or mobile switching
center (MSC). Additionally, the backhaul network takes the traffic from a transceiver and
backhauls it to the core network, the third main part of a communication network. The
core network is constituted by the public switched telephone network (PSTN) or the In-
ternet. A complete communication network and the interrelations between the different
sub-networks are illustrated in Figure 3.1; see also [144].

3.1. Cellular Networks

A cellular network, representing an access network, consists of a (large) number of sub-
scribers with cellular phones called (mobile) users and a fixed number of base stations
(BSs) which provide coverage of the subscribers. A BS can unite several antennae with
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Figure 3.1.: A complete communication network

different configurations such as azimuth and downtilt. Furthermore, the area covered by
a BS is called cell and cells are usually sub-divided into (three) sectors established by di-
rectional antennae. Every BS is connected to the backhaul network by high-speed wired
connections or microwave links.

The movement of users from one cell to another is called hand-off or handover as the
communication has to be switched. Such a switching from one BS to another is initiated
if the current signal quality decreases below a threshold. In 3G networks, soft handover
is performed: A user is dropped by a BS only if a link to a neighbouring BS is already
established. In contrast, hard handover is applied in 4G networks implying that a user
cannot be connected to more than one BS at the same time. Communication between BSs
and users is performed in two directions called downlink (DL), i. e., from BS to user, and
uplink (UL), i. e., from user to BS, and operates on a licensed frequency spectrum. The
radio spectrum is regulated worldwide by the International Telecommunications Union
(ITU) [100], the United Nations specialised agency for information and communication
technologies (ICTs), whose main functions are to allocate global radio spectrum, develop
technical standards and improve access to ICTs worldwide. A license or authorisation is
then given by an administration, such as the government, and allows the assignment of a
frequency spectrum to a BS.

For initial cellular systems, the cost for BSs were high and hence, the networks com-
prised only a small number of cells but used high transmission powers. In such a network,
the coverage area of a BS is large and the corresponding cell is called a macro cell. Nowa-
days, BSs are close to street level and transmit with lower power establishing micro or pico
cells. In 4G networks, even smaller cells, so-called femto cells, are deployed which can
also be user-operated and are connected to the backhaul network via optical fibre or DSL.
The combination of different types of cells, which are also called tiers, is called a hetero-
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geneous network (HetNet). Reasons to deploy smaller cells are on the one hand, the need
for higher capacity due to an increase in user demand and density and on the other hand,
the size and cost for BS electronics have decreased significantly during the last decades.
This is why modern networks comprise a large number of (different types of) cells leading
to quite complex systems.

3.2. Signal Propagation

Large-scale propagation effects occurring in wireless communication networks are shad-
owing and path loss. Shadow fading describes the random variation of the transmitted
signal due to blockage from objects in the signal path, reflecting surfaces and scattering
objects.

The linear path loss PL is the ratio of transmit power Pt to receive power Pr:

PL =
Pt

Pr
.

Extending this definition, the path loss is defined as the value of the linear path loss in
decibels (dB) which is the difference in dB between transmitted and received signal power.

PdB
L = 10 log10

Pt

Pr
dB

In general, it holds PdB
L > 0. However, sometimes the negative of the path loss is used

which is called path gain, for example if the previous equation is solved for Pr:

Pr = Pt · 10
−PdB

L
10 .

In a distance based path loss model (see [102]), the received signal power Pr is inversely
proportional to the distance d between transmitter and receiver: Pr ∝

(
1
d

)α
, where α is the

path loss exponent and it is generally assumed 2 ≤ α ≤ 4, with α = 2 in the free space.

3.3. Channel Capacity and Interference

The (radio) transmission of information is described by a channel which is modelled the-
oretically by a channel model. A commonly used channel model is Additive White Gaus-
sian Noise (AWGN). Theoretically applied, it produces simple and tractable mathematical
models. White noise is a random signal with a constant power spectral density, which
means that the power of the signal is the same at each frequency. In an AWGN channel,
the impairment to communication is caused by the addition of white noise which has a
normally (Gaussian) distributed signal amplitude.

To measure the impact of noise to the signal transmission, the signal-to-noise ratio
(SNR), which is the channel input divided by noise, is used. For a received power Pr and
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a background noise η, which depends on the bandwidth or frequency range B given in Hz,
the SNR γ is computed as

γ =
Pr

η
. (3.1)

The channel capacity CSh by Shannon [163] is computed as follows.

CSh = B log2(1 + γ) (3.2)

It is given in bps and generally used as an upper bound on the data rates that can be
achieved under real system constraints. The ratio CSh/B, gives a measurement of the
maximum achievable spectral efficiency as a function of the SNR. It is given in bps/Hz
and denotes the information rate that can be transmitted over 1 Hz of bandwidth through
the channel.

The communication in a wireless network is affected by interference. We distinguish
between two main types of interference, intra-cell and inter-cell. By transmitting signals
simultaneously to different users in the same cell, intra-cell interference can occur, whereas
inter-cell interference is experienced by cell-edge users from two or more neighbouring
BSs. It is also called co-channel interference. Common techniques to reduce interference
and to provide higher data rates are multiple antenna techniques such as Multiple-Input
and Multiple-Output (MIMO), and multi-user detection, which denotes the detection of
desired signals from interference and noise.

The amount of inter- and intra-cell interference experienced by a user is measured in
the so-called signal-to-interference-plus-noise ratio (SINR). For a received power Pr, a
bandwidth B and noise η, the SINR is computed as

SINR =
Pr

η + PI
, (3.3)

where PI denotes the power associated with both types of interferences. The higher the
interference the lower the SINR and the higher the bit error rate, that is the number of
received bits that have been modified by noise, interference or further transmission errors.

We would like to point out that the presented ratios are the linear versions. This means,
all powers are given in Watt (W). In case that a value is given on a logarithmic scale, in
dB, it has to be transformed to W to be used in (3.3) and similar formulas. Assume x is
given in dB, then the power P given in W can be computed as

P (W) = 10
x (dB)

10

and vice versa
x (dB) = 10 · log10(P (W)).

Furthermore, the unit dBm is commonly used which is dB but referenced to one milliwatt
(mW). Thus, 30 dBm =̂ 0 dB.
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Figure 3.2.: Signal constellations for QPSK (4-QAM) and 16-QAM, where each dot de-
notes a constellation state with the above binary identifier. (Taken from [57].)

3.4. Modulation

By means of modulation, a signal (music, voice etc.) is sent on a carrier signal which
can be transmitted physically. For example, the phase or amplitude of the carrier signal
which has a periodic waveform is modulated. A commonly used modulation is digital
Quadrature Amplitude Modulation (QAM). An m-QAM scheme consists of m symbols
where each symbol is a combination of amplitude and phase and represents an n-bit pattern
with n = log2 m and n ∈ Z. This means, instead of transmitting one bit at a time, n bits
are transmitted simultaneously. The signal constellation states for 4-QAM, which is also
called Quadrature Phase-Shift Keying (QPSK), and 16-QAM are displayed in Figure 3.2.
The capacity C of a channel with bandwidth B using an m-QAM scheme can be computed
as

C (bps) = n · B (Hz) ≤ CSh.

Hence, high-order QAM schemes have a higher bandwidth (spectral) efficiency. However,
at the same time they are more susceptible to noise or errors caused by channel impair-
ments since the constellation states are closer together, see Figure 3.2. Furthermore, to pre-
serve a certain bit error rate, a better (higher) SNR is needed for modulation schemes with
high bandwidth efficiency. These correlations of modulation scheme, spectral efficiency,
minimum required SNR and capacity for different bandwidths are exemplarily shown in
Table 3.1. Note, the increase of transmission power improves the SNR but entails higher
system cost.

3.5. LTE Specifications

In this section, which is mainly based on the book by Kahn [102], we summarise some
characteristics specific for the 4G networks considered in this thesis. Basically, there exist
two types of 4G networks, WiMAX and LTE. WiMAX stands for Worldwide Interoper-
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modulation e min. SNR C for 7 MHz C for 14 MHz C for 28 MHz
scheme (bps/Hz) (dB) (Mbps) (Mbps) (Mbps)

QPSK 2 14.21 14 28 56
16-QAM 4 21.02 28 56 112
32-QAM 5 25.24 35 70 140
64-QAM 6 27.45 42 84 168
128-QAM 7 31.10 49 98 196
256-QAM 8 33.78 56 112 224

Table 3.1.: Spectral efficiency (e), SNR requirement, and capacity (C) for three different
bandwidths per modulation scheme [47].

ability of Microwave Access, while the official name of this type of network is Wireless
MAN and it is standardised in the IEEE 802.16 specifications [99]. The second type of
4G network Long-Term Evolution (LTE) is a further development of the 3G network Uni-
versal Mobile Telecommunications System (UMTS) and is specified by the 3rd Generation
Partnership Project (3GPP) [1]. Common goals of both types of networks are to enhance
the system spectral efficiency, provide significantly higher data rates and additionally to
support backward compatibility. In the remainder of this chapter and thesis, we focus on
LTE.

In a LTE network, a BS is called evolved Node-B (eNodeB or eNB) since the radio
network controller’s functions are now incorporated in the BS. Tasks of a radio network
controller include radio protocols, mobility management, and retransmissions. ENBs op-
erate with a bandwidth between 1.25 and 20 MHz. User mobility is supported until up to
350 km/h whereupon the network is optimised for low speeds up to 15 km/h. For 20 MHz
bandwidth, peak data rates of 326 Mbps in DL with a 4x4 MIMO eNB configuration (4
transmitting and 4 receiving antennae) can be achieved.

The modulation scheme used for DL in LTE is Orthogonal Frequency-Division Multiple
Access (OFDMA). It is based on Orthogonal Frequency-Division Multiplexing (OFDM),
where a bitstream of information is divided into substreams which are sent over different
subchannels (carrier frequencies). This technique is known as frequency-division multi-
plexing. Moreover, OFDM uses a multitude of narrowband (∼ 18 kHz) subcarrier signals
which are arranged to be mutually orthogonal to transmit data streams in parallel without
experiencing intra-cell interference. OFDMA is the multi-user version of OFDM, where
subsets of different numbers of subcarriers are assigned to users. This is a so-called mul-
tiple access method. Despite frequency division, adjacent cells share the same frequency,
which is why inter-cell interference occurs also in OFDMA based systems.
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4.1. The Wireless Access Network Planning Problem

In this section, we introduce the used notation and present a formulation to plan a cellular
access network as described in Section 3.1. This network planning problem serves as a
basis to apply various robustness concepts studied in this thesis.

The proposed formulation is mainly taken from our work Claßen et al. [49]. The wire-
less network we consider in this work consists of BSs and mobile users. The location and
all configurations of a BS are consolidated in a BS candidate site s ∈ S. For simplicity,
we speak of BSs instead of BS candidate sites henceforth. Each BS has cost cs and pro-
vides a total DL bandwidth bs which constitutes the capacity of the BS in Hz. Here, “cost”
should be regarded as a generalised term standing for either operational cost or power
consumption depending on the specific aims of the network planning.

A mobile user, also called user equipment (UE) or just user, has to be covered by (ex-
actly) one BS and requests a certain demand. To incorporate user mobility and to reduce
the number of users which have to be taken into account in the optimisation models, we
merge demands of users in a small area to a single traffic demand node (TN) based on the
concept presented by Tutschku et al. [172]. We then denote the set of TNs by T and each
TN t ∈ T requests a data rate wt.

The Wireless Network Planning Problem (WNPP) aims, on the one hand, at deciding
which BS to deploy and, on the other hand, at assigning TNs to the installed BSs. A
BS placement decision consists of the selection of a site and a configuration. Both tasks,
BS placement and TN assignment, are subject to several constraints such as interference
and resource restrictions. Since future wireless networks utilize advanced transmission
techniques such as OFDMA, we do not regard intra-cell interference, which occurs within
one cell among different users, in this thesis.

Depending on the aim of the network, several different objectives are possible. On the
one hand, the number of deployed BSs should be as small as possible to reduce the cost of
the network as well as the total power consumption. On the other hand, a high number of
covered TNs is desirable and also a high total throughput or sum rate. Hence, the objective
of a WNPP is usually a multi-objective with two or more contrary functions.

To guarantee a certain link quality, we introduce the parameter est denoting the spectral
efficiency for the link from BS s to TN t. This parameter gives the ratio between achievable
data rate and available bandwidth; see Section 3.3. To establish a transmission link, the
spectral efficiency must exceed a certain threshold emin > 0. Based on this constraint, we
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Symbol Parameter Description

S index set of BS candidate sites
s ∈ S representative index for a BS
T index set of TNs
t ∈ T representative index for a TN
cs cost to deploy BS s
bs total DL bandwidth available at BS s
wt requested data rate at TN t
est supported spectral efficiency from BS s to TN t
emin minimum required spectral efficiency to establish a link

Variable Description

xs ∈ {0, 1} BS placement decision, with xs = 1 if s is deployed
zst ∈ {0, 1} TN assignment decision with zst = 1 if t is served by s
ut ∈ {0, 1} TN non-coverage decision, with ut = 1 if t is not served

Table 4.1.: General parameters and variables for the formulation of the WNPP.

define the following auxiliary sets of indices.

S ∗ T B {(s, t) ∈ S × T | est ≥ emin},

St B {s ∈ S | (s, t) ∈ S ∗ T } ∀ t ∈ T ,
Ts B {t ∈ T | (s, t) ∈ S ∗ T } ∀ s ∈ S.

The set S∗T consists of all BS-TN pairs for which the establishment of a link is possible.
Based on this set, St is the set of all BSs which can provide the minimum required spectral
efficiency to TN t. Similarly, Ts denotes the set of TNs for which a link to BS s has
sufficient spectral efficiency.

Based on the spectral efficiency, the amount of bandwidth to be allocated to TN t from
BS s to serve the total required bit rate wt is given by wt/est. All parameters introduced so
far are summarised in Table 4.1.

The variables we utilise in our problem formulations are denoted as follows and also
listed in Table 4.1. Let xs ∈ {0, 1} indicate whether or not BS s ∈ S is deployed and zst ∈

{0, 1} whether TN t is assigned to BS s with (s, t) ∈ S ∗ T . Furthermore, we introduce a
slack variable ut which is equal to one if TN t is not served by any BS. Thus, the correlation
between variables z and u can be formulated as the following coverage constraints.∑

s∈St

zst + ut = 1 ∀ t ∈ T (4.1)

They ensure that all TNs are either covered by exactly one BS or not covered at all.
Further constraints inevitable in any model of the WNPP are the capacity constraints,
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which ensure that the bandwidth allocated to the TNs served by a single BS does not ex-
ceed its capacity. This can be modelled as the following knapsack constraint with variable
right hand side which is also related to a bin packing problem.∑

t∈Ts

wt

est
zst ≤ bsxs ∀ s ∈ S. (4.2)

Note, these constraints particularly guarantee that a TN can be assigned to a BS if and only
if this BS is deployed.

In this thesis, we focus on cost minimisation as an objective, where the installation of
BSs and unsatisfied users entail cost. Hence, the WNPP referred to in this thesis minimises
the number of deployed BSs while the number of served TNs is maximised. To combine
the two conflicting objectives, we introduce a scaling parameter λ > 0. The objective
function then reads

min
∑
s∈S

csxs + λ
∑
t∈T

ut. (4.3)

The complete basic formulation of the WNPP is given as the following ILP.

min
∑
s∈S

csxs + λ
∑
t∈T

ut (4.4a)

s.t.
∑
s∈St

zst + ut = 1 ∀ t ∈ T (4.4b)∑
t∈Ts

wt

est
zst ≤ bsxs ∀ s ∈ S (4.4c)

xs, zst, ut ∈ {0, 1} ∀ s ∈ S, (s, t) ∈ S ∗ T , t ∈ T (4.4d)

Due to the capacity constraints (4.4c), the problem is NP-hard.
Valid inequalities such as Gomory cuts are internally generated by state-of-the-art ILP

solvers such as CPLEX [98]. However, ILP solvers cannot take advantage of the particular
problem structure known to the user. One type of problem-specific cutting planes for
the presented model of the WNPP are variable upper bounds [173]. Constraints (4.2)
implicitly ensure that a TN can be assigned to a BS if and only if this BS is deployed. It is
well-known that the problem formulation can be strengthened by adding these constraints
explicitly as

zst ≤ xs ∀ (s, t) ∈ S ∗ T . (4.5)

Henceforth, we denote these inequalities as vub constraints.

4.2. Fixed Broadband Wireless Networks

The wireless network presented in the previous section represents the access network in
a communication network. As explained in Chapter 3, the backhaul network provides
interconnectivity between the access and the core network. In this chapter, we introduce
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a backhaul network transmitting via microwave links. Microwave radio transmission is a
preferred technology for backhaul networks, especially when fibre or copper lines are too
costly or impracticable, e. g., in emerging countries [8], as it can be deployed rapidly and
cost-efficiently.

The type of microwave transmission we consider in this work is terrestrial fixed point-to-
point digital radio communications or briefly fixed broadband wireless communications.
The employed antennae at a radio base station (RBS) are highly directional transmitting
and receiving energy mainly in/from one specific direction and are positioned in clear
line-of-sight. Thus, these networks are typically not affected adversely by interference.
Additionally, the antennae operate in licensed frequency bands of 6 to 38 GHz, but the
frequency range at which commercial communication systems can be deployed is contin-
uously expanded [134].

One major challenge is the planning of capacity in these wireless networks which is
fairly different from wired network planning. On the one hand, the frequency spectrum is
a limited natural resource restricting the available bandwidth. On the other hand, environ-
mental conditions such as weather can lead to channel fluctuations and hence, to capacity
variations. This is a reason for the common practice of conservative planning, which de-
ploys as much bandwidth as needed in a worst-case planning scenario. We state a MILP
formulation for such a conservative planning that assigns bandwidth to RBSs while re-
specting the traffic requirements and minimising the cost in the following paragraph. This
MILP forms the basis for our investigations of reliable formulations, which incorporate
channel fluctuations but are less conservative, in Chapter 7.

A MILP Formulation The model presented in the following is based on [57] and as-
sumes digital QAM, which is the most commonly used modulation in microwave systems;
see Section 3.4.

To formulate the minimum cost design of a fixed broadband wireless network (FBWN)
mathematically, we model each RBS as a node in a directed graph G = (V,A) where each
arc uv ∈ A represents a microwave link from RBS u to RBS v with u , v. Henceforth,
we use “arc” and “link” interchangeably for uv ∈ A. By δ−(v) (δ+(v)), we denote the set
of incoming (outgoing) neighbours of v. For every link uv ∈ A, let Puv be the number of
available bandwidth choices with index p = 1, . . . , Puv, capacity Bp

uv > 0 (determined from
Table 3.1), and cost cp

uv > 0. In the planning, we assume that a modulation scheme is fixed
for every bandwidth choice p. The traffic requirements are expressed as commodities and
summarised in the set K . For every k ∈ K , sk denotes the source (node), tk the target
(node), and dk the demand value.

To determine the bandwidth assignment and the network flows such that the total cost
is minimised, we introduce two types of variables, xk

uv and yp
uv. The flow variable xk

uv ≥ 0
denotes the amount of demand dk of commodity k routed on arc uv ∈ A while the decision
variable yp

uv ∈ {0, 1} indicates whether bandwidth choice p with capacity Bp
uv is assigned to
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arc uv ∈ A or not. The FBWN planning problem can then be formulated as:

min
∑
uv∈A

Puv∑
p=1

cp
uvy

p
uv (4.6a)

s.t.
∑

u∈δ−(v)

xk
uv −

∑
u∈δ+(v)

xk
vu =


−dk, v = sk

dk, v = tk

0, otherwise
∀ v ∈ V, k ∈ K (4.6b)

∑
k∈K

xk
uv ≤

Puv∑
p=1

Bp
uvy

p
uv ∀uv ∈ A (4.6c)

Puv∑
p=1

yp
uv ≤ 1 ∀uv ∈ A (4.6d)

xk
uv ≥ 0, yp

uv ∈ {0, 1}
∀uv ∈ A, k ∈ K ,
p = 1, . . . , Puv.

(4.6e)

The objective function (4.6a) represents the total bandwidth cost we aim at minimising.
The flow conservation constraints (4.6b) guarantee that every flow entering a node which is
neither source nor target also leaves the node. Additionally, for every source and target, the
total traffic requirement has to be fulfilled. Constraints (4.6c) are the capacity constraints
which ensure that the chosen bandwidth is sufficient to route the total assigned flow on
each link. Finally by means of constraints (4.6d), at most one bandwidth is chosen for
each arc, which implies that if no bandwidth is chosen, the link is not operated.

Model (4.6) is a minimum cost multi-commodity flow problem which is widely used
to formulate problems arising in telecommunication, see [140] for a survey. Addition-
ally, (4.6) is a special case of a network design problem and thus, strongly NP-hard [45].

Since a modulation scheme per bandwidth choice is fixed, the network modelled by (4.6)
cannot react to outage events. This means, if a link is established with a high-level mod-
ulation scheme, this link is more likely to fail and then traffic might be lost. To handle
such link outages, adaptive modulation and coding (AMC) is usually employed in modern
microwave links [84]. Hence, the radio configuration is a random factor which has to be
taken into account already during the planning of a reliable network. One possibility to
model FBWNs under outage probability constraints are so-called chance constraints which
are investigated in Part II of this thesis.
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A network set up by a straightforward application of the basic model (4.4) presented in
Section 4.1 could suffer from severe problems caused by inter-cell interference. For in-
stance, TNs which are claimed as covered in an optimal solution of the model might not
receive a sufficiently large signal power to fulfil the requested bit rates due to other BSs
interfering the signal. Hence, to improve the performance of the network, interference has
to be taken into account already in the planning phase. There exist several techniques and
approaches to address inter-cell interference by influencing the signal transmission, which
are especially suitable to decrease/eliminate interference during operation of the wireless
network. Examples of such approaches are randomisation, where interference is averaged
across the spectrum, signal processing techniques to eliminate interference completely,
multi-antenna techniques using several antennae simultaneously for signal transmission
and reception, or coordination, where interference is handled via restrictions to the utilis-
able resources; see Kosta et al. [115] for more details.

In this chapter, we focus on inter-cell interference free planning of wireless networks,
where the proposed approaches are based on SINR conditions, which can guarantee a
sufficient quality of an established link. We present conventional SINR constraints in
Section 5.2, which can, however, lead to numerical instabilities due to huge differences
in magnitude of the coefficients. Hence, we propose approximate as well as novel ex-
act approaches to model inter-cell interference via SINR conditions but avoid the explicit
incorporation of the corresponding constraints.

Before investigating different approaches and proposing corresponding formulations,
we give some preliminaries on the computation of spectral efficiencies and the evaluation
of the exactness of the formulations in Section 5.1. Additionally, we present the conven-
tional SINR constraint formulation in Section 5.2. Afterwards, we first state three approx-
imate formulations and then three exact and novel ones. The first approximate approach
is the concept of a conflict graph presented in Section 5.3. By means of a conflict graph,
we can on the one hand position the transmitting BSs sufficiently far away from each other
such that only marginal inter-cell interference occurs, and on the other hand extend the
definition of a BS candidate. A more refined but still approximate approach is presented in
Section 5.4 where we require that the ratio between the spectral efficiencies corresponding
to the serving and to any interfering BS exceeds a certain threshold. The last approxi-
mate approach is proposed in Section 5.5 which depicts an iterative algorithm updating
the values for the spectral efficiencies according to the actual deployed BSs. Afterwards,
we present three novel exact approaches and corresponding formulations in Sections 5.6
to 5.8. The first formulation mitigates interference from a BS point of view, where the
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second formulation is a TN oriented model. The approach in Section 5.8, exploits the fact
that it is sufficient to consider only a discrete number of different spectral efficiencies.

Finally, we find good values for formulation specific parameters in a computational
study in Section 5.9 and compare the different approaches in terms of a SINR-corrected
objective value which regards also violated SINR conditions.

5.1. Preliminaries

In most of the approaches presented in the following sections, it is necessary to compute
the SINR of a link from a BS to a TN; see equation (3.3) in Section 3.3 for the definition
of SINR. The received power at TN t from BS s is generally computed as

Pr(s, t) = psast,

where ps denotes the transmission power of BS s and ast the fading coefficient of the link
from BS s to TN t, which can incorporate shadow fading and path loss. A general SINR
requirement/condition can be formulated as

γst B
Pr(s, t)∑

σ∈Sst

Pr(σ, t) + η
≥ δ, (5.1)

where δ is a predefined threshold and η denotes the background noise, which particularly
depends on the bandwidth. The largest possible set of interferers Sst is St \ {s} as a BS can
only interfere a signal to t if it is able to cover this TN.

Whenever it is inevitable to specify the fading coefficient explicitly, for instance in the
computational study in Section 5.9, we consider only path loss and disregard shadow fad-
ing. Hence, the fading coefficient is then computed as

ast = 10−
1

10 PdB
L (s,t),

where PdB
L (s, t) denotes the path loss of the signal from s to t given in dB.

Based on the SINR value, the spectral efficiency est is exactly calculated as

est = log2(1 + γst). (5.2)

To avoid these numerical difficult values, we approximate the spectral efficiencies by a
stepwise function. Hence, we use the look-up Table 5.1 taken from Sesia et al. [162],
which maps SINR and thus, also SNR values given in dB to spectral efficiencies for a
bandwidth of 10 MHz. More precisely, a range of SINR values is mapped to one discrete
spectral efficiency. For example, the interval [−5.1,−2.9) is associated with the spectral
efficiency 0.25. In Figure 5.1, we display the function (5.2) and the stepwise approxima-
tion.

As the spectral efficiency is an indicator for the quality of a signal or channel, each line
in Table 5.1 is labelled by an index called Channel Quality Indicator (CQI). If not stated
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CQI
spec. eff. SINR
(bps/Hz) (dB)

0 out of range
1 0.25 -5.1
2 0.40 -2.9
3 0.50 -1.7
4 0.66 -1.0
5 1.00 2.0
6 1.33 4.3
7 1.50 5.5
8 1.60 6.2
9 2.00 7.9

10 2.66 11.3
11 3.00 12.2
12 3.20 12.8
13 4.00 15.3
14 4.50 17.5
15 4.80 18.6

Table 5.1.: SINR requirements for LTE
and 10 MHz bandwidth ac-
cording to [162].
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Table 5.1

Figure 5.1.: Approximation of the spectral effi-
ciency via look-up Table 5.1.

differently, the values of the spectral efficiencies used in the capacity constraints (4.4c) are
based on the SNR values. Since SINR values are usually unkown, it is common practice to
use only SNR values as an approximation of the capacity of a wireless link; see Chafekar
et al. [41].

For simplicity, we denote by “basic formulation” the ILP (4.4) together with the vub
constraints (4.5) in the remainder of this chapter. To evaluate and compare the different
approaches proposed in the subsequent sections, we introduce the following notion of
exactness.

Definition 5.1. A formulation incorporating interference into the basic formulation is de-
noted as exact in terms of SINR if no violated SINR condition (5.1) exists for an optimal
solution.

Note, exactness for any approach is only possible if the minimum spectral efficiency emin

and the SINR threshold δ are chosen accordingly. This means, emin and δ are set such that δ
is the lower bound of the range corresponding to emin in Table 5.1.

In some approaches proposed in the following sections, we do not restate the capacity
constraints (4.4c) which comprise the spectral efficiencies associated to the SNR value.
Hence, we cannot guarantee that the BS capacity is not exceeded when the actual SINR
values are known for an optimal solution for such formulations. To account for this effect,
we introduce the following further notion of exactness.
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Section name SINR capacity

5.2 SINR constraint formulation yes no
5.3 conflict graph formulation no no
5.4 TN coverage requirement form. no no
5.5 iterative formulation no no
5.6 interference mitigation form. yes yes
5.7 TN oriented formulation yes yes
5.8 discrete CQIs formulation yes yes

Table 5.2.: Summary of exactness in terms of SINR and capacity of the subsequent formu-
lations.

Definition 5.2. A formulation incorporating interference in the basic formulation is de-
noted as exact in terms of capacity if no violated capacity constraint (4.4c), in which the
spectral efficiencies are determined via the actual SINR values, exists for an optimal solu-
tion.

In Table 5.2, we summarise the exactness in terms of SINR as well as capacity for all
formulations discussed in the subsequent sections.

5.2. Conventional SINR Constraints

There exist two most commonly used interference models: graph-based and fading chan-
nel or physical models [88]. One example of a graph-based model is discussed in the
subsequent Section 5.3 while we propose a physical model in the present section.

The physical model proposed in Gupta and Kumar [91] uses SINR constraints to model
interference. Such constraints ensure that the SINR is sufficiently high to establish a phys-
ical link from the transmitter (BS) to the receiver (TN); see the SINR requirement (5.1).
This model is widely used in the literature to model interference for various kinds of
problems occurring in different types of wireless communication networks. We give an
overview on several rather recent works in the following. Goussevskaia et al. [87] inves-
tigate the problem of scheduling wireless links respecting the SINR model in wireless ad
hoc networks, which are decentralised and consist of radio units that can form temporary
communication links among each other. Borbash and Ephremides [29] study wireless link
scheduling with power control and SINR constraints where the aim is to find a schedule
and durations such that all demands are satisfied. Afterwards, power vectors have to be
determined such that the SINR requirements are satisfied. In Andrews and Dinitz [9],
the authors maximise the number of connections satisfying SINR constraints in arbitrary
wireless networks where the transmission powers have to be defined. Furthermore, Ra-
mamurthi et al. [158] study the assignment of channels together with the distribution of
capacity and the determination of link flows in wireless mesh networks. They use SINR
conditions to determine interfering links for every node. In Johansson and Xiao [101], the
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problem of simultaneous routing, resource allocation and scheduling in wireless ad hoc
networks is investigated at which the channel capacity is modelled via discrete rate levels
with associated SINR targets. Recently, Li et al. [123] investigate two basic approaches
of modelling SINR conditions for parallel link transmissions in wireless networks and
introduce matching inequalities to improve the optimality gaps.

To include the SINR requirement (5.1) in our basic formulation for wireless network
planning, we add the decision variables zst and xσ denoting the TN assignment and the BS
installation and obtain the following constraint.

Pr(s, t)zst∑
σ∈Sst

Pr(σ, t)xσ + η
≥ δ ⇔ Pr(s, t)zst ≥ δ

∑
σ∈Sst

Pr(σ, t)xσ + η

 .
The last constraint leads to an undesirable restriction in case that zst = 0. Hence, we add a
big-M term and obtain the following SINR constraint, which is a big-M constraint.

Pr(s, t)zst + Mst(1 − zst) ≥ δ

∑
σ∈Sst

Pr(σ, t)xσ + η

 ∀ (s, t) ∈ S ∗ T , (5.3)

with Mst sufficiently large ensuring a restriction only if zst = 1. Big-M constraints are
in general numerically difficult due to weak LP relaxations and rounding issues. But
constraints (5.3) are even worse since the received powers Pr(s, t) and Pr(σ, t) can vary
significantly in magnitude.

Transforming (5.3) such that each variable occurs exactly once leads to

(Mst − Pr(s, t))zst +
∑
σ∈Sst

δPr(σ, t)xσ ≤ Mst − δη ∀ (s, t) ∈ S ∗ T . (5.4)

In case of zst = 0, constraint (5.4) should not present any restriction. If zst = 0, (5.4)
reduces to ∑

σ∈Sst

δPr(σ, t)xσ ≤ Mst − δη ∀ (s, t) ∈ S ∗ T .

Hence, we define
Mst B

∑
σ∈Sst

δPr(σ, t) + δη ∀ (s, t) ∈ S ∗ T . (5.5)

By means of the SINR constraints (5.3) or (5.4), respectively, a link from a BS to a
TN is established if and only if the associated SINR is sufficiently large. Hence, no inter-
ference occurs for an optimal solution. However, we cannot guarantee that the capacity
constraints (4.4c) are actually satisfied as the spectral efficiencies used for the initialisation
are not updated after the actual SINR values are known possibly causing an excess of the
BS capacity.

Remark 5.3. The basic formulation together with the conventional SINR constraints (5.3)
or (5.4), which we call henceforth the SINR constraint formulation, yields an exact formu-
lation in terms of SINR but not in terms of capacity.
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Proof. Exactness in terms of SINR is clear by definition. To show a possible violation of a
capacity constraint, we consider the following example. We assume a solution with zst = 1
for one (s, t) ∈ S ∗ T and t ∈ Tσ for a BS σ ∈ S \ {s} with xσ = 1 such that the capacity
of BS s is fully used. Moreover, let PdB

L (s, t) = 130 dB and PdB
L (σ, t) = 140 dB such

that est = 2 based on the SNR value. The spectral efficiency based on the correct SINR
value e′st with σ interfering the signal from s to t is only 0.66. Hence, wt/e′st > wt/est

causing the violation of the capacity of BS s. �

We investigate the numerical stability of the SINR constraint formulation in a computa-
tional study in Section 5.9.3.

Capone et al. [39] derive cover inequalities to replace the conventional SINR con-
straints (5.3) and to overcome numerical instabilities. We briefly summarise their approach
in the following.

As the big-M constraint (5.3) is only restrictive if TN t is assigned to BS s, it reduces to

Pr(s, t) ≥ δ

∑
σ∈Sst

Pr(σ, t)xσ + η

 . (5.6)

if zst = 1. Defining

rst B
Pr(s, t)
δ
− η,

constraint (5.6) is equivalent to ∑
σ∈Sst

Pr(σ, t)xσ ≤ rst, (5.7)

which is a knapsack constraint. As described in Section 1.3, the solving of models com-
prising such constraints can be improved by separating cover inequalities. In the present
context, a subset Cst ⊆ Sst is a cover if∑

σ∈Cst

Pr(σ, t) > rst.

The corresponding cover inequality then reads∑
σ∈Cst

xσ ≤ |Cst| − 1.

However, this inequality should only be restrictive if TN t is assigned to BS s, i. e., if zst =

1. Hence, we replace the 1 at the right hand side by the assignment variable and obtain the
following cover inequality. ∑

σ∈Cst

xσ ≤ |Cst| − zst

Note, any integer solution fulfilling every cover inequality is a feasible solution of the
original knapsack constraint (5.7).

44



5.3. Conflict Graph

We do not take this formulation into account in the computational study in Section 5.9
as it has been numerically evaluated in detail in [39].

5.3. Conflict Graph

Our first approach to limit inter-cell interference and avoid SINR constraints is to stipulate
that the installed BSs constitute an independent set in a predefined conflict graph G =

(S,E); see [49]. An independent set in a graph is a subset S′ ⊆ S of the vertices such
that there does not exist an edge i j ∈ E for all i, j ∈ S′. This restriction is reflected in the
following constraint, which we add to the basic formulation.

xi + x j ≤ 1 ∀ i j ∈ E (5.8)

The concept of conflict or interference graphs is a commonly applied graph-based in-
terference model; see, e. g., Grönkvist and Hansson [89]. It has been employed in the
planning of GSM (global system for mobile communications) networks [136], WLANs
(wireless local area networks) [159], and LTE networks [66], and in a modified way via
complement sets for the deployment of cooperation clusters in general wireless cellular
networks [146].

We can strengthen constraints (5.8) by replacing them by maximal clique inequali-
ties [150] where a clique is a complete subgraph. Formally speaking, letU ⊆ S be a subset
of the vertex set. We call U a clique of conflict graph G if there exists an edge i j ∈ E for
all i, j ∈ U. A clique is maximal if it is not included in a larger clique.

Constraints (5.8) describe an independent set polytope. Thus, we can replace these
constraints by all maximal clique inequalities∑

s∈U

xs ≤ 1 ∀U ⊂ S, U is a maximal clique in G = (S,E). (5.9)

The problem of finding maximal cliques is NP-complete and maximal cliques can be
computed by the Bron-Kerbosch algorithm [31] with complexity O(3n/3) [169] which is
fast in practice.

The conflict graph is a quite versatile concept as it can on the one hand limit the inter-cell
interference and on the other hand it allows for more general candidate sites. For the inter-
cell interference limitation, the conflict graph can be defined such that two BSs are adjacent
if and only if the distance between them is less than or equal to a minimum required
distance dmin. For macro cells, dmin is usually set to 500 m; see, e. g., [32, 102, 165]. Note
that the resulting conflict graph is a unit disk graph which is an intersection graph of equal
sized circles in the plane. Gupta et al. [92] present an approximation polynomial in the
number of edges m with complexity O(m∆2) (∆ maximal degree) to compute maximal
cliques in such graphs.

Remark 5.4. The basic formulation together with constraints (5.8) or the equivalent maxi-
mal clique inequalities (5.9) defined via the minimum distance requirement, which we call
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henceforth the conflict graph formulation, does not yield an exact formulation neither in
terms of SINR nor in terms of capacity.

Proof. A minimum distance between deployed BSs cannot prevent the violation of a
SINR, e. g., for a TN in the middle of two BSs. The fading coefficient for a signal from
a not-serving BS can still be sufficiently high to disturb the signal from the serving BS.
Moreover, a violated SINR condition directly implies the violation of a capacity constraint
if the capacity is fully used since an unreasonable high bandwidth would be required to
serve the TN with insufficient SINR. �

Without the conflict graph concept, a BS candidate consists of a location and a fixed
(antenna) configuration. But for each position there can only exist one candidate, i. e., one
configuration. By means of the conflict graph, we can introduce several candidates for the
same site with different configurations. Since at most one BS can be installed per site, an
edge of the graph is then formed by two BS candidates located at the same position with
distinct settings.

5.4. TN Coverage Requirement

Based on the paper by Engels et al. [67], we demand that a TN t can be covered by a
BS s if the ratio between the spectral efficiencies of the serving BS s and any interfering
BS σ exceeds a threshold δc, which is related to SINR thresholds. This is modelled by the
following TN coverage requirement.

est

eσt
≥ δc ∀σ ∈ Sst, (5.10)

Sst denotes the set of BSs interfering the signal from s to t. As explained in Section 5.2,
it holds Sst ⊆ St \ {s}. Note that eσt ≥ emin > 0 per definition of St. A straightforward
formulation of the corresponding model constraints is given as follows.

est

eσt
≥ (zst + xσ − 1)δc ∀ t ∈ T , s ∈ St, σ ∈ Sst, (5.11)

where s is the serving and σ is an interfering BS. A constraint for t ∈ T , s ∈ St, σ ∈ Sst

is restrictive if and only if t is covered by s (zst = 1) and σ is installed (xσ = 1). However,
these constraints can be improved by the following reformulation which shifts the TN
coverage requirement to the domain reducing the number of constraints significantly.

zst + xσ ≤ 1 ∀ t ∈ T , s ∈ St, σ ∈ Sst with
est

eσt
< δc (5.12)

Note, (5.12) is also a type of a conflict graph with (s, t) and σ forming an edge if est
eσt
< δc.

The TN coverage requirement can only guarantee a certain link quality but has no influ-
ence on the actual transmission rate. Hence, it depicts a reasonable approach for coverage
maximisation, where the number of not covered TNs is minimised. However, violations
of SINR requirements (5.1) cannot be eliminated.
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Remark 5.5. The basic formulation together with the TN coverage requirement con-
straints (5.12), which we call henceforth the TN coverage requirement formulation, does
not yield an exact formulation neither in terms of SINR nor in terms of capacity.

Proof. Requirement (5.12) can only eliminate the worst interference. However, the sum of
all interfering signals is included in the SINR. Thus, violated SINR conditions are possible
even though every single interfering signal is not too strong.

With the same argumentation as in the proof of Remark 5.4, violated capacity constraints
are not excluded. �

In Section 5.9.3, we investigate various values in a computational study to find a good
threshold δc.

5.5. An Iterative Formulation

In this section, we develop an iterative formulation where the spectral efficiencies are
updated in every iteration by computing new SINR values.

For the initial values of the spectral efficiencies e0
st, we compute initial SNR values γ0

st
without interference; cf. (3.1).

γ0
st B

Pr(s, t)
η

(5.13)

The corresponding spectral efficiency e0
st is then extracted from the look-up Table 5.1.

Moreover, we denote the number of violated SINR constraints at iteration i regarding
threshold δ by U i and initialise this value as

U0 B |T |.

Furthermore, we denote the number of deployed BSs by ςi and the number of covered TNs
by τi at iteration i with initial values 0.

The ILP we solve at iteration i ≥ 0 is the basic formulation but with iteration specific
spectral efficiencies:

min
∑
s∈S

csxs + λ
∑
t∈T

ut (5.14a)

s.t.
∑
s∈St

zst + ut = 1 ∀ t ∈ T (5.14b)∑
t∈Ts

wt

ei
st

zst ≤ bsxs ∀ s ∈ S (5.14c)

zst ≤ xs ∀ (s, t) ∈ S ∗ T (5.14d)
xs, zst, ut ∈ {0, 1} ∀ s ∈ S, (s, t) ∈ S ∗ T , t ∈ T . (5.14e)

For a solution (xi, zi, ui) of ILP (5.14) at iteration i, we compute U i, ςi and τi as follows.

U i =
∣∣∣∣{t ∈ T ∣∣∣ γi+1

st < δ with s ∈ St and zi
st = 1

}∣∣∣∣ , with

47



5. Interference Modelling in Wireless Access Networks

γi+1
st =

Pr(s, t)∑
σ∈St\{s}

Pr(σ, t)xi
σ + η

, (5.15)

ςi =
∣∣∣∣{s ∈ S ∣∣∣ xi

s = 1
}∣∣∣∣ =

∑
s∈S

xi
s,

τi =
∣∣∣∣{t ∈ T ∣∣∣ ui

t = 0
}∣∣∣∣ =

∑
t∈T

ui
t.

We extract the spectral efficiencies ei+1
st from Table 5.1 according to the SINR values com-

puted in (5.15) for every pair (s, t) ∈ S ∗ T with zi
st = 1. Note, the set S ∗ T has to

be updated so that (s, t)-pairs with ei+1
st < emin are excluded. The sets St and Ts are then

updated accordingly. Afterwards, we solve ILP (5.14) again with the new spectral efficien-
cies unless (U i, ςi, τi) = (U i−1, ςi−1, τi−1) = (U i−2, ςi−2, τi−2) for i ≥ 2. This means, a stop
criterion catches if the parameters based on the solution have not changed three times in
succession. Note, two times do not suffice as can be seen later on in Figure 5.2 on page 49.
Without this exit condition, we cannot ensure a termination of the algorithm.

The complete iterative algorithm is summarised in Algorithm 2.

Algorithm 2 Iterative interference modelling
Input: basic parameters of the WNPP and SINR threshold δ
Output: (U, ς, τ) and corresponding solution (x, z, u)
Initialisation:

compute γ0
st regarding (5.13) and e0

st according to Table 5.1
define (U0, ς0, τ0) B (|T |, 0, 0)
i = 0, bool continue=true
while continue do

solve ILP (5.14) with spectral efficiencies ei
st obtaining solution (xi, zi, ui)

compute (U i, ςi, τi)
if (U i, ςi, τi) = (U i−1, ςi−1, τi−1) = (U i−2, ςi−2, τi−2) then continue=false
else

compute γi+1
st according to (5.15) for (s, t) ∈ S ∗ T with zi

st = 1
set γi+1

st = γi
st for the remaining (s, t) ∈ S ∗ T

set the associated values ei+1
st

update S ∗ T , St, and Ts

set i = i + 1
end if

end while
return (U i, ςi, τi) and (xi, zi, ui)

Remark 5.6. Algorithm 2, which we call henceforth the iterative formulation, is neither
exact in terms of SINR unless U i = 0 nor in terms of capacity.
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Figure 5.2.: Number of violated SINR conditions U i per iteration i for a scenario with 40
BS candidates and 450 TNs.

Proof. Algorithm 2 is in general not exact in terms of SINR as U i > 0 is possible for the
computed solution (x, z, u). Moreover, the spectral efficiencies used in the computation
of a feasible solution do not necessarily correspond to the actual SINR values. Hence,
Algorithm 2 is also not exact in terms of capacity. �

Modifications To avoid excessive running times, we apply the following modifications.
First, we introduce a limit κ on the integrality gap of ILP (5.14) such that the solving
process of the ILP is aborted if the percentage gap between lower and upper bound is
below κ. Reasonable values for κ are, e. g., 1, 2 or 5 %. Second, as it is possible that
an excessive amount of time is needed until the gap limit takes effect, we additionally
introduce a time limit for the solving of each ILP. This time limit depends on the global
time limit. Since time limits are machine depending, we lose the determinism in case that
such a limit takes effect.

The solutions, especially the value of U i, fluctuate during the iterations. We display
fluctuating values of U i exemplarily for a test scenario with 40 BS candidates and 450
TNs in Figure 5.2 using the best setting determined in Section 5.9.3. Since the solution
with the lowest U i is desired, we compare the current U i to the best known value Ubest

and update the latter value if necessary at every iteration. Additionally, we save and up-
date ςbest, τbest and (xbest, zbest, ubest) corresponding to Ubest. The modified Algorithm 2 then
returns (Ubest, ςbest, τbest) and (xbest, zbest, ubest).

Finally, the current computation of the values γi+1
st is quite conservative as it keeps

(lower) values for (s, t)-pairs for which no link is established in the current ILP solu-
tion (xi, zi, ui) but might have been established in a previous solution. Therefore, we present
the following variant to compute all γi+1

st values.
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γi+1
st =


Pr(s,t)∑

σ∈St\{s}
Pr(σ,t)xi

σ+η
if zi

st = 1,

Pr(s,t)
Pr(σ,t)+η

if zi
st = 0 and ∃σ ∈ St \ {s} with zi

σt = 1

γ0
st if ui

t = 1

(5.16)

Here, the first case is the same as before. In the second case, when TN t is assigned to
a BS σ in the current solution, we set γi+1

st = γi
st for all remaining BSs s ∈ St, s , σ in

the former version of Algorithm 2. But these values are, in general, too low since the link
from s to t is currently not established and the former interfering BSs might also not (all)
be deployed in the present solution. Instead, we now define a lower bound on the SINR
value, where the currently serving BS σ is handled as the only interfering BS of the signal
from BS s to t. Eventually, if TN t is currently not covered, the SINR values for every
BS s ∈ St are set back to the initial values resembling only SNR.

Preliminary computational tests have revealed that the SINR update routine (5.16) gives
better results with regard to the number of violated SINR conditions U i than (5.15). On
that account, we use only (5.16) to update the SINR values henceforth.

The SINR calculation (5.16) assumes constant signal transmission also from the inter-
fering BSs. However in real world wireless communication networks, BSs are not trans-
mitting constantly. Hence, as a further variant, we incorporate also the percentage load of
a BS in the calculation of the SINR values as follows. The percentage load `i

s in iteration i
is defined as

`i
s B

1
bs

∑
t∈Ts

wt

ei
st

zi
st.

The SINR extended by the load of the interfering BSs is computed as

γi+1
st =


Pr(s,t)∑

σ∈St\{s}
`i
σPr(σ,t)xi

σ+η
if zi

st = 1,

Pr(s,t)
`i
σPr(σ,t)+η

if zi
st = 0 and ∃σ ∈ St \ {s} with zi

σt = 1,
(5.17)

where the value for ui
t = 1 remains as before; see (5.16).

By means of a computational study in Section 5.9.3, we intend to find good values for
the gap limit κ as well as time limit and to decide if the inclusion of load in the SINR
calculation can improve the performance.

5.6. Interference Mitigation

Interference mitigation techniques have recently been developed for LTE networks espe-
cially for heterogeneous networks. These techniques include but are not limited to the
detection of cells of other types (macro, pico, femto), and power and encoding adjustment.
Furthermore, interference can be mitigated by avoiding the worst interferers during the
BS placement decision and the assignment decision. We propose a variant of interference
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mitigation in this section developed from the concept presented by Kosta et al. [115].

For every BS s ∈ S, we define Is ⊆ S \ {s} to be the set of BSs which interfere signals
from s. Furthermore, let Is be the power set of Is. By i ∈ {1, . . . , |Is|}, we denote the
index of a set in Is and by Ii

s the set of interferers with index i in Is. Furthermore, letHs

be the set of BSs which are interfered by s, i. e., Hs B {σ ∈ S \ {s} | s ∈ Iσ}. The aim is
now to decide which BS should be installed and at the same time which set of BSs should
not be installed to avoid the interference with signals transmitted from the deployed BSs.
For that purpose, we define new decision variables

xi
s =

1, BS s is deployed and Ii
s is the maximal set of interfering BSs not deployed

0, otherwise,

where “maximal” means with respect to cardinality. If a BS s is not deployed, i. e., xi
s = 0

for all i ∈ {1, . . . , |Is|}, then the deployment of at least one BS σ ∈ Hs, which is interfered
by s, is possible. But then, a set I j

σ of interfering BSs that contains s with j ∈ {1, . . . , |Iσ|}
cannot be deployed at the same time. In the case that a BS s is deployed, i. e., xi

s = 1 for
one i ∈ {1, . . . , |Ii

s|}, no interfered BS σ ∈ Hs can be deployed if its deployment requires
that a set I j

σ with j ∈ {1, . . . , |Iσ|} containing s is not installed. These interrelations and
the connection to the former decision variables xs are summarised in the following model
constraints.

|Is |∑
i=1

xi
s +

∑
j ∈ {1, . . . , |Iσ |} :
s ∈ I j

σ

x j
σ ≤ 1 ∀ s ∈ S, σ ∈ Hs (5.18)

|Is |∑
i=1

xi
s = xs ∀ s ∈ S (5.19)

Note, equations (5.19) do not have to be added as model constraints and also variables xs

are dispensable. We just quoted these equations for a better understanding here.

For any installed BS s, the selection of i ∈ {1, . . . , |Is|} impacts the SINR of all TNs
assigned to s. If the interfering BSs in Ii

s are not deployed and all other interfering BSs
are deployed, the SINR for the signal from s to t is denoted by

γi
t,s =

Pr(s, t)∑
σ∈(St\I

i
s)∩Is

Pr(σ, t) + η
∀ (s, t) ∈ S ∗ T , i ∈ {1, . . . , |Is|}. (5.20)

Note, the intersection of St \ I
i
s with Is is necessary in case that St is not completely

contained in the set of interfering BSs Is. Depending on the definition of Is this case is
not unlikely; see the paragraph on the definition of the interfering set at the end of this
section. The spectral efficiency ei

st is then taken from Table 5.1 based on the SINR γi
t,s.

We now extend the basic formulation to incorporate the presented interference mitiga-
tion.
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min
∑
s∈S

cs

|Is |∑
i=1

xi
s

 + λ
∑
t∈T

ut (5.21a)

s.t.
∑
s∈St

zst + ut = 1 ∀ t ∈ T (5.21b)

|Is |∑
i=1

xi
s +

∑
j ∈ {1, . . . , |Iσ |} :
s ∈ I j

σ

x j
σ ≤ 1 ∀ s ∈ S, σ ∈ Hs (5.21c)

∑
t∈Ts:ei

st≥emin

wt

ei
st

zst ≤ bsxi
s + Mi

s(1 − xi
s) ∀ s ∈ S, i ∈ {1, . . . , |Is|} (5.21d)

zst ≤

|Is |∑
i=1

xi
s ∀ (s, t) ∈ S ∗ T (5.21e)

zst +
∑

i∈{1,...,|Is |}:ei
st<emin

xi
s ≤ 1 ∀ (s, t) ∈ S ∗ T (5.21f)

|Is |∑
i=1

xi
s ≤ 1 ∀ s ∈ S (5.21g)

xi
s, zst, ut ∈ {0, 1}

∀ s ∈ S, i ∈ {1, . . . , |Is|},
(s, t) ∈ S ∗ T , t ∈ T (5.21h)

The objective function (5.21a) exploits (5.19) and is thus exactly the same as the standard
objective function (4.4a), which minimises the cost of installed BSs and the number of not
covered TNs. Furthermore, constraints (5.21b) are the same as (4.4b) ensuring that a TN is
either covered by one BS or not served at all and (5.21c) are a copy of (5.18). The capacity
constraints (4.4c) are reformulated in terms of the new variables xi

s and corresponding
parameters ei

st in (5.21d). We introduce a big-M for every s and i to guarantee that the
capacity constraint is non-restrictive in case that xi

s = 0. The smallest possible value
for Mi

s is
∑

t∈Ts:ei
st≥emin

wt
ei

st
.

The vub constraints (4.5) are reformulated in (5.21e). Due to the recalculation of the
spectral efficiencies based on the SINR values defined in (5.20), ei

st < emin is possible for
a pair (s, t) ∈ S ∗ T . To exclude an invalid assignment of a TN t to a BS s if all BSs
in Ii

s are not deployed with ei
st < emin, we add constraints (5.21f). Note, these constraints

implicitly include the vub constraints (5.21e). Finally, (5.21g) guarantee that at most one
set of interfering BSs Ii

s is not deployed if BS s is installed.

Remark 5.7. The interference mitigation formulation (5.21) is exact in terms of SINR
as well as capacity if the sets Is comprise every possible subset of interfering BSs for
every s ∈ S.

Proof. If Is comprises every possible subset of interfering BSs for every s ∈ S, then a
feasible solution of (5.21) respects the minimum spectral efficiency requirement by means
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of constraints (5.21f) and thus, also the SINR requirement. A prerequisite is that emin and δ
are defined accordingly.

Furthermore, the capacity constraints (5.21d) contain the correct spectral efficiencies
derived from the actual SINR values and can therefore not be violated by any feasible
solution. �

The definition of the interfering sets One degree of freedom in the presented inter-
ference mitigation approach is the definition of the sets Is. To preserve the exactness, Is

has to be defined as the power set of Hs B S \ {s} for s ∈ S. But then we have to
solve (5.21) with an exponential number of variables and constraints. To avoid this, we
propose two alternative definitions of Is in the following, which however cannot guarantee
the exactness in terms of SINR and thus, also not in terms of capacity.

A definition based on the minimum distance constraint described in Section 5.3 is the
following. If the distance between BSs s and σ is less than dmin, then s ∈ Hσ and σ ∈ Hs.
The set of subsets of interferers is now defined as Is = 2Hs . By this means, we assume the
same level of interference between two BSs in both directions.

The interference mitigation approach with the set of interferers specified above is com-
parable to the conflict graph model since both formulations use the minimum distance
requirement. However, the interference mitigation is more capable of modelling inter-cell
interference since the SINR values γi

t,s are implicitly taken into account via the spectral
efficiencies ei

st.
Another possibility to determine the sets Is of interferers is based on the TN coverage

requirement introduced in Section 5.4. For that purpose, we define a new parameter %sσ for
every BS pair (s, σ) with s ∈ S and σ ∈ S\{s}. %sσ gives the percentage of TNs t ∈ Ts∩Tσ

for which est/eσt < δ. If %sσ exceeds a predefined threshold, then σ is an interferer of s
and hence, σ ∈ Ii

s for at least one i ∈ {1, . . . , |Is|} and s ∈ Hσ. Note that BS s is not
necessarily an interferer to BS σ as the interference is directed.

For a restriction of the size of sets Is, we define a parameter κ ∈ Z>0 as a positive integer
and assume that only the κmany closest BSs to a BS s can interfere signals from s. Hence,
the number of interferers that have to be considered in the two definitions stated above is
limited by κ.

We investigate the two presented approaches to define the sets Is and aim at finding a
good value for κ in a computational study in Section 5.9.3.

5.7. A TN Oriented Formulation

The interference mitigation approach proposed in the previous section can be regarded as
a BS oriented formulation since interference is defined from a BS point of view. In this
section, we develop a TN oriented model where interference is defined on a TN basis.

For every TN t ∈ T , we define Kt different configurations where a configuration k ∈
{1, . . . ,Kt} comprehends a set Sk ⊆ St of deployed BSs and an accentuated BS sk ∈ Sk

which is the serving BS for t. Furthermore, we define k = 0 such that TN t is not served by
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any BS. Note, for configuration k = 0, we do not make any assumption on the deployment
of BSs.

For each TN t and configuration k, we can compute the SINR value as follows.

γk
t B

Pr(sk, t)∑
s∈Sk\{sk}

Pr(s, t) + η
∀ t ∈ T , k = 1, . . . ,Kt (5.22)

Based on these SINR values, we define the associated spectral efficiencies ek
t according to

the look-up Table 5.1. Note that we consider only configurations with ek
t ≥ emin henceforth.

Finally, we introduce indicator variables yk
t which are set to 1 if configuration k is chosen

for TN t and 0 otherwise. In case yk
t = 1 for k ≥ 1, the set Sk of BSs is deployed, all BSs

in St \ S
k are not installed and sk is the serving BS for t. If y0

t = 1, TN t is not served and
we do not assume anything on the deployment of BSs in St.

We propose the TN oriented formulation as the following ILP.

min
∑
s∈S

csxs + λ
∑
t∈T

y0
t (5.23a)

s.t.
Kt∑

k=0

yk
t = 1 ∀ t ∈ T (5.23b)∑

k∈{1,...,Kt}:s∈Sk

yk
t ≤ xs ∀ (s, t) ∈ S ∗ T (5.23c)∑

k∈{1,...,Kt}:s∈Sk

yk
t ≥ xs − y0

t ∀ (s, t) ∈ S ∗ T (5.23d)∑
t∈Ts

∑
k∈{1,...,Kt}:s=sk

wt

ek
t

yk
t ≤ bsxs ∀ s ∈ S (5.23e)

xs, yk
t ∈ {0, 1} ∀ s ∈ S, t ∈ T , k = 0, . . . ,Kt (5.23f)

The objective (5.23a) is the reformulated objective function (4.4a) in terms of the new
variables yk

t . Constraints (5.23b) ensure that exactly one configuration is chosen for every
TN while (5.23c) and (5.23d) connect variables yk

t to the BS decision variables xs. Note,
the latter constraints are stronger than constraints comparable to the vub constraints (4.5).
If BS s is the serving BS in a selected configuration for one TN, this BS has to be installed.
Finally, the equivalent of the capacity constraints (4.4c) are constraints (5.23e).

Remark 5.8. If we consider, for every TN t ∈ T , all subsets of St and every possible
configuration where each BS s ∈ St is a potential serving BS, the TN oriented formula-
tion (5.23) is exact in terms of SINR as well as capacity.

Proof. Similar to the interference mitigation formulation (5.21), a violation of the mini-
mum spectral efficiency requirement (SINR requirement) by a feasible solution of (5.23)
is impossible due to the definition of feasible configurations. Again, emin and δ have to be
defined accordingly.
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Moreover, also the capacity constraints (5.23e) incorporate the correct spectral efficien-
cies and hence, are not violated by any feasible solution. �

Similar to the interference mitigation model in Section 5.6, the size of the sets St has
great impact on the number of configurations Kt and hence, on the size of the ILP (5.23).
To limit the number of variables and constraints, we define a parameter κ ∈ Z>0 as a
positive integer and assume that only κ many BSs with the strongest signal are included in
the sets Sk for each configuration k per TN t. The strongest signal is defined as the signal
with the highest fading coefficient. Note, if we limit the number of configurations by κ,
we lose the exactness stated in Remark 5.8.

By the parameter κ, at most 2κ many different sets have to be considered in the configu-
rations corresponding to one TN. However, also the definition of the serving BS sk impacts
the number of configurations Kt. We propose the following two possibilities. First for a
given subset Sk ⊆ St, we select sk ∈ Sk to be the BS with the strongest signal to TN t.
This is a quite intuitive method to define a serving BS and is also performed in practice
for homogeneous networks; see, e. g. Madan et al. [130], Siomina et al. [166]. For more
flexibility, we consider every BS s ∈ Sk as the potential serving BS and add configurations
accordingly in our second approach. In this approach, we have Kt =

∑κ
i=1

(
κ
i

)
· i when using

the restricting parameter κ.
We investigate the two proposed possibilities of defining the serving BS as well as rea-

sonable values for κ in a computational study in Section 5.9.3.

5.8. Exploiting Discrete Channel Quality Indicators

In this section, we exploit the determination of the spectral efficiencies using discrete val-
ues associated to a range of SINR values; see Table 5.1. In total, we have to consider 16
different values for spectral efficiencies each labelled by the corresponding CQI k . We
denote the highest possible CQI for a link from s to t, which is associated to the SNR
value (no interference), by κst and the value of the spectral efficiency for any CQI k by ek.

To incorporate these discrete CQIs in the basic formulation, we add new binary vari-
ables zk

st for every (s, t) ∈ S ∗T and every CQI k ∈ {1, . . . , κst}. It holds zk
st = 1 if the signal

from s to t has the quality k, thus spectral efficiency ek. If TN t is assigned to BS s, then
this link has exactly one specified CQI. Hence, we add the following constraint.

κst∑
k=1

zk
st = zst ∀ (s, t) ∈ S ∗ T (5.24)

The quality of a link is impaired by interfering BSs. If a subset C ⊆ St \ {s} of BSs is
deployed, the SINR of the signal from s to t is calculated as

γC =
Pr(s, t)∑

σ∈C
Pr(σ, t) + η

. (5.25)
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We denote the CQI corresponding to γC by κst(C). In the case that all BSs in C are de-
ployed, better spectral efficiencies than for the CQI κst(C) cannot occur for this link from s
to t. Hence,

∑κst
k=κst(C)+1 zk

st = 0. We can formulate this condition as the following model
constraint.

κst∑
k=κst(C)+1

zk
st ≤ |C| −

∑
σ∈C

xσ ∀ (s, t) ∈ S ∗ T ,C ⊆ St \ {s}. (5.26)

These inequalities have a similar structure as cover inequalities for the KP; see (1.14).
Hence, we use the ambiguous term cover to denote C in the present context.

The complete model which exploits the discrete CQIs then reads

min
∑
s∈S

csxs + λ
∑
t∈T

ut (5.27a)

s.t.
∑
s∈St

zst + ut = 1 ∀ t ∈ T (5.27b)

κst∑
k=1

zk
st = zst ∀ (s, t) ∈ S ∗ T (5.27c)

∑
t∈Ts

κst∑
k=1

wt

ek zk
st ≤ bsxs ∀ s ∈ S (5.27d)

κst∑
k=κst(C)+1

zk
st ≤ |C| −

∑
σ∈C

xσ ∀ (s, t) ∈ S ∗ T ,C ⊆ St \ {s} (5.27e)

zst ≤ xs ∀ (s, t) ∈ S ∗ T (5.27f)

xs, zst, zk
st, ut ∈ {0, 1} ∀ s ∈ S, (s, t) ∈ S ∗ T , k = 1, . . . , κst, t ∈ T . (5.27g)

This ILP resembles the basic formulation with adapted capacity constraint (4.4c) in terms
of the new variables and corresponding spectral efficiencies; see constraints (5.27d). Fur-
thermore, we have added constraints (5.24) and (5.26) as explained before.

Remark 5.9. The discrete CQIs formulation (5.27) denotes an exact formulation in terms
of SINR and capacity.

Proof. The argumentation is the same as in the proofs of Remarks 5.7 and 5.8. �

The ILP (5.27) is computationally challenging since there can exist exponentially many
constraints (5.27e) due to the existence of exponentially many covers C. This is why, we
do not add the entire set of these constraints but separate violated inequalities on the fly.
In the following, we present two different separation routines.

5.8.1. ILP-based Separation

For any solution of (5.27), either LP or integer solution, denoted by (x̃, z̃, z̃k, ũ), we de-
termine the most violated and hopefully, the most restrictive inequalities via an exact ILP
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based separation. The ILP presented in this section is specific for the case in which the
fading coefficients ast are determined only by the path loss.

First, we define the set of partially deployed BSs as Σ B {s ∈ S | x̃s > 0}. Based on Σ, we
define Σt B St ∩ Σ for all t ∈ T with ũt < 1. To propose an ILP for the separation of valid
inequalities for a fixed pair (s, t), we introduce binary variables yσ for every σ ∈ Σt \ {s}
deciding which BS is included in the new cover C and αk for every k ∈ {0, 1, . . . , κst} to
determine κst(C) indirectly. Hence,

yσ =

1, if σ ∈ C
0, otherwise,

αk =

1, if k ≥ κst(C) + 1
0, otherwise.

Furthermore, let γk denote the S(I)NR value for CQI k in Table 5.1,

δk B


10−γk/10 if k = 1, . . . , 15,
M if k = 0,
0 if k = 16,

with M sufficiently large, and let η′ B η/(psast).
Given a solution (x̃, z̃, z̃k, ũ), we propose the following ILP to separate a violated in-

equality (5.26) for a pair (s, t) with z̃st > 0 or to prove that no violated inequality exists.

max
∑

σ∈Σt\{s}

(x̃σ − 1)yσ +

κst∑
k=1

z̃k
stαk (5.28a)

s.t.αk ≤ αk+1 ∀ k = 1, . . . , κst (5.28b)
κst+1∑
k=1

(δk−1 − δk)αk −
∑

σ∈Σt\{s}

pσaσt

psast
yσ ≥ η′ (5.28c)

κst+1∑
k=1

(δk − δk+1)αk −
∑

σ∈Σt\{s}

pσaσt

psast
yσ ≤ η′ − ε (5.28d)

yσ, αk ∈ {0, 1}
∀σ ∈ Σt \ {s},
∀ k = 1, . . . , κst,

(5.28e)

with ε > 0 small. Constraints (5.28b) guarantee that all α variables for the subsequent
indices k + 1, . . . , κst are also set to 1 as soon as αk = 1. The objective (5.28a) maximises
the violation of a potentially violated inequality (5.26). If the optimal objective value
is ≤ 0, no violated inequality exists. Otherwise, for an optimal solution (ỹ, α̃) of (5.28),
the cover C and the corresponding maximal CQI κst(C) are defined by

C B {σ ∈ Σt \ {s} | ỹσ = 1} , κst(C) B argmin
k=1,...,κst

{α̃k = 1} − 1. (5.29)

Lemma 5.10. Constraints (5.28c) and (5.28d) determine the CQI κst(C) if the cover C is
determined as described in (5.29).
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Proof. The value κst(C) is taken from the look-up Table 5.1 based on the SINR value γC of
the signal from BS s to TN t when all BSs in the cover C are deployed. However, the SINR
values in Table 5.1 are given in dB. The SINR value γC converted to dB is calculated as

γdB
C B 10 · log10(γC) = 10 · log10

 psast∑
σ∈Σt\{s}

pσaσtyσ + η

 .
Hence, it holds

γκst(C) ≤ γ
dB
C < γκst(C)+1.

To determine the correct lower and upper bounds, we sum over αk+1 − αk as αk+1 − αk = 1
if and only if αk+1 = 1 and αk = 0. Additionally, we define α0 B 0 and γ0 sufficiently
small (negative). Thus,

κst∑
k=0

γk(αk+1 − αk) ≤ 10 · log10

 psast∑
σ∈Σt\{s}

pσaσtyσ + η

 <
κst∑

k=0

γk+1(αk+1 − αk). (5.30)

We linearise these inequalities and reformulate them by exploiting the fact that all coeffi-
cients are positive as follows.

(5.30)⇔10
κst∑
k=0

γk
10 (αk+1−αk)

≤
psast∑

σ∈Σt\{s}
pσaσtyσ + η

< 10
κst∑
k=0

γk+1
10 (αk+1−αk)

⇔10
−

κst∑
k=0

γk
10 (αk+1−αk)

≥

∑
σ∈Σt\{s}

pσaσtyσ + η

psast
> 10

−
κst∑
k=0

γk+1
10 (αk+1−αk)

⇔

κst∏
k=0

10
−γk
10 (αk+1−αk) ≥

∑
σ∈Σt\{s}

pσaσt

psast
yσ + η′ >

κst∏
k=0

10
−γk+1

10 (αk+1−αk)

⇔

κst∑
k=0

10
−γk
10 (αk+1 − αk) ≥

∑
σ∈Σt\{s}

pσaσt

psast
yσ + η′ >

κst∑
k=0

10
−γk+1

10 (αk+1 − αk)

The last equivalence holds as there exists exactly one value αk+1 − αk = 1 and all others
are equal to 0. Hence, exactly one factor in the product is , 1.

By the presented derivation, it becomes clear that the values δk are the negative of the
SINR values γk for k = 1, . . . , 15, which are given in dB, converted to W. Using the
values δk and exploiting α0 = 0, we can reformulate the last inequalities so that each
variable αk occurs only once:

κst∑
k=1

(δk−1 − δk)αk +δκstακst+1 ≥
∑

σ∈Σt\{s}

pσaσt

psast
yσ+η′ >

κst∑
k=1

(δk − δk+1)αk +δκst+1ακst+1. (5.31)

Note, by setting δ16 = 0, the second inequality becomes non-restrictive in case κst = 15
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and ακst+1 = 1. Furthermore, M for the definition of δ0 has to be sufficiently large so that
the first inequality is non-restrictive in case α1 = 1, e. g., M B δ1 +

∑
σ∈Σt\{s}

pσaσt
psast

+ η′.
The inequalities (5.31) are exactly (5.28c) and (5.28d) using the definition of δk and η′.

�

Improvements To accelerate the solving of the separation ILP (5.28), we apply the
following preprocessing. For a BS σ ∈ Σt \ {s} with x̃σ = 1, we assume that this BS is def-
initely contained in the new cover C as it contributes a 0 to the objective function (5.28a).
Hence, we consider only the set Σ′t B Σt \ ({s ∈ St | x̃s = 1} ∪ {s}) in the ILP (5.28) and
define C B {σ ∈ St | x̃s = 1} \ {s} ∪ {σ ∈ Σ′t | ỹσ = 1}. Thereby, we can reduce the size of
the ILP (5.28).

Furthermore, we simplify the test of feasibility of an integer solution. Per (s, t)-pair,
we define C B {σ ∈ St | x̃σ = 1}, calculate the corresponding value κst(C) based on the
SINR γC as given in (5.25), and test if the associated model constraint (5.26) is violated.
Therefore, we do not have to solve the ILP (5.28) for an integer feasibility test.

Finally, we test the performance of the separation routine based on ILP (5.27) when
restricting the total number of separated violated inequalities per separation round to a
positive integer κ ≥ 1 in the computational study presented in Section 5.9.3. More pre-
cisely, we stop one separation round at a pair (s′, t′) as soon as κmany violated inequalities
have been found. For the next solution, we start the separation routine at the pair (s′, t′).
After the last pair, we start again with the first possible BS-TN pair. Such a process is also
called a round robin scheduling algorithm.

5.8.2. Combinatorial Separation

Despite the improvements described in the previous section, the solving of the ILP (5.28)
for several BS-TN pairs with z̃st > 0 can be quite time consuming. Thus, we describe a
combinatorial separation algorithm, which determines all possible covers C and maximal
CQIs κst(C) for each pair (s, t) ∈ S ∗ T with z̃st > 0, in this section. If the corresponding
inequality (5.26) is violated, we add it to the formulation.

To determine possible covers, we use the definitions of Σ and Σt as given at the begin-
ning of Section 5.8.1. We can then compute every subset C ⊆ Σt and the corresponding
value κst(C) and calculate the violation of inequality (5.26). This routine is summarised in
Algorithm 3.

If this algorithm does not return a cover, then there does not exist a violated inequal-
ity (5.26) for the current solution since all possible covers have been tested. Hence, also
the combinatorial separation is exact.

To reduce the number of added inequalities and find the more restrictive ones, we in-
troduce the following concept of dominance. But first recall the definition of dominating
valid inequalities.

Definition 5.11. If πx ≤ π0 and π′x ≤ π′0 are two valid inequalities for a polyhedron P ⊆
R≥0, πx ≤ π0 dominates π′x ≤ π′0 if there exists λ ≥ 0 such that π ≥ λπ′, π0 ≤ λπ′0,
and (π, π0) , (π′, π′0).
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Algorithm 3 Combinatorial separation of inequalities of type (5.26)
Input: solution (x̃, z̃, z̃k, ũ)
Output: pair (C, κst(C)) with violated corresponding inequality or proof that none exists

define Σ B {s ∈ S | x̃s > 0} and Σt B St ∩ Σ for all t ∈ T with ũt < 1
for (s, t) ∈ S ∗ T with z̃st > 0 do

for C ⊆ Σt with s < C do
compute SINR value γC B

Pr(s,t)∑
σ∈C

Pr(σ,t)+η

set value for κst(C) based on γC and Table 5.1
end for
if

κst∑
k=κst(C)+1

z̃k
st > |C| −

∑
σ∈C

x̃σ then return (C, κst(C))

end if
end for

Definition 5.12. (Dominance) A cover C1 dominates a cover C2 if the corresponding
“cover” constraint

κst∑
k=κst(C1)+1

zk
st ≤ |C1| −

∑
σ∈C1

xσ (5.32)

dominates the respective constraint

κst∑
k=κst(C2)+1

zk
st ≤ |C2| −

∑
σ∈C2

xσ. (5.33)

Lemma 5.13. A cover C1 dominates a cover C2 if

i) C1 ⊂ C2, and

ii) κst(C1) = κst(C2).

Proof. The left hand sides of the associated inequalities (5.32) and (5.33) are equal. To
prove that any (partial) solution (x̃, z̃) satisfying (5.32) also satisfies (5.33) it remains to
show

|C1| −
∑
σ∈C1

xσ ≤ |C2| −
∑
σ∈C2

xσ.

As C1 ⊂ C2, we have |C2| − |C1| = |C2 \ C1| and naturally, |C2 \ C1| ≥
∑

σ∈C2\C1

xσ. Hence,

|C1| −
∑
σ∈C1

xσ ≤ |C1| −
∑
σ∈C1

xσ + |C2 \ C1| −
∑

σ∈C2\C1

xσ = |C2| −
∑
σ∈C2

xσ.

�

Applying Lemma 5.13, we compute all possible covers C by Algorithm 3 but add only
violated inequalities for covers which are not dominated by any other. Moreover, we use
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Figure 5.3.: An example of a signal propagation scenario for Munich with dimension 2.5×
3.5 km. The black rectangles denote houses, the white squares BSs and the
colours denote the signal strength. The warmer the colour, the better the signal
strength.

the same integer feasibility test as described at the end of Section 5.8.1 instead of Algo-
rithm 3.

5.9. Numerical Comparison of Different Formulations

5.9.1. Creation of Test Instances

To evaluate the performance of the models presented in the previous sections and any
modifications or generalisations of the basic formulation, we use different test scenarios
which depict a simplification of the real world. The general procedure to create such a test
instance and the involved parameters are described in this section.

All planning scenarios are based on signal propagation data for Munich, available at [55].
This data set comprises 60 BS candidate sites from which we randomly choose BSs if we
do not intend to regard the total number of available BSs. Unless otherwise stated, the
BS candidates are limited to the location of the BS. Furthermore, TNs are distributed ran-
domly in the available area. To compute the path loss from a BS to a TN, we use a cube
oriented ray launching algorithm [137] for signal prediction; see also Section 3.1.2. in En-
gels [65]. An example of the signal propagation for 11 BSs is displayed in Figure 5.3. The
black rectangles are houses, which designate also the streets, and the white squares are
BSs. The colours denote the signal strength: The warmer the colour, the better the signal,
i. e., the lower the path loss. Based on the path loss, we compute the SNR value (3.1) for
every (s, t) ∈ S ∗ T and extract the corresponding spectral efficiency est from Table 5.1.
Additionally, we assume a transmission power ps of 46 dBm for every BS s ∈ S. This
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service usage (%) bit rate (kbps)

data [10,20] [512,2000]
web [20,40] [128,512]
VoIP remaining 64

Table 5.3.: Traffic profiles for TNs

is a typical value for a macro cell in LTE used together with a bandwidth bs = 10 MHz;
cf. Chapter 19 in Kahn [102]. Moreover, the noise value in dB is computed as ther-
mal noise (dB) + noise figure for users (dB), where the thermal noise in W is computed
as ηt(W) B kB · T · B. Here, kB is the Boltzmann constant, T the temperature in Kelvin
and B is the bandwidth given in Hz. In total, the noise η in dB is computed as

η = 10 log10

(
1.3806503 · 10−23 · 290.0 K · 10000000 Hz

)
+ 9 dB,

where 9 dB represents the noise figure for users; cf. [67]. Note, for the computation of
S(I)NR values, this value has to be converted to W.

Since data of mobile users is not available due to data privacy limitations, we compute
the demand values wt for each t ∈ T by randomly generating user profiles from Table 5.3;
compare [65] and Chapter 19 in [102]. A percentage for both data (downloading including
streaming) and web (browsing) services is uniformly drawn from the “usage (%)” column
and multiplied by a bit rate uniformly drawn from the “bit rate (kbps)” column. The
remaining percentage is used for Voice-over-IP (VoIP) telephony with a bit rate of 64 kbps.
As an example, the minimum required bit rate of any TN is

10% · 512 kbps + 20% · 128 kbps + 70% · 64 kbps = 121.6 kbps.

A fixed parameter which is used in every test instance is the BS cost, cs = 4000, where
the value is taken from Deruyck et al. [63] and depicts the (rounded) total power consumed
by a BS in W.

Moreover, reasonable values for the scaling parameter λ depend on the cost of a BS.
We study values of 1000, 2000, and 4000 in our work Claßen et al. [49], where λ = 1000
(2000, 4000) denotes that four (two, one) TNs can be lost before it becomes beneficial to
deploy an additional BS. Even though the scale of the results presented in [49] depend on
the value of λ, the nature of the results is identical. Based on this observation, we choose
the least conservative value 1000 for λ if not stated otherwise.

Any further necessary parameters to set up a complete test scenario are listed when
needed.

5.9.2. Specifications for the study of interference modelling

To decrease the magnitude of the coefficients occurring in the models, we consider mul-
tiples of thousands. Hence, we set the BS cost cs to 4 and the scaling parameter λ to 1.
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name # BSs # TNs

20 200a 20 200
20 300b 20 300
20 400c 20 400
30 300a 30 300
30 400b 30 400
30 500c 30 500
40 400a 40 400
40 450a 40 450

Table 5.4.: Names and dimensions of test instances used in the computational study to
investigate different approaches for interference modelling.

Furthermore, we round the demand values up to integer kbps and the bandwidth bs is set
to 10, 000 kHz. We define the SINR threshold as δ = −5.1 dB, which is the lowest possi-
ble value to establish a link, and the corresponding minimum required spectral efficiency
is emin = 0.25 bps/Hz.

In this computational study, we consider eight different test scenarios which are sum-
marised in Table 5.4. For scenarios with the same number of BSs, the characters “a”, “b”,
“c” indicate that the sets of BSs are different.

Evaluating interference To evaluate the quality of a solution in terms of interference,
we first count the number of violated SINR requirements. The SINR values are computed
as

Pr(s, t)∑
σ∈Ist

Pr(σ, t) + η
, (5.34)

where s is the serving BS for TN t and Ist is the set of interfering and deployed BSs of the
signal from s to t. We denote the number of SINR values below the threshold δ by U.

For a direct comparison of different solutions, we introduce the SINR-corrected ob-
jective value υ, which exploits the fact that cs is the same for every BS for the studied
scenarios. Given a solution x∗ for the BS deployment, we define

υ B cs

∑
s∈S

x∗s + λ(|T | − (τ − U)) = cs

∑
s∈S

x∗s + λ(|T | − τ + U), (5.35)

with τ denoting the number of TNs marked as covered in the (optimal) solution. Thus, υ
denotes the objective value where TNs with violated SINR requirements are regarded as
not covered.

The values of the spectral efficiencies used in the different formulations described in the
previous sections are not always based on the correct SINR values, which can sometimes
be computed only after the complete solution is known. Therefore, a violation of the
capacity constraints (4.4c) is possible. To regard such violations in the evaluation of the
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solutions, we compute the actual percentage load for all deployed BSs incorporating the
correct spectral efficiencies e′st based on the SINR values (5.34) as follows.

`s B
1
bs

∑
t∈T ′s

wt

e′st
,

where T ′s denotes the set of TNs assigned to s with a SINR value computed via (5.34)
exceeding δ. Note, `s > 1 indicates a capacity violation. The SINR value that includes the
percentage load of the interfering BSs is computed as

Pr(s, t)∑
σ∈Ist

`sPr(σ, t) + η
.

Since `s > 1 is possible, violated SINR conditions can still occur and we denote the number
of such SINR values below δ by Ul. The SINR-corrected objective value υl is computed
accordingly; cf. (5.35).

All computations in the following sections are performed on a Linux machine with
3.40GHz Intel Core i7-3770 processor and a general CPU time limit of two hours if
not stated differently. Additionally, we limit the available RAM to 11 GB and use cplex
12.4 [98] as (I)LP solver.

5.9.3. Evaluation of Different Settings

In this subsection, we investigate the different parameter settings per formulation to find
the best setting for the comparison of all proposed formulations depicted in Section 5.9.4.

SINR constraint formulation For the SINR constraint formulation proposed in Sec-
tion 5.2, we investigate the numerical stability via different values to scale the fading
coefficients. Without a multiplication of the SINR constraints (5.4) with a scaling pa-
rameter 10κ where κ ∈ Z≥0, the coefficients are too small for the precision of cplex. We
study κ ∈ {1, . . . , 10} and compare the solutions to the solutions obtained without scaling
(κ = 0). We display the values of the SINR-corrected objective value υ in Figure 5.4.
Since the number of deployed BSs varies around one BS more or less for every scenario,
variations in υ mainly occur due to fluctuating numbers of actually served TNs. By “ac-
tually”, we designate the number of TNs with ũt = 0 in an optimal solution minus the
number of violated SINR conditions, i. e., |T | − τ + U. The values of υ fluctuate for κ ≤ 8
since violated SINR conditions arise due to numerical difficulties. Only for a scaling ex-
ponent κ ≥ 9, no violated SINR condition exists for the optimal solutions. Hence, it is
difficult to judge beforehand without conducting a computational study which scaling ex-
ponent has to be chosen to obtain a meaningful/correct solution. This demonstrates why
we study alternative formulations to model interference. Nevertheless, for the comparison
of the different formulations presented in Section 5.9.4, we set κ = 10.
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20 200a 20 300b 20 400c 30 300a 30 400b 30 500c 40 400a 40 450a
10

20
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40
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scenario

υ

0 1 2 3
4 5 6 7
8 9 10

Figure 5.4.: SINR-corrected objective values υ for the SINR constraint formulation and
different scaling exponents κ.

TN coverage requirement formulation For the TN coverage requirement formula-
tion discussed in Section 5.4, we evaluate different values of the threshold δc. Engels et al.
[67] set δc = 0.6 while we also investigate values greater than 0.6. Note, δc ≤ 0.5 is
not reasonable if we intend to avoid violated SINR conditions. In total, we study δc ∈

{0.6, 0.7, 0.8, 0.9, 1.0, 1.1} and present the SINR-corrected objective values υ in Figure 5.5.
The numbers of deployed BSs are rather the same for distinct thresholds. Thus, varying
values for υ occur mainly due to different numbers of actually served TNs. The thresh-
old δc = 1.0 gives the lowest SINR-corrected objective values most frequently for the
studied scenarios. Additionally, since the values of υ increase drastically for δc = 1.1, we
cannot expect to improve the formulation by setting δc > 1.1. In summary, we set δc = 1.0
for the comparison in Section 5.9.4.

Iterative formulation For the iterative formulation presented in Section 5.5, we investi-
gate three parameters and their combination. These parameters comprise the gap limit for
the ILP (5.14), the time limit for this ILP, and the SINR calculation including the load of
a BS (5.17) or not (5.16). As the gap limit for the ILP, we evaluate values of 1, 2 and 5 %
and for the time limit, we study 72 s (one hundredth of the global time limit) and 1800 s.

We analyse the three parameters in Figure 5.6, where Figure 5.6(a) displays the SINR-
corrected objective values υ for different time and gap limit combinations in case the SINR
is calculated via (5.16) without load and Figure 5.6(b) displays υ but with SINR calcula-
tion (5.17) including the load. For better readability, we introduce the label “TL-gap” to
denote a combination of time and gap limit. We observe that all results are quite similar.
However, to determine the best setting for the comparison in Section 5.9.4, we drop all
settings which lead to higher values of υ for at least one scenario in case of no load in
the SINR calculation. The remaining settings are 72-1 and 1800-1. The same evaluation
in case of load inclusion is not possible as every setting gives a higher υ for at least one
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20 200a 20 300b 20 400c 30 300a 30 400b 30 500c 40 400a 40 450a
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scenario

υ

0.6 0.7 0.8
0.9 1.0 1.1

Figure 5.5.: SINR-corrected objective values υ for the TN coverage requirement formula-
tion and different thresholds δc.

scenario 20 200a 20 300b 20 400c 30 300a 30 400b 30 500c 40 400a 40 450a
highest 199 300 400 300 400 500 400 450

Table 5.5.: Highest numbers of actually served TNs for the iterative formulation.

scenario.
Hence, we compare the numbers of actually served TNs for settings 72-1 and 1800-

1 without load inclusion and all settings with load inclusion. In Table 5.5, we display
the highest achieved values per scenario. These numbers of actually served TNs can be
achieved only by the settings 72-1 and 1800-1 via SINR calculation (5.16) without load.
For all settings with load inclusion, the optimal solution serves one TN less either for
scenario 30 300a or 30 500c. Moreover, the settings 72-1 and 1800-1 with SINR calcula-
tion (5.16) perform identically under the studied aspects.

If we compare these two settings in more detail via time consumption and number of
performed iterations, we cannot observe any significant difference. Hence, the time limit
for the ILP is never reached and the gap limit of 1 % is the only restriction. For the global
comparison in Section 5.9.4, we choose the setting 72-1 arbitrarily.

Interference mitigation formulation We cannot solve the exact approach for any sce-
nario due to excessive memory use such that the process is killed by the operating system
before the creation of the ILP (5.21) is completed. Thus, the memory limit of 11 GB could
not be checked at this state and instead, the complete available memory of 32 GB of the
machine is exceeded. Which is the reason why an increase of the memory limit is not an
option.

In the following, we compare the minimum distance based definition of the interfering
sets to the TN coverage requirement based definition with δc = 1, where this value is based
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20 200a 20 300b 20 400c 30 300a 30 400b 30 500c 40 400a 40 450a
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(a) No load in SINR calculation (5.16)
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(b) Load in SINR calculation included (5.17)

Figure 5.6.: SINR-corrected objective values υ for the iterative formulation and different
values of time and gap limit.
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κ
threshold for %sσ 1 5 10 15

20 % 7.7 10.1 8.7 –
40 % 9.1 9.1 9.2 –
50 % 7.7 8.1 9.8 –
60 % 9.0 6.1 8.4 7.4
70 % 3.8 4.7 5.3 4.8
80 % 5.3 4.5 4.5 4.5
90 % 5.5 5.9 5.9 5.9

100 % 4.4 4.2 4.2 4.2

dist. based 7.0 12.2 9.5 9.5

Table 5.6.: Average percentage violation of SINR conditions for minimum distance based
as well as TN coverage requirement with δc = 1 based definition of the inter-
fering sets in the interference mitigation formulation and κ ∈ {1, 5, 10, 15}.

on the previously presented results for the TN coverage formulation defined in Section 5.4.
For both types of defining the interfering sets, we investigate four values for the number
of interferers, κ = 1, 5, 10 and 15. Moreover, for the TN coverage based definition,
we additionally study values of 20, 40, 50, 60, 70, 80, 90 and 100 % for the percentage of
TNs %sσ violating the TN coverage requirement. To compare the two variants, we compute
the percentage number of violated SINR conditions per setting and instance and average
over the scenarios. These numbers are depicted in Table 5.6. Note, for 15 interferers
and a threshold of 20, 40 or 50 % not every scenario could be solved by the TN coverage
requirement based set definition, which is the reason why we do not state average values for
these settings. For the remaining settings, the maximum average value is 10.1 % while the
lowest value is 3.8 %. In contrast, for the minimum distance based definition, the average
percentage SINR violation varies between 7.0 % and 12.2 %. This indicates that the former
variant performs better than the letter and thus, we do not investigate the distance based
set definition any further.

To find the best setting among the different settings for the TN coverage requirement
based set definition, we study those ten settings which give an average percentage SINR
violation value of less than 5 % by means of the SINR-corrected objective value υ. For
better readability, we introduce the label “κ-threshold” to denote a specific setting. We
display the SINR-corrected objective values in Figure 5.7. From this figure, it is difficult
to judge which setting is best as every setting gives the lowest value υ at least once but
also (significantly) worse values for another scenario. Therefore, we count the number
of scenarios for which each setting gives the lowest SINR-corrected objective value. For
four out of the eight scenarios, the settings 1-70 and 5-70 give the best υ, while all other
settings give the lowest numbers only for at most two scenarios. Thus, we rate these
two settings as better than the others. As 1-70 also gives the minimum average value
of the percentage SINR violation; cf. Table 5.6, we regard it as the best setting. Note,
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20 200a 20 300b 20 400c 30 300a 30 400b 30 500c 40 400a 40 450a
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1-70 1-100 5-70
5-80 5-100 10-80
10-100 15-70 15-80
15-100

Figure 5.7.: SINR-corrected objective values υ for the interference mitigation formula-
tion with TN coverage requirement based definition of the interfering sets
with δc = 1 and all settings with less than 5 % average percentage SINR vio-
lation.

as the differences between the various parameter combinations are not that pronounced,
the determination of the best setting strongly depends on our considered aspects and their
order. Nevertheless, we need one designated setting for the comparison of the different
formulations in Section 5.9.4. In summary for the interference mitigation approach, the
definition of the sets via the TN coverage requirement with a threshold δc = 1 taking only
the closest interfering BS into account and assuming that the TN coverage requirement
fails for 70 % of the TNs, which can be served by one BS, turned out to be the best setting
with respect to our evaluation criteria.

TN oriented formulation To find a good setting for the TN oriented formulation pro-
posed in Section 5.7, we investigate κ ∈ {1, 2, . . . , 10} for the number of potential inter-
fering BSs, and the two possibilities of defining the serving BS. First, we observe that not
every scenario can be solved within the time limit for κ ≥ 7 regardless of the selection of
the serving BS. Hence, we only study κ ∈ {1, 2, . . . , 6} in the following.

To evaluate the two possibilities to select the serving BS, we denote by υall the SINR-
corrected objective value when the serving BS is selected from all potential serving BSs
and by υstrongest the SINR-corrected objective value when the serving BS is the one with
the strongest signal. In Figure 5.8, we display the difference between υall and υstrongest

for κ ∈ {1, 2, 3, 4, 5, 6} and all scenarios, where a negative value signifies that the selection
among all potential serving BSs gives a better result than the definition of the serving BS
with the strongest signal. We observe that there does not exist an overall best setting.
However, υall is more frequently below υstrongest than the other way round. Thus, we regard
the possibility to select the serving BS from all potential serving BSs as better than to
choose the BS with the strongest signal as serving BS and do not investigate the latter case
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Figure 5.8.: Difference between SINR-corrected objective values υall and υstrongest for κ ∈
{1, 2, 3, 4, 5, 6} in the TN oriented formulation.

any further.
Now, we aim at finding a good value for the number of potential interfering BSs κ.

To this end, we display the SINR-corrected objective values for κ ∈ {1, 2, 3, 4, 5, 6} in
Figure 5.9. Again, there does not exist an overall best value for κ. However, κ ≤ 3 yields
in general higher values than another κ. Moreover, κ = 5 yields the lowest values for the
four scenarios 20 300b, 30 400b, 30 500c, 40 450a, while κ = 6 (κ = 4) yield the lowest
values only for three (one) scenarios, 20 200a, 30 300a and 40 400a (20 400c). Thus, we
apply κ = 5 for the TN oriented formulation in the comparison given in Section 5.9.4.

Discrete CQIs formulation We investigate the two separation routines (via an ILP and
combinatorial) for the discrete CQIs formulation (5.27). Irrespective of the separation rou-
tine, we have to decide at which node(s) of the B&B the separation should be performed.
We study the separation at every node (the frequency of the separation callback is set to 1),
and only at the root node and for every integer solution (the frequency is set to 0).

First, we investigate the performance of the separation based on the ILP proposed in
Section 5.8.1. To this end, we analyse the restriction of the total number of separated
violated inequalities per separation round to κ = 5, 10, 15, 20 or not. We observe that even
the smallest scenario 20 200a cannot be solved within the time limit of 2 h independent
of the value of κ and the separation frequency. To obtain any result, we increase the time
limit for the present study to 12 h. But even then only the smallest scenario can be solved
to optimality as the larger scenarios either exceed the time limit or the available memory.
We display the optimality gaps obtained for scenarios 20 200a, 20 300b, and 30 300a,
for κ = 5, 10, 15, 20, no restriction of the number of separated inequalities, and for a
separation frequency of 0 and 1 in Table 5.7. We indicate settings which reach the memory
limit by a ∗. The separation at every node leads in general to an excess of the available
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Figure 5.9.: SINR-corrected objective values υall for κ ∈ {1, 2, 3, 4, 5, 6} in the TN oriented
formulation.

frequency 0 1
κ 20 200a 20 300b 30 300a 20 200a 20 300b 30 300a

– 96.6∗ 610∗ 902.7∗ 0 220.7 263.1
5 4.8 1031.5∗ 822 17.6 48 358.7

10 331.3∗ 397.3∗ 791.7 0 248.3 737.6
15 382.2∗ 746.7∗ 1279.1∗ 0 96.1 212.1
20 283.7∗ 742.2∗ 1314.7∗ 0 161.9 269.9

Table 5.7.: Optimality gaps in % for selected scenarios, κ = 5, 10, 15, 20, no restriction
of the number of separated inequalities, and separation frequency 0 and 1 con-
sidering the ILP separation routine in the discrete CQI formulation. Settings
which reach the memory limit are indicated by a ∗. All other gaps are obtained
after 12 h.
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frequency 20 200a 20 300b 30 300a

0 0 836.2 567.5
1 0 105.7 254.9

Table 5.8.: Optimality gaps in % for selected scenarios and separation frequency 0 and 1
considering the combinatorial separation routine in the discrete CQI formula-
tion.

memory. Only the smallest scenario 20 200a is solved to optimality if the separation is
performed at every node and for κ = 10, 15, 20 or if the number of cuts is not restricted.
The lowest solving time (23356 s) is observed by κ = 10. For the other two scenarios and
all settings, the obtained solution are too far from optimality to give meaningful objective
values. Based on these results, we cannot expect larger scenarios to be solved to optimality
by any setting of the ILP separation.

Now, we study the performance of the combinatorial separation routine presented in
Section 5.8.2, where we also set a time limit of 12 h and test a separation frequency of 0
as well as 1. In Table 5.8, we depict the optimality gaps obtained for scenarios 20 200a,
20 300b, and 30 300a. Again, we can solve only scenario 20 200a to optimality and the
gaps for the two other scenarios, which are obtained after the available memory is fully
utilised, are too large to give meaningful solutions. Thus, we can also not expect a better
performance for larger scenarios.

The lowest solving time for scenario 20 200a are 1257 s for a separation frequency of 1.
Hence, the combinatorial separation is remarkably faster than the ILP separation for the
only solvable scenario.

5.9.4. Comparison of Best Settings

In this section, we first compare all presented formulations with their best setting by means
of the SINR-corrected objective value υ. Apart from the discrete CQIs formulation, these
results are displayed in Table 5.9. Certainly, the SINR-corrected objective values are low-
est for the SINR constraint formulation as no violated SINR conditions exist for an optimal
solution. The second lowest values of υ provides the TN coverage requirement formula-
tion while the remaining formulations yield significantly higher values. Since we cannot
solve the exact versions of the interference mitigation and the TN oriented formulation,
all models regarded in Table 5.9 only approximate the SINR requirements (5.1). Among
these approximative methods, the TN coverage requirement formulation performs best.

The SINR-corrected objective value we obtain for scenario 20 200a by the discrete CQIs
formulation is 22 and this is the exact optimal value as this formulation is exact. In con-
trast, the SINR constraint formulation gives a SINR-corrected objective value of 12 which
indicates a significant violation of the capacity constraints. Otherwise, the optimal value
computed by the discrete CQIs formulation would also be lower. Nevertheless, the cor-
responding models, which have to be solved for the exact discrete CQIs formulation, are
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scenario SINR conflict TN cov. requir. iterative mitigation TN oriented

20 200a 12 27 15 17 24 18
20 300b 16 28 18 24 27 24
20 400c 18 31 22 32 26 40
30 300a 16 59 25 28 42 28
30 400b 16 18 16 32 18 32
30 500c 20 42 24 52 40 50
40 400a 16 30 21 32 20 39
40 450a 20 36 31 32 34 41

Table 5.9.: SINR-corrected objective values υ for different formulations of interference
modelling with the best settings.

scenario SINR conflict cov. requir. iterative mitigation TN oriented

20 200a 21 35 16 18 31 18
20 300b 27 58 20 35 56 26
20 400c 55 65 51 46 50 349
30 300a 38 94 42 48 84 230
30 400b 40 44 37 54 43 37
30 500c 83 116 60 154 86 101
40 400a 56 68 52 58 42 309
40 450a 43 69 48 63 67 221

Table 5.10.: SINR-corrected objective values υ` including the load for different formula-
tions of interference modelling with the best settings.

quite complex as discussed in Section 5.9.3 and hence, we cannot obtain optimal solutions
for all other scenarios by means of the available resources.

As stated in Section 5.9.1, the spectral efficiencies in the capacity constraints, which
are satisfied by the solutions of the different formulations, do not necessarily correspond
to the actual SINR values. This results from the fact that correct SINR values can only
be computed after the solution is known for most investigated formulations. As a conse-
quence, even an optimal solution might violate a capacity constraint (4.4c). To account
for such violations, we now analyse the SINR-corrected objective value υ` which incorpo-
rates the load of the deployed BSs and has been defined in Section 5.9.1. These values are
displayed in Table 5.10 but again not for the discrete CQIs formulation. We observe that
the values of υ` are, in general, considerably higher than υ stated in Table 5.9 implying
that capacity constraints are strongly violated; the higher υ`, the higher the violation. The
strongest effect can be seen for the TN oriented formulation, which indicates that the ap-
proximative version is far from exactness in terms of capacity. Overall, the TN coverage
requirement formulation yields the lowest values of υ`, which are often even lower than
the values obtained by the conventional SINR constraint formulation.
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scenario SINR conflict cov. requir. iterative mitigation TN oriented

20 200a 0.8 0.2 0.7 0.6 0.2 18.1
20 300b 7.4 1.6 2.1 6.5 3.3 69.4
20 400c 18.2 6.2 17.8 12.8 8.8 146.3
30 300a 24.8 12.1 17.5 42.1 25.8 45.4
30 400b 3.6 0.9 3.4 3.7 14.0 264.7
30 500c 55.6 18.1 37.2 142.3 86.3 859.0
40 400a 29.9 2.7 18.3 11.4 115.8 16.1
40 450a 429.6 52.0 256.9 386.6 90.5 269.3

average 71.2 11.7 44.3 75.7 43.1 211.0

Table 5.11.: Time consumption in s for different formulations of interference modelling
with the best settings.

Regarding the discrete CQIs formulation, we have υ = υ` = 22 for 20 200a due to the
exactness of this formulation in terms of SINR as well as capacity.

Finally, we compare the solving times for the different approximate formulations in
Table 5.11.

For all formulations, the solving times are rather moderate. Certainly, more time is in
general consumed to solve larger instances. However, outliers occur especially for the TN
oriented formulation. The by far fastest approach is the conflict graph formulation with an
average solving time of 11.7 s. This is not surprising as this formulation does not increase
the complexity of the models significantly.

5.10. Conclusion

In this chapter, we have adapted and applied three approaches of interference limitation
to the WNPP and have proposed four new formulations to model interference. Three of
the new methods are exact in terms of SINR as well as capacity. However, for practical
reasons, we have investigated only approximative versions for two of these approaches. In
a computational study based on eight scenarios of various dimensions, we have identified
the best parameter setting for each formulation. Then, we have compared these best set-
tings by means of the SINR-corrected objective value υ, which incorporates the number
of deployed BSs, covered TNs, and violated SINR constraints, as well as by means of υ`,
which additionally accounts for violated capacity constraints via the load of a BS. The
TN coverage requirement formulation has yielded the lowest values for both and thus, we
regard this formulation as the best among the proposed for practical applicability.

However, we would like to point out that the SINR-corrected objective value includ-
ing the load has also revealed that the solutions of all approximate formulations violate
the capacity constraints even though hardly any or no SINR condition is violated. Thus,
to obtain a solution that is feasible for SINR constraints as well as capacity constraints,
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the proposed formulations have to be extended by a post-processing step which reassigns
TNs after the deployment of BSs has been determined. Such a post-processing proce-
dure though increases the complexity and cannot guarantee the optimality of a generated
solution.

From a theoretical point of view, the exact methods, interference mitigation, TN ori-
ented and discrete CQIs formulation model SINR requirements best. Among these three,
the discrete CQIs method has the greatest potential to compute optimal solutions if the
performance of the separation routine can be improved further. For the interference mit-
igation as well as the TN oriented formulation, an exponentially sized model has to be
solved, where this exponential dimension cannot be avoided by a separation routine as in
the case of discrete CQIs.

In the following main parts of this thesis, we study various robust optimisation aspects
which entail rather complex models. Hence, a fairly simple basic formulation is necessi-
tated to obtain still tractable models. The conflict graph formulation has proven to be the
fastest among the various investigated formulations. The reason is that the addition of a
conflict graph does not increase the complexity of the formulation significantly. Addition-
ally, the interference limitation obtained by the conflict graph formulation is reasonable
even though not as good as in case of the TN coverage requirement formulation. A further
reason to choose the conflict graph formulation to limit interference in the remainder of
this thesis is the fact that it enables the inclusion of versatile BS candidates.

As interference modelling is not the main focus of this thesis, this chapter is just a
digression to complete the modelling of the planning of wireless networks.
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6. General Concept

Chance or probabilistic constraints are a specific model of stochastic optimisation to incor-
porate random parameters in optimisation problems. They were first mentioned in Charnes
et al. [43] in 1958 in the context of scheduling of heating oil production. This work can be
regarded as an example of the method for solving chance-constrained programs presented
in the subsequent work by Charnes and Cooper [42]. This method splits the problem
into two parts. First, a probability distribution that maximises the objective and respects
the probability constraints is determined. In the second part, this distribution is approxi-
mated by a decision rule which is a concept of stochastic programming describing a rule
to calculate decisions as functions of former observations. Further early work on chance-
constrained programming can be found in Miller and Wagner [139] and Prékopa [156].

In the context of stochastic optimisation, chance constraints are in particular well suited
to model problems involving high uncertainties or requiring reliability [164]. Though, the
resulting formulations are typically severely computationally intractable due to the follow-
ing reasons; see [16, 143]. First, the occurrent probability in the constraints is difficult to
evaluate with high accuracy entailing that it can be quite costly to check if a chance con-
straint is satisfied. Second, the feasible set of the problem is often non-convex impeding
the solving of such a problem. Moreover, Luedtke et al. [128] show that the problem

min ctx
s.t. P{Ax ≥ b} ≥ 1 − ε

x ∈ Rn
≥0

with A ∈ Rm×n, b a random vector in Rm, c ∈ Rn and ε ∈ (0, 1) with ε << 1 is NP-hard.
For a computationally intractable problem, a common approach is to replace the chance
constraint by a tractable approximation which possibly involves new variables [16, 143].
Such an approximation is a sufficient condition for the validity of the chance constraint.
Additionally, it can be verified efficiently and should define a convex and computationally
tractable set in the space of the x-variables in the original formulation. For a so-called
conservative approximation, the projection onto the space of the x-variables is contained
in the feasible set of the chance-constrained model. An example is the scenario approxi-
mation where samples of realisations of the random vector (or matrix) are generated. All
realisations have to fulfil the inner constraint (Ax ≥ b) inside the probability term.

We distinguish between joint and individual/separate chance constraints. A joint chance
constraint is of the form

P
{
a jx ≥ b j ∀ j ∈ {1, . . . ,m}

}
≥ 1 − ε, (6.1)
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where a j is the j-th column of matrix A ∈ Rm×n and b j is the j-th entry of vector b ∈ Rm

while the corresponding individual chance constraints can be written as

P
{
a jx ≥ b j

}
≥ 1 − ε j ∀ j ∈ {1, . . . ,m} (6.2)

with ε j ∈ (0, 1) small. The joint chance constraint guarantees a certain reliability for the
whole problem, whereas the individual chance constraints can only guarantee a certain
reliability for each constraint separately. Every vector x ∈ Rn fulfilling the joint chance
constraint (6.1) also fulfils all separate chance constraints (6.2) if ε j = ε∀ j ∈ {1, . . . ,m},
i. e., zjoint ≥ zsep with

zjoint = min ctx zsep = min ctx

s.t. P
{
a jx ≥ b j ∀ j

}
≥ 1 − ε s.t. P

{
a jx ≥ b j

}
≥ 1 − ε ∀ j

x ≥ 0, x ≥ 0

see [108]. Hence, the separate chance constraint program with objective zsep represents a
relaxation of the joint chance constraint program with objective zjoint and the probability
that all separate constraints are fulfilled is (1 − ε)m < (1 − ε) when assuming independent
random variables. In general, ε j , ε for separate chance constraints.

There exists a vast literature on chance-constrained programming also applied to a vari-
ety of problems such as scheduling in electricity markets [180], optimal power flow [112],
or beamforming in cognitive radio networks [129] to name just some recent applications.
However, only few papers on combinatorial problems exist. One of the first works on com-
binatorial problems with chance constraints was published by Hillier [95] in 1967. The
author presents an exact solution procedure for 0-1 bounded chance-constrained models
based on its deterministic equivalent form and deterministic uniformly tighter and looser
constraints. Additionally, a two-stage approach is presented if the values of some random
variables are known before some decision variables must be set.

Atamtürk and Narayanan [10] study the submodular knapsack polytope since chance
constraints with only binary variables can be modelled as a submodular knapsack set un-
der certain assumptions. A recent paper on chance-constrained combinatorial problems
is published by Klopfenstein [108]. The author gives a detailed overview on existing lit-
erature and presents B&C algorithms to solve 0-1 chance-constrained IPs to optimality,
where the right hand side is deterministic and the coefficient matrix is random. Further-
more, linear inequalities which are valid for the set of vectors fulfilling the individual
chance constraints via so-called basic scenarios are proposed. An exponential number of
such inequalities describes the set of feasible points completely. The developed solution
algorithm separates these valid inequalities in a B&C framework and serves as a basis for
an algorithm to solve a joint chance-constrained model.

One of the earliest works on solving general chance-constrained IPs to optimality was
published by Tayur et al. [168]. The framework of the presented solution method can be
described as follows. First, the “complicating constraints” such as joint chance constraints
are relaxed and the resulting reduced IP is then solved to optimality. Afterwards, the
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algorithm moves along specified directions (by Gröbner bases) to further feasible solutions
of the reduced IP. The feasibility of the new solution is checked for the original problem.
The algorithm is tested only for small scheduling problems (with at most 4 machines, 7
jobs).

In the case that only the right hand side is random with discrete distribution Beraldi
and Ruszczyński [17] propose a B&B algorithm for probabilistic IPs with a joint chance
constraint. The solution method is based on (partial) enumeration of so-called p-efficient
points where p is the probability level which should be met by the chance constraint.
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7. Application to Fixed Broadband
Wireless Networks

In this chapter, we apply separate and joint chance constraints both presented in the pre-
vious chapter to the FBWN problem as stated in Section 4.2. The presented theoretical
and computational results are based on several publications [46, 47, 51] originated from a
collaboration with David Coudert from INRIA, Prof. Arie M. C. A. Koster from RWTH
Aachen University and Napoleão Nepomuceno from Universidade de Fortaleza.

7.1. Separate Chance-Constrained Formulation

To model the random factor, radio link configuration, of the FBWN formalised in (4.6), we
first introduce a random variable ηp

uv with a discrete probability distribution which repre-
sents the bandwidth efficiency of the current radio configuration for bandwidth choice p on
arc uv. This configuration or modulation, varies over time in response to channel fluctu-
ations. We replace the capacity constraints (4.6c) by the following separate chance con-
straints.

P

∑
k∈K

xk
uv ≤

Puv∑
p=1

ηp
uvBp

uvy
p
uv

 ≥ 1 − εuv ∀uv ∈ A, (7.1)

where εuv > 0 is the infeasibility tolerance per link which is typically close to zero and set
by the network operator. These constraints ensure that the available capacity on each link,
taking bandwidth choice as well as the random modulation into account, supports the total
traffic routed through it with (high) probability 1 − εuv.

The incorporation of the chance constraints entails that the model is computationally in-
tractable. However, we can reformulate this probabilistic program as a standard ILP since
there exists only a finite though huge number of scenarios, i. e., realisations of the random
vector η consisting of the random variables ηp

uv. To reduce the number of scenarios to be
considered, we apply the approach of basic scenarios by [108]. To establish the deter-
ministic counterpart of constraints (7.1), we introduce the parameter np

uv computed from
the (reverse) cumulative probability distribution of the random variable ηp

uv. It represents
the highest radio configuration (number of bits) whose cumulative probability value ρp

uv is
greater than 1−εuv. Hence, ρp

uv = P{ηp
uv ≥ n

p
uv} ≥ 1−εuv where P{ηp

uv ≥ n
p
uv+1} < 1−εuv. An

example to compute np
uv for an infeasibility tolerance εuv = 0.06 is displayed in Table 7.1.

The cumulative probability value for 32-QAM is the last value of the ascending modula-
tion schemes to exceed 1 − εuv = 0.94, hence, 32-QAM is the highest possible modulation
for this link uv.
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modulation individual (reverse) cumulative
scheme probability probability ρp

uv

QPSK 0.02 1.00
16-QAM 0.03 0.98
32-QAM 0.03 0.95 → n

p
uv = log2(32) = 5

64-QAM 0.02 0.92
128-QAM 0.10 0.90
256-QAM 0.80 0.80

Table 7.1.: Example of (reverse) cumulative probability values ρp
uv and the parameter np

uv

for an infeasibility tolerance of εuv = 0.06.

The deterministic counterpart of separate chance constraints (7.1) can be stated as

∑
k∈K

xk
uv ≤

Puv∑
p=1

n
p
uvBp

uvy
p
uv ∀uv ∈ A. (7.2)

The separate infeasibility tolerance enforced on each link yields a lower bound for the
objective when the joint chance constraint is included. This bound can become arbitrarily
small if the number of links is large (compare zjoint and zsep in Chapter 6). Therefore, the
separate chance-constrained formulation is sensible only for smaller networks. In the fol-
lowing section, we present a formulation which is more appropriate to cope with instances
of practically relevant sizes for a FBWN.

7.2. Joint Chance-Constrained Formulations

For a joint chance-constrained formulation, let ε > 0 be the global infeasibility tolerance
which has the same properties as εuv named in the previous section. Now we replace the
capacity constraints (4.6c) by the following joint chance constraint.

P

∑
k∈K

xk
uv ≤

Puv∑
p=1

ηp
uvBp

uvy
p
uv ∀uv ∈ A

 ≥ 1 − ε, (7.3)

where ηp
uv denotes the random variable introduced in Section 7.1. This constraint enforces

an infeasibility tolerance on all capacity constraints simultaneously. This means (7.3) guar-
antees that the assigned bandwidth is sufficient to support the total traffic routed through
each arc of the network with probability 1−ε. Just like the separate chance constraints im-
pair the solving of the model, also the incorporation of the joint chance constraint entails
that the model is computationally intractable. Hence, the development of reformulations
that can be solved with standard ILP solvers such as cplex [98] is desirable and studied in
the following subsections.
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7.2.1. Big-M Reformulation

One possible reformulation of (4.6) combined with (7.3) is a big-M ILP (cf. [128, 160])
considering a finite number of realisations η1, . . . , ηR of the random vector η which occur
with probabilities π1, . . . , πR and

∑R
r=1 πr = 1. Let zr ∈ {0, 1}, r = 1, . . . ,R be decision

variables, where zr = 0 guarantees that the capacity constraints are satisfied taking into
account realisation ηr. Setting M B

∑
k∈K dk, the chance constraint (7.3) can be rewritten

as ∑
k∈K

xk
uv − Mzr ≤

Puv∑
p=1

(ηr)p
uvBp

uvy
p
uv ∀uv ∈ A, r = 1, . . . ,R (7.4a)

R∑
r=1

πrzr ≤ ε (7.4b)

zr ∈ {0, 1} ∀ r = 1, . . . ,R. (7.4c)

The knapsack constraint (7.4b) is equivalent to

R∑
r=1

πr(1 − zr) ≥ 1 − ε. (7.5)

The big-M constraints (7.4a) in association with (7.5) guarantee that the probability of
scenarios which satisfy the capacity constraints is greater than or equal to 1 − ε, thus
enforcing the probabilistic constraint (7.3). Replacing the capacity constraints (4.6c) in
model (4.6) by the big-M constraints (7.4), we obtain the big-M formulation

min
∑
uv∈A

Puv∑
p=1

cp
uvy

p
uv (7.6a)

s.t.
∑

u∈δ−(v)

xk
uv −

∑
u∈δ+(v)

xk
vu =


−dk, v = sk

dk, v = tk

0, otherwise
∀ v ∈ V, k ∈ K (7.6b)

∑
k∈K

xk
uv − Mzr ≤

Puv∑
p=1

(ηr)p
uvBp

uvy
p
uv ∀uv ∈ A, r = 1, . . . ,R (7.6c)

R∑
r=1

πrzr ≤ ε (7.6d)

Puv∑
p=1

yp
uv ≤ 1 ∀uv ∈ A (7.6e)

xk
uv ≥ 0, yp

uv, zr ∈ {0, 1}
∀uv ∈ A, k ∈ K ,
p = 1, . . . , Puv, r = 1, . . . ,R. (7.6f)

85



7. Application to Fixed Broadband Wireless Networks

Computation of probabilities In general, the (merely unknown) correlation among
outage events of different radio links prohibits the computation of the probabilities πr.
Under the assumption that microwave links suffer fades independently, we can define an
artificial set of realisations. Note, we assume that the random variables of two links are
independent and not that ηp

uv, p = 1, . . . , Puv on a single link uv ∈ A are independent.
However, we will show in the following that the dependency between the bandwidth ef-
ficiencies ηp

uv, p = 1, . . . , Puv does not have any effects on the calculation of the relevant
probabilities.

By the assumed independence between the links, we can limit the discussion to a sin-
gle link uv ∈ A. Let Qp be the number of possible radio configurations for the cho-
sen link uv and bandwidth choice p. Further, let Dp be the domain, which denotes
the possible bandwidth efficiencies, of the random variable η

p
uv and define a bijection

f p : Dp → {1, . . . ,Qp} with f p(ηp
uv) = q mapping bandwidth efficiency to radio configura-

tion. For the sake of simplicity, we write f instead of f p. For a fixed bandwidth choice p̃,
the probability that link uv runs with radio configuration ∇ ∈ {1, . . . ,Q p̃} is

P
{
f (η p̃

uv) = ∇
}

=

R∑
r=1| f ((ηr)p̃

uv)=∇

πr, (7.7)

which is the sum over all probabilities of those realisations for which the entry (ηr) p̃
uv is

also mapped to radio configuration ∇. Now, we define all possible bandwidth-independent
realisations with probabilities π∗r such that the probability P

{
f (ηp̃

uv) = ∇
}

can be deter-
mined similar to (7.7). More precisely, let R∗ be the number of all possible bandwidth
and configuration constellations, that is R∗ =

∏Puv
p=1 Qp and π∗r B

∏Puv
p=1 P

{
η

p
uv = (ηr)p

uv
}

for r = 1, . . . ,R∗.

Lemma 7.1. Let p̃ ∈ {1, . . . , Puv} be a bandwidth choice and ∇ ∈ {1, . . . ,Q p̃} a radio
configuration. It holds that

R∗∑
r=1| f ((ηr)p̃

uv)=∇

π∗r = P
{
f (ηp̃

uv) = ∇
}
.

Proof. By definition of π∗r , we obtain

R∗∑
r=1| f ((ηr)p̃

uv)=∇

π∗r =

R∗∑
r=1| f ((ηr)p̃

uv)=∇

 Puv∏
p=1

P
{
ηp

uv = (ηr)p
uv
}

=P
{
f (η p̃

uv) = ∇
}
·

R∗∑
r=1| f ((ηr)p̃

uv)=∇

 Puv∏
p=1|p, p̃

P
{
ηp

uv = (ηr)p
uv
}︸                                        ︷︷                                        ︸

(?)
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It remains to show that (?) = 1. For this purpose, we fix another bandwidth choice p̂ ∈
{1, . . . , Puv} \ { p̃} and separate all corresponding summands (regarding the radio configura-
tion) as follows.

(?) =

Q p̂∑
q=1

P { f (ηp̂
uv) = q

}
·

R∗∑
r=1| f ((ηr)p̃

uv)=∇

 Puv∏
p=1|p, p̃,p̂

P
{
ηp

uv = (ηr)p
uv
}


=

R∗∑
r=1| f ((ηr) p̃

uv)=∇

 Puv∏
p=1|p,p̃, p̂

P
{
ηp

uv = (ηr)p
uv
} · Q p̂∑

q=1

P
{
f (ηp̂

uv) = q
}

︸                ︷︷                ︸
=1

Separating all bandwidth choices subsequently that way, it follows (?) = 1 and the proof
is complete. �

Corollary 7.2. The probability that a link with a fixed bandwidth runs with a certain radio
configuration can be computed either via bandwidth-dependent or bandwidth-independent
realisations, i. e.,

P
{
f (η p̃

uv) = ∇
}

=

R∑
r=1| f ((ηr)p̃

uv)=∇

πr =

R∑
r=1| f ((ηr)p̃

uv)=∇

π∗r =

R∑
r=1| f ((ηr)p̃

uv)=∇

Puv∏
p=1

P
{
ηp

uv = (ηr)p
uv
}
.

Despite the presented possibility to compute the probabilities πr, the big-M formula-
tion (7.6) is intractable due to the very large number of scenarios or realisations of the
random vector η, to be considered. Additionally, big-M models are often numerically un-
stable; cf. Chapter 5. In the sequel, we propose a computationally more tractable ILP
model in case of independent link outages.

7.2.2. Independent Link Outages

Henceforth, we assume that the link outages are independent. Hence, also η
p
uv, p =

1, . . . , Puv are assumed to be independent for a link uv ∈ A and the probability in (7.3)
can be replaced by the product of probabilities. To do so, let Qp

uv be the number of possible
configurations for arc uv with assigned bandwidth choice p. The index of a configuration is
denoted by q = 1, . . . ,Qp

uv where a larger q means a higher-level (larger m) m-QAM mod-
ulation scheme. Moreover, let ρpq

uv be the probability that arc uv with bandwidth choice p
is running at configuration q or higher. Thus, ρpq

uv is the (reverse) cumulative probability
value of the random variable regarding modulation q; cf. Section 7.1, and the minimum
available capacity of arc uv operating at bandwidth choice p with configuration q is now
represented by Bpq

uv . Moreover, we append the additional index q to the decision variable y
and introduce a binary slack variable y0

uv which is set to 1 if arc uv is not operated. Without
this additional variable, a zero-product when rewriting (7.3) as the product of probabilities
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could occur. The complete reformulated model then reads

min
∑
uv∈A

Puv∑
p=1

Qp
uv∑

q=1

cp
uvy

pq
uv (7.8a)

s.t.
∑

u∈δ−(v)

xk
uv −

∑
u∈δ+(v)

xk
vu =


−dk, v = sk

dk, v = tk

0, otherwise
∀ v ∈ V, k ∈ K (7.8b)

∑
k∈K

xk
uv ≤

Puv∑
p=1

Qp
uv∑

q=1

Bpq
uv ypq

uv ∀uv ∈ A (7.8c)

∏
uv∈A

y0
uv +

Puv∑
p=1

Qp
uv∑

q=1

ρpq
uv ypq

uv

 ≥ 1 − ε (7.8d)

y0
uv +

Puv∑
p=1

Qp
uv∑

q=1

ypq
uv = 1 ∀uv ∈ A (7.8e)

xk
uv ≥ 0, ypq

uv , y0
uv ∈ {0, 1}

∀uv ∈ A, k ∈ K ,
p = 1, . . . , Puv, q = 1, . . . ,Qp

uv.
(7.8f)

The objective (7.8a) is the same as (4.6a) just incorporating the choice on the radio con-
figuration. Furthermore, the flow conservation constraints (7.8b) are exactly (4.6b). In the
capacity constraints (7.8c), we explicitly assume a hypothesis on the radio configuration:
For a given arc and bandwidth, the lower the configuration is, the lower the bandwidth effi-
ciency assumed to this arc will be in time of design and also the higher the probability that
the effective capacity on this arc in time of operation supports the total traffic to be routed
through it. In other words, more conservative hypotheses on the radio configuration lead
to more reliable solutions. Constraint (7.8d) formally denotes this relation. According to
the bandwidth assignment and the hypotheses on the radio configuration, it guarantees that
the reliability of a solution is at least 1 − ε. The configuration constraints (7.8e) are equal
to (4.6d) just incorporating the additional slack variable y0

uv.

Theorem 7.3. The big-M formulation (7.6) and model (7.8) are equivalent in case of
independent link outages.

Proof. Similar to Section 7.2.1, let Dp
uv be the domain of the random variable ηp

uv and
we define the bijection f p

uv : Dp
uv → {1, . . . ,Q

p
uv} with f p

uv(η
p
uv) = q which maps bandwidth

efficiency to radio configuration. For the sake of simplicity, we write f instead of f p
uv. We

show that for every feasible bandwidth assignment and routing of traffic demands to the
big-M formulation, there exists a corresponding feasible solution to formulation (7.8) with
the same cost, and vice versa. Let (x̃, ỹ, z̃) be a feasible solution for the big-M formulation.
Recall that for feasible realisations r = 1, . . . ,R of η holds
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z̃r = 0 ⇐⇒
∑
k∈K

x̃k
uv ≤

Puv∑
p=1

(ηr)p
uvBp

uvỹ
p
uv ∀ uv ∈ A.

We can easily obtain a feasible solution (x̃, ŷ) to (7.8) with the same cost as shown in the
following. Let us define

A1 B

uv ∈ A

∣∣∣∣∣∣∣
Puv∑
p=1

ỹp
uv = 1

 andA0 B A \A1 (7.9)

as the sets of installed and non-installed arcs, respectively, and let p̃uv, uv ∈ A1, be the se-
lected bandwidth choice for arc uv, i. e., ỹ p̃uv

uv = 1. For simplicity, whenever it is understood
from the context, we write p̃ instead of p̃uv. Moreover, we define the largest radio con-
figuration necessary to fulfil the capacity constraints (7.4a) for every feasible realisation
as

q̃uv B f
(

min
r=1,...,R

{
(ηr)p̃

uv

∣∣∣ z̃r = 0
})

∀ uv ∈ A1.

Again, we write q̃ instead of q̃uv whenever it is unambiguous. Note, z̃r = 0, r ∈ {1, . . . ,R}
if (ηr) p̃

uv ≥ f −1(q̃) for all uv ∈ A simultaneously. Then we set

ŷpq
uv B

1, if uv ∈ A1, p = p̃ and q = q̃
0, otherwise.

Besides, we set

ŷ0
uv B

1, if uv ∈ A0

0, if uv ∈ A1.

By definition of ŷ, we have

∑
uv∈A

Puv∑
p=1

Qp
uv∑

q=1

cp
uvŷ

pq
uv =

∑
uv∈A

Puv∑
p=1

cp
uvỹ

p
uv,

which demonstrates that the bandwidth cost are equal. Furthermore, constraints (7.8b),
(7.8c), and (7.8e) are fulfilled with Bpq

uv = f −1(q) · Bp
uv.

To prove the feasibility of the constructed solution (x̃, ŷ), it remains to show that the
reliability constraint (7.8d) is fulfilled. For this purpose, we introduce the following no-
tation. First, we reduce the space of the random vector η such that we consider only the
variables η p̃

uv, ∀ uv ∈ A1. Let η̃ be this reduced random vector. Again we have to deal with
a finite number of realisations η̃1, . . . , η̃S of the random vector η̃. Consider the set

S̃ B
{
s ∈ {1, . . . , S }

∣∣∣ f ((η̃s) p̃
uv) ≥ q̃∀ uv ∈ A1

}
of feasible realisations of η̃ with respect to solution ỹ. Then it holds for the left hand side
of (7.8d)
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∏
uv∈A

ŷ0
uv +

Puv∑
p=1

Qp
uv∑

q=1

ρpq
uv ŷpq

uv


=

∏
uv∈A0

 ŷ0
uv︸︷︷︸

=1

+

Puv∑
p=1

Qp
uv∑

q=1

ρpq
uv ŷpq

uv︸︷︷︸
=0

︸                                    ︷︷                                    ︸
=1

·
∏

uv∈A1

 ŷ0
uv︸︷︷︸

=0

+

Puv∑
p=1

Qp
uv∑

q=1

ρpq
uv ŷpq

uv


=

∏
uv∈A1

Puv∑
p=1

Qp
uv∑

q=1

ρpq
uv ŷpq

uv =
∏

uv∈A1

ρp̃q̃
uv ŷ p̃q̃

uv︸︷︷︸
=1


def. of ρ and f

=
∏

uv∈A1

P
{
f (ηp̃

uv) ≥ q̃uv

}
=

∑
s∈S̃

∏
uv∈A1

P
{
η p̃

uv = (η̃s) p̃
uv

}
(∗)

(+)
=

R∑
r=1 | z̃r=0

∏
uv∈A

Puv∏
p=1

P
{
ηp

uv = (ηr)p
uv
}

Cor. 7.2
=

R∑
r=1 | z̃r=0

πr =

R∑
r=1

πr(1 − z̃r) ≥ 1 − ε.

For (+), we use a similar argumentation of separating bandwidth choices subsequently
as in the proof of Lemma 7.1. In the last equality, we apply Corollary 7.2 and exploit the
independence of ηp

uv, p = 1, . . . , Puv. Altogether, (x̃, ŷ) is a feasible solution for (7.8).
Conversely, given a feasible solution (x̃, ŷ) to formulation (7.8), one can obtain a feasible

solution (x̃, ỹ, z̃) to the big-M formulation with the same cost. We set

ỹp
uv B

Qp
uv∑

q=1

ŷpq
uv ∀uv ∈ A, p = 1, . . . , Puv

and define p̂uv, q̂uv such that ŷ p̂uvq̂uv
uv = 1 for all uv ∈ A1, where A1 is defined in (7.9). For

r = 1, . . . ,R, we set

z̃r B

0, if f ((ηr) p̂uv
uv ) ≥ q̂uv ∀uv ∈ A1

1, otherwise.

Again, the objectives (4.6a) and (7.8a) are equal and constraints (4.6b), (4.6d), and (7.4a)
are fulfilled. To show that constraint (7.4b) is satisfied, we follow the same argumentation
as before in (∗), just in the reverse direction and by replacing p̃ and q̃ by p̂uv and q̂uv.

Consequently, the big-M formulation and model (7.8) are equivalent in case of indepen-
dent link outages. �

Model (7.8) is hard to solve due to the non-linearity of constraint (7.8d). However,
this constraint can be linearised as follows. By employing monotonicity of logarithmic
functions and because the logarithm of a product is equal to the sum of the logarithms,
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(7.8d) is equivalent to

∑
uv∈A

log

1 · y0
uv +

Puv∑
p=1

Qp
uv∑

q=1

ρpq
uv ypq

uv

 ≥ log(1 − ε).

By (7.8e), exactly one of the sum elements within the logarithmic function will be non-zero
and, hence, the constraint is equivalent to

∑
uv∈A

log(1)︸︷︷︸
=0

y0
uv +

Puv∑
p=1

Qp
uv∑

q=1

log(ρpq
uv )ypq

uv

 ≥ log(1 − ε).

Thus, the slack variables y0
uv are not required anymore. The complete linearised problem

in case of independent link outages is modelled by the following ILP.

min
∑
uv∈A

Puv∑
p=1

Qp
uv∑

q=1

cp
uvy

pq
uv (7.10a)

s.t.
∑

u∈δ−(v)

xk
uv −

∑
u∈δ+(v)

xk
vu =


−dk, v = sk

dk, v = tk

0, otherwise
∀ v ∈ V, k ∈ K (7.10b)

∑
k∈K

xk
uv ≤

Puv∑
p=1

Qp
uv∑

q=1

Bpq
uv ypq

uv ∀uv ∈ A (7.10c)

∑
uv∈A

Puv∑
p=1

Qp
uv∑

q=1

log(ρpq
uv )ypq

uv ≥ log(1 − ε) (7.10d)

Puv∑
p=1

Qp
uv∑

q=1

ypq
uv ≤ 1 ∀uv ∈ A (7.10e)

xk
uv ≥ 0, ypq

uv ∈ {0, 1}
∀uv ∈ A, k ∈ K ,
p = 1, . . . , Puv,
q = 1, . . . ,Qp

uv.
(7.10f)

Note, this formulation is still a large scale ILP, which is, in general, hard to solve.

7.2.3. Budget-Constrained Formulation for Independent Link
Outages

The problem formulation (7.10) minimises the cost for the bandwidth allocation while
a certain reliability is guaranteed. But there is a trade-off between cost and reliability.
Depending on the value of the infeasibility tolerance, many problems may be infeasible
since the reliability constraint (7.10d) becomes too restrictive. Investigating the problem
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from the opposite perspective, we ask how reliable can the network be while a certain
budget B is not exceeded? This perception of the problem is formalised in the following
ILP.

max
∑
uv∈A

Puv∑
p=1

Qp
uv∑

q=1

log(ρpq
uv )ypq

uv (7.11a)

s.t. (7.10b), (7.10c), (7.10e), (7.10f) (7.11b)∑
uv∈A

Puv∑
p=1

Qp
uv∑

q=1

cp
uvy

pq
uv ≤ B (7.11c)

The formulation (7.11) maximises the reliability of the network while the budget B is not
exceeded and it is also a special case of a network design problem extended by a knapsack
constraint, the budget constraint (7.11c). Thus, (7.11) is strongly NP-hard.

7.2.4. Dependent Random Variables

In real world applications, the random variables ηp
uv are usually not independent as, e.g.,

bad weather conditions influence more than one link at the same time. Nevertheless, we
can embed the presented formulation (7.10) in a B&B framework on the basis of [78] via a
Benders like decomposition to model the case of dependent random variables as described
in the following.

First, we solve model (7.10) where the probabilities ρpq
uv in constraint (7.10d) describe the

marginal probabilities on a single link. Every integer solution (x̃, ỹ) found during the B&B
process is then tested for feasibility regarding the actual (dependent) random variables.
This means, we fix the binary decision variables y to ỹ and determine a corresponding
flow x that maximises the probability given in (7.3). If the computed probability is less
than 1−ε, the configuration given by ỹ is not part of a feasible solution in case of dependent
random variables and hence, the current solution has to be prohibited. In such a case, we
redefine

A1 B

uv ∈ A

∣∣∣∣∣∣∣∣
Puv∑
p=1

Qp
uv∑

q=1

ỹpq
uv = 1

 andA0 B A \A1

as the sets of installed and non-installed links, respectively. Moreover, define p̃uv and q̃uv

for every uv ∈ A1 such that ỹ p̃uvq̃uv
uv = 1. Based on these values and the sets A1 and A0,

we add the following constraint as a so-called lazy constraint prohibiting the current solu-
tion (x̃, ỹ). ∑

uv∈A1

yp̃uvq̃uv
uv +

∑
uv∈A0

1 − Puv∑
p=1

Qp
uv∑

q=1

ypq
uv

 ≤ |A| − 1 (7.12)

Including the new constraint, we continue the B&B routine solving (7.10). The whole
process is depicted in Figure 7.1 and continues as long as the B&B algorithm provides
new integer solutions.
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B&B for
(7.10)

compute max.
probability P
in (7.3) for ỹ

P < 1 − ε?

compute sets
A1, A0

add solution
to pool

integer solution

no

yes

add constraint (7.12)

continue

Figure 7.1.: Flowchart of lazy constraint separation during the B&B solution framework
for dependent random variables, see [51].

This framework models random variable dependencies. However, we would like to
point out that this is just a theoretical model as the computation of the maximum probabil-
ity for fixed ỹ is typically intractable due to the correlation between the random variables.

7.3. Performance Improvements

Even small instances of the models described in Section 7.2.2 and 7.2.3 cannot be solved
within a reasonable time due to the NP-hardness of the problem. To accelerate the B&B
solving process, we present cutset inequalities to improve the dual bound. We separate
these inequalities on the fly by exact separation ILPs. Finally, to improve the primal bound
of the budget-constrained model (7.11) we introduce a primal heuristic.

7.3.1. Cutset Inequalities

Neglecting constraints (7.10d) and (7.10e), formulation (7.10) defines a classical network
design problem studied intensively in the literature [24, 25, 131, 132, 157]. To enhance
the performance of ILP solvers, several valid inequalities have been introduced for the
classical network design problem. A special class are so-called cutset-based inequalities
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which exploit knowledge about the required capacity on a cut in the network; see also
Section 1.2.2.

Let S ⊂ V be a proper and non-empty subset of the node set V and S = V \ S its
complement. The set

A(S,S) B
{
uv ∈ A | u ∈ S, v ∈ S

}
,

connecting a node in S to a node in S, defines a cutset. Similarly, let

K(S,S) B
{
k ∈ K | sk ∈ S, tk ∈ S

}
be the set of commodities originating in S and terminating in S. Finally, define

d(S,S) B
∑

k∈K(S,S)

dk.

An appropriate aggregation of constraints (7.10b), (7.10c), and non-negativity of the vari-
ables results in the following base cutset inequalities.

∑
uv∈A(S,S)

Puv∑
p=1

Qp
uv∑

q=1

Bpq
uv ypq

uv ≥ d(S,S) ∀S ⊂ V (7.13)

These inequalities ensure that there is enough capacity assigned to the arcs of any cutset
in order to satisfy the demands that must be routed through the cutset. Base cutset inequal-
ities are necessary for a capacity vector to be feasible, but it is well-known that they are not
sufficient in general [53, 56]. By applying Chvátal-Gomory (CG) rounding to base cutset
inequalities (cf. [179]), we obtain the well-known cutset inequalities

∑
uv∈A(S,S)

Puv∑
p=1

Qp
uv∑

q=1

⌈
Bpq

uv

a

⌉
ypq

uv ≥

d(S,S)
a

 ∀S ⊂ V, (7.14)

where a ∈ {Bpq
uv | uv ∈ A(S,S), p = 1, . . . , Puv, q = 1, . . . ,Qp

uv}. In general, the LP relax-
ation of (7.10) does not satisfy (7.14). On the contrary, all integer solutions have to satisfy
it as explained in Section 1.2.2; see also [157].

A further class of valid inequalities are the shifted cutset inequalities. We obtain these
inequalities from the base cutset inequalities by shifting the coefficients first before apply-
ing CG-rounding. Given a cutsetA(S,S) and a link uv ∈ A(S,S), define

auv B min
p=1,...,Puv

min
q=1,...,Qp

uv

Bpq
uv , and

a′ ∈
{
Bpq

uv − auv

∣∣∣∣ uv ∈ A(S,S), p = 1, . . . , Puv, q = 1, . . . ,Qp
uv

}
\ {0}.

Note, the parameter auv is strictly greater than 0 as Bpq
uv > 0. Multiplying constraints (7.10e)
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by −auv results in
Puv∑
p=1

Qp
uv∑

q=1

(−auv)ypq
uv ≥ −auv ∀ uv ∈ A. (7.15)

Adding
∑

uv∈A(S,S)
∑Puv

p=1

∑Qp
uv

q=1(−auv)y
pq
uv to the left hand side of (7.14) and

∑
uv∈A(S,S) −auv

to the right hand side leads to a valid inequality due to (7.15). Then, we apply CG-rounding
using the notation a(S,S) B

∑
uv∈A(S,S) auv and obtain the shifted cutset inequalities

∑
uv∈A(S,S)

Puv∑
p=1

Qp
uv∑

q=1

⌈
Bpq

uv − auv

a′

⌉
ypq

uv ≥

d(S,S) − a(S,S)
a′

 ∀S ⊂ V. (7.16)

Note that the presented cutset inequalities are valid for both formulations (7.10) and (7.11).

7.3.2. Separation of Cutset Inequalities

As there exist exponentially many subsets S ⊂ V, it is not efficient to add all possible
cutset inequalities and shifted cutset inequalities described in the previous section. Hence,
we rather generate only violated inequalities on the fly. Since no polynomial algorithm
is known, we propose ILPs to separate the most violated (shifted) cutset inequality for
the current LP solution exactly; see, e.g., [75] or [117] for cutset separation in the robust
network design problem. A cutset inequality (7.14) is violated if

∑
uv∈A(S,S)

Puv∑
p=1

Qp
uv∑

q=1

⌈
Bpq

uv

a

⌉
ỹpq

uv −

d(S,S)
a

 < 0,

where ỹpq
uv is part of the current LP solution.

For the exact separation of cutset inequalities given a, we introduce variables αv in-
dicating whether node v ∈ V is an element of the subset S, and variables βuv deciding
whether uv ∈ A(S,S). For simplicity we further define

D B

∑
k∈K

dkβsktk

a
.

The exact separation of violated cutset inequalities can be formulated as the following ILP.

min
∑
uv∈A

 Puv∑
p=1

Qp
uv∑

q=1

⌈
Bpq

uv

a

⌉
ỹpq

uv

 βuv − z (7.17a)

s.t. D ≤ z ≤ D +
a − 1

a
(7.17b)
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αu − αv ≤ βuv ≤ min{1 − αv, αu} ∀ u, v ∈ V (7.17c)
αv, βuv ∈ {0, 1}, z ∈ N ∀ u, v ∈ V. (7.17d)

If the optimal objective value is negative, then a violated cutset inequality is found. The
variable z together with constraint (7.17b) determines the rounding of the right hand side
of the cutset inequality, where a−1

a depicts a number close to but strictly less than 1. Con-
straints (7.17c) determine the link between variables βuv, αv, and αu, which is

βuv = 1 ⇐⇒ αu = 1 ∧ αv = 0.

For the exact separation of shifted cutset inequalities with fixed a′, we restate the objec-
tive (7.17a) as

min
∑
uv∈A

 Puv∑
p=1

Qp
uv∑

q=1

⌈
Bpq

uv − auv

a′

⌉
ỹpq

uv

 βuv − z,

set

D B

∑
k∈K

dkβsktk −
∑

uv∈A
auvβuv

a′
,

and replace a in constraint (7.17b) by a′.
For an optimal solution (α̃, β̃, z̃) of either separation problem (7.17) or the separation

problem for shifted cutset inequalities, the subset S is defined by

S B {v ∈ V | α̃v = 1}

and the cutset
A(S,S) B

{
uv ∈ A

∣∣∣ β̃uv = 1
}
.

The right hand side of the violated inequality (7.14) or (7.16) that has to be added to the
cut pool is given by z̃.

7.3.3. A Primal Heuristic for the Budget-Constrained Formulation

To find good solutions of (7.11) faster, we introduce the following heuristic which com-
putes values for the decision variables y based on the current LP solution without modify-
ing the flow variables x, see Algorithm 4.

Based on the flow values given in the LP solution (x̃, ỹ), we compute the best bandwidth-
configuration pair for each arc, i. e., the pair for which the flow is satisfied and the cost is
as low as possible while the reliability is maximal. If the sum over all costs is lower than or
equal to the budget, we have found a feasible solution. However, this cannot be guaranteed.

We experienced that the budget B is not always used completely by the constructed
solution. Hence, if there is some budget left, we attempt to improve the new solution
by replacing bandwidth-configuration pairs with pairs having a higher reliability and still
fulfilling the requirements. Note, we assume a non-decreasing ordering of the bandwidths
and consider only larger bandwidths in the improvement step.
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Algorithm 4 Primal Heuristic for (7.11)
Input: current LP solution (x̃, ỹ)
Output: new solution (x̃, ŷ) or abort

for uv ∈ A do
Compute left hand side of constraint (7.10c): lhsuv B

∑
k∈K

x̃k
uv

Find best bandwidth-configuration pair fulfilling the demands with lowest cost and
highest reliability:

( p̂, q̂)uv B argmin
(p,q)

{
cp

uv

∣∣∣∣∣ Bpq
uv ≥ lhsuv and log(ρpq

uv ) = max
(p̃,q̃)

{
log(ρp̃q̃

uv )
∣∣∣ cp

uv = c p̃
uv

}}
Define minimum cost and maximum reliability: ĉuv B c p̂

uv, ρ̂uv B log(ρp̂q̂
uv )

Set new solution: ŷ p̂q̂
uv = 1, ŷpq

uv = 0 ∀ (p, q) , (p̂, q̂)uv

end for
if B −

∑
uv∈A

ĉuv < 0 then no solution found return abort

else if B −
∑

uv∈A
ĉuv = 0 then new solution found return (x̃, ȳ)

else Try to improve the solution successively for every arc:
for uv ∈ A do

for p > p̂ do
if Bpq

uv ≥ lhsuv, log(ρpq
uv ) > ρ̂uv and

∑
ũṽ∈A

ĉũṽ − ĉuv + cp
uv ≤ B for one q then

Change new solution: ŷp̂q̂
uv = 0, ŷpq

uv = 1, set ĉuv B cp
uv, ρ̂uv B log(ρpq

uv )
break for loop over p

end if
end for

end for
return (x̃, ȳ)

end if

7.4. Computational Study

The number of scenarios to be considered in the big-M formulation (7.6) is at least

#configurations#arcs·#bandwidths

in case that the bandwidth choices as well as the possible configurations are the same
for each link. For the smallest realistic instance investigated in this computational study
(the network Polska), the number of scenarios is 636·3. Hence, the big-M formulation
is unmanageable for practical instances which is the reason for focussing on the case of
independent link outages in the following computational study.

In this section, we first briefly present some preliminary results for formulation (7.10)
concerning the price of reliability and the performance of the valid inequalities presented
in Section 7.3.1 obtained for a 5 × 5 grid network. Afterwards, we describe the network
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7 MHz 28 MHz

cost 1000 $ 6000 $
default config. (99.9 % availability) 128-QAM 256-QAM
config. for fading (100 % availability) 16-QAM 32-QAM

Table 7.2.: Considered bandwidth choices and configurations for the 5 × 5 grid network.

topologies and the configurations we used to generate realistic problem instances. For
these instances, we present on the one hand results on the achievable reliability of the
networks with the budget-constrained formulation compared to models without chance-
constraints and on the other hand detailed results on the performance improvements dis-
cussed in Section 7.3.

7.4.1. Investigations for a Grid Network

To receive an impression for the reliability that can be achieved by formulation (7.10) and
for the effectiveness of the (shifted) cutset inequalities, we perform simplified preliminary
computational experiments on a 5 × 5 grid network based on [120]. The network com-
prises 25 nodes, 80 links, and 50 commodities. The considered bandwidth choices and
configurations are displayed in Table 7.2. We assume that the availability of the lowest
configuration is 100 %, thus, ρp1

uv = 1, and that the availability of the highest configuration
is 99.9 %, hence, ρ B ρ

p2
uv = 0.999∀uv ∈ A, p = 1, . . . , Puv. Including this assumption in

constraint (7.10d) and applying some reformulations leads to

∑
uv∈A

Puv∑
p=1

yp2
uv ≤

⌊
log(1 − ε)

log(ρ)

⌋
C N.

Therefore, N is the maximum number of links which use the highest radio configuration.
The higher the infeasibility tolerance ε, the larger is N and the lower the reliability of the
network. In this computational study, we consider N ∈ {0, 10, . . . , 80}.

Price of reliability The subsequent results are obtained on a Linux machine with a
3.20 GHz Intel Xeon W5580 CPU and 64 GB RAM, using IBM ILOG cplex 12.1 [98] as
underlying solver. A time limit of two hours of computation is set and all other solver
settings are preserved at their defaults. In Figure 7.2, we display the cost of the network
as a function of N. For N = 0, the available capacity is not sufficient to route the total
flow. Hence, the problem is infeasible. Moreover, the cost for N = 10 are 38.6 % higher
than for N = 80. However, the results for N = 60, 70, 80 are the same as the reliability
requirement is not restrictive due to the fact that the number of links which have to run
at the highest configuration to satisfy the total traffic is less than or equal to 60. The
reliability of the network can be improved without large effects on the cost until N =

20, 30. Summing up, the results indicate the trade-off between reliability and cost. For
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Figure 7.2.: Bandwidth cost as a function of N, the maximum number of links with highest
configuration.

further details, we refer to our work [47].

Performance of (shifted) cutset inequalities The (shifted) cutset inequalities pre-
sented in Section 7.3.1 are separated only at the root node as a separation at every B&B
node is too time consuming. We evaluate all three possible settings, the separation of i)
only cutset inequalities, ii) only shifted cutset inequalities, iii) both types of inequalities.
Additionally, we investigate the performance of these settings if the internal cplex cuts
are also switched on. The results in Figure 7.3 were obtained on a Linux machine with
a 2.67 GHz Intel Xeon X5650 CPU and 12 GB RAM, using IBM ILOG cplex 12.2 [98] as
underlying solver.

For every setting and value of N, we compute the percentage gap closed at the root node
defined as

DBcut − DBroot

PBbest − DBroot
,

where DBroot denotes the dual bound at the root node obtained by cplex, DBcut denotes
the dual bound for i), ii), or iii), and PBbest the best known primal bound computed after
12 h. The results are displayed in Figure 7.3 and the actual minimal, maximal, and average
values over all N are listed in Table 7.3. Either with or without internal cplex cuts switched
on, Figure 7.3 shows that the gap reduction decreases in general for increasing N. In most
cases, the combination of both types of inequalities performs best where this statement is
also supported by the numbers listed in Table 7.3. Additionally, the enabling of the internal
cplex cuts usually supports the performance improvements gained by the separation of the
(shifted) cutset inequalities. However, it is possible that the performance degrades when
internal cplex cuts are active. Reasons for such a behaviour are given in the discussion in
the final remarks on pages 233 to 235. Hence, the performance of the cuts can be better
than of the shifted cuts (N = 10, 20, 40) and also the performance of the shifted cuts can
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Figure 7.3.: Bandwidth cost as a function of the infeasibility tolerance.

without internal cplex cuts with internal cplex cuts

i) ii) iii) cplex cuts i) ii) iii)

min. (%) 1.01 0.0 1.0 6.1 7.8 14.0 16.4
max. (%) 23.5 62.9 68.9 21.8 62.9 80.2 80.2
average (%) 10.4 15.9 21.5 10.5 24.1 32.4 41.5

Table 7.3.: Minimal, maximal and average gap reduction values in % for the three settings
either with or without internal cplex cuts enabled.

better than any other setting (N = 60). For further details on the computational results of
this paragraph, we refer to [46].

7.4.2. Realistic Problem Instances

The grid network discussed in the previous section simplifies model (7.10) significantly.
Hence, we investigate more realistic test instances in the remainder. Additionally, we focus
on the budget-constrained formulation (7.11) henceforth as formulation (7.10) is infeasible
for many problems which have insufficient reliability. Furthermore, we benefit from the
primal heuristic presented in Section 7.3.3.

Given the absence of benchmark instances available in the literature for the studied
problem, we generate test instances as follows. Network topologies and traffic demands
are based on instances from a data library for fixed telecommunication network design, the
Survivable Network Design Library (SNDlib) [149]. The studied network topologies are
shown in Figure 7.4.

Since microwave links present limited capacity compared to optical fibre (as given in
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(a) Polska (b) Atlanta (c) France

Figure 7.4.: SNDlib network topologies [149].

Network |V| |A| |K| γ

Polska 12 36 66 0.2252
Atlanta 15 44 210 0.0170
France 25 90 300 0.0372

Table 7.4.: Summary of SNDlib problem instances.

the SNDlib [149]), we rescale the volumes of traffic demands by a factor γ to fit our
application scenario. The scaling factor γ is obtained from the optimisation problem (7.18)
and represents the maximum value for which there exists a feasible flow over the network
assuming a network reliability of 99 % (ε = 0.01).

max γ (7.18a)

s.t.
∑

u∈δ−(v)

xk
uv −

∑
u∈δ+(v)

xk
vu =


−dkγ, if v = sk,
dkγ, if v = tk,
0, otherwise

∀ v ∈ V, ∀ k ∈ K (7.18b)

(7.10c), (7.10d), (7.10e), (7.10f)
γ ≥ 0 (7.18c)

Note, the proportionality of the original demands is preserved. The magnitudes of the
studied SNDlib instances together with the corresponding scaling parameter are stated in
Table 7.4.

We consider three bandwidth choices, 7 MHz, 14 MHz and 28 MHz based on a stan-
dard defined by the European Telecommunications Standards Institute [68], and six radio
configurations for each link. The corresponding capacities Bpq

uv which are the product of
bandwidth and bandwidth efficiency are presented in Table 7.5, where the values are based
on confidential specifications of the WSL500 product by 3Roam [2]. The estimation of
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radio e Bpq
uv for 7 MHz Bpq

uv for 14 MHz Bpq
uv for 28 MHz

configuration (bps/Hz) (Mbps) (Mbps) (Mbps)

16-QAM coded 3.6 25.2 50.4 100.8
16-QAM uncoded 4.0 28.0 56.0 112.0
64-QAM coded 5.4 37.8 75.6 151.2
64-QAM uncoded 6.0 42.0 84.0 168.0
256-QAM coded 7.2 50.4 100.8 201.6
256-QAM uncoded 8.0 56.0 112.0 224.0

Table 7.5.: Radio configuration, bandwidth efficiency e, and capacity Bpq
uv for the consid-

ered bandwidth choices.

the probabilities ρpq
uv is obtained from the Vigants-Barnett fading model [13, 175]. More

details can be found in [144] and [51].
Since spectrum pricing is usually a linear function of the amount of spectrum with which

a license is associated, we set a cost of 1 $ per 1 MHz of bandwidth and use bandwidth
utilisation and cost interchangeably.

For each network, we detect a range of reasonable values for the budget B. We set the
budget interval for Polska to [644, 840], where 644 is the lowest possible value. For a
budget B < 644, the problem is infeasible since we cannot install sufficient capacity on
the arcs to serve the total demand. Beyond the budget of 840, the behaviour changes only
very marginally; see Section 7.4.3. For Atlanta and France, similar arguments lead to the
intervals [749, 1057] and [1414, 2002], respectively. Due to the possible bandwidth values
of 7, 14 or 28 MHz, we consider budgets by a step of 7.

7.4.3. Reliability Analysis

In this subsection, based on the reliability of the network topologies, we compare the
budget-constrained formulation (7.11) to two formulations without outage probability con-
straints of the form (7.3). Computations in this and the subsequent section are carried
out on a Linux machine with a 3.40 GHz Intel i7-3770 CPU and 32 GB RAM, using
IBM ILOG cplex 12.4 [98] as underlying solver. A time limit of two hours of compu-
tation is set for solving each instance, and all other solver settings are preserved at their
defaults.

First, we consider (7.11) without AMC. Thus, only one radio configuration is available.
For all three instances and bandwidth choices, the fixed radio configuration must be the
highest one, 256-QAM uncoded as otherwise, the problems become infeasible. Thus, the
model just selects the bandwidth for all links such that the total demand is fulfilled. We
refer to this model as the restricted budget-constrained formulation. Note that by selecting
a single radio configuration, the solution value is a lower bound on the network reliability
of (7.11).

In a post-processing step, for every link uv and the bandwidth p chosen in the solution,
we compute the lowest configuration q for which the capacity is sufficient. The actual
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(7.11) restricted (7.11) post-processing

network min max min max min max

Polska 98.9 99.4 98.8 98.9 98.8 99.0
Atlanta 98.5 99.1 97.7 97.9 98.3 98.5
France 98.8∗ 99.3 97.8 97.9 97.8 98.1

Table 7.6.: The highest and lowest achieved network reliability values in % for the
three network topologies and the budget-constrained formulation, the restricted
budget-constrained formulation, and the post-processing. The value marked
by ∗ is the lowest value that is computed.

network reliability is computed as the product of the corresponding link probabilities ρpq
uv .

The post-processing adds AMC to the restricted budget-constrained formulation.
We display the reliabilities realised by the budget-constrained formulation (7.11), by

the restricted budget-constrained formulation (lower bound), and by the post-processing
for Polska with a budget interval [644, 840], Atlanta (B ∈ [749, 1057]), and France (B ∈
[1414, 2002]) in Figure 7.5. For the latter two networks, we additionally display the dual
bounds since some/all problems are not solved to optimality within the time limit.

The results for Polska and Atlanta are comparable whereas the use of AMC in the post-
processing seems to be less restrictive. For networks of the size of France, the budget-
constrained formulation (7.11) is harder to solve, in particular, for more restrictive budgets.
The first feasible solution we find within the time limit is 98.78 % for a budget of 1470.
The next solution is then computed for a budgetB = 1498, which is why the corresponding
curve starts at 1498 where the others start at 1414. Furthermore, many problems are not
solved to optimality leading to fluctuating curves in Figure 7.5(c). In general, for higher
budgets the solutions are very close to optimal.

We summarise the results in Table 7.6 by giving the minimum and maximum reliability
achieved by the three different approaches for the three network topologies. The minimum
value for France and formulation (7.11) is the lowest one we can compute but there might
exist a lower value for a problem with a lower budget where no solution is found within
the time limit.

Altogether, the presented results illustrate the significant advantage of the chance-con-
strained model over the restricted (post-processed) budget-constrained formulation: we
gain higher network reliabilities with reasonable computational effort for small to medium-
sized networks.

Since the achievable reliabilities when restricting (7.11) to one possible configuration
might be too low in practice, engineers prefer a different strategy to configure the net-
work. Instead of fixing a single radio configuration for the whole network, we select a
configuration for every arc-bandwidth combination. A reliability of at least, e.g., 99 %
can be achieved by requiring an uniform minimum probability for all links: 0.99

1
|A| . Since

the lowest configuration has typically a very high cumulative probability, this minimum
probability is achievable for every arc and bandwidth choice. We select the highest con-
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Figure 7.5.: Reliabilities for the three network topologies considering only one configura-
tion with/without post-processing or (7.11) for different budgets.
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figuration satisfying the minimum probability. This approach basically boils down to the
model with individual chance constraints for all arcs; see Section 7.1. However, a dis-
advantage is that if we solve the restricted model (7.11), the problem becomes infeasible
for any budget value. Thus, not all traffic can be routed in such a configuration. Similar
to the choice of γ, all traffic should be scaled down. If we reduce the traffic requirements
from 100 % by steps of 10 %, the first percentage resulting in feasible instances for all bud-
gets is 70 % for Polska, and 60 % for Atlanta and France. The highest reliability for Polska
with a network load of 70 % is 99.64 %, for Atlanta with 60 % network load it is 99.70 %
and for France 99.69 %. Consequently, we exceed the required reliability of 99 % clearly
but for the price of routing less traffic (only 70 % or 60 %, respectively). In contrast, the
clear benefit of formulation (7.11) is that 100 % of the traffic can be routed with a higher
reliability than the required 99 %.

7.4.4. Analysis of Valid Inequalities and Primal Heuristic

Most results in the previous subsection can only be achieved by applying the valid inequal-
ities and primal heuristic presented in Section 7.3. We have demonstrated the effectiveness
of the cutset inequalities at the root node for a 5 × 5 grid network in Section 7.4.1. Now,
we study their performance, the performance of the primal heuristic, and the combination
of both for the three realistic network topologies. Therefore, we consider four different
settings: standard cplex, cplex and the primal heuristic, cplex and the valid inequalities,
and cplex, the primal heuristic and the valid inequalities. As before, cutset inequalities are
separated only at the root node of the B&B tree via the auxiliary ILPs presented in Sec-
tion 7.3.1. Additionally, the primal heuristic is applied with a frequency of 20. This means
that the heuristic is called in every 20th node of the B&B tree, where the node selection
strategy is “best-bound” choosing the next node based on the best objective function.

For Polska and Atlanta, we investigate the time reduction for the different settings per
budget as well as the absolute CPU times. We compute the time reduction as

cplex time − advanced time
cplex time

,

where “advanced time” denotes the time consumed by one of the settings “heuristic”,
“cuts”, or “heuristic+cuts”. As an example, a value of 20 % means that we can reduce the
solving time by 20 % due to the application of the cuts/the primal heuristic compared to
the time needed when using standard cplex, while a value of −20 % says that we are 20 %
slower than cplex. Note, if standard cplex exceeds the time limit, the computed time
reduction is just a lower bound. Hence, the cuts and the primal heuristic can give a time
reduction of at least the computed values if standard cplex reaches the time limit.

In Figures 7.6(a) and 7.7(a), we display the time reduction achieved for Polska and
Atlanta. For better readability we set the lowest y-axis value to −100 %, where the highest
time reduction possible is naturally +100 %. Due to this restriction, we cannot display the
worst cases which exceed the value −100 %. Hence, we additionally display the absolute
solving times for all four settings in Figures 7.6(b) and 7.7(b) demonstrating that a slow
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Figure 7.6.: Reduction of computation times and absolute times for Polska considering
different settings and budget values.
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Figure 7.7.: Reduction of computation times and absolute times for Atlanta considering
different settings and budget values.

107



7. Application to Fixed Broadband Wireless Networks

down of 100 % or higher does not correspond to exorbitant absolute solving times.
The problems for lower budget values are naturally harder to solve. The problems for

Polska with a budget B between 644 and 700 excluding 651 (B ∈ [749, 833] for Atlanta)
are not solved within the time limit by standard cplex. For Polska, all of these problems
are solved applying either the primal heuristic or the cutset inequalities while eleven out of
thirteen problems are solved for Atlanta. The highest time reduction achieved for Polska
(Atlanta) is 96.3 % (94.5 %) by means of cutset inequalities and the primal heuristic. For
Polska and most budget values B ≥ 707 standard cplex consumes significantly less time.
This is why the inequalities and the primal heuristic cannot reduce the solving time for
these problems in most cases. For a more detailed analysis in the case when all settings
exceeded the time limit for Atlanta, we refer to our work [51].

Finally, we evaluate the results for France where we fix the budget B to the inter-
val [1414, 2002]. As no problem can be solved to optimality for neither setting, we con-
sider the optimality gaps computed as |PB−DB|

PB reached after two hours instead of the times.
Hence, we compute the gap reduction as

cplex gap − advanced gap
cplex gap

,

where “advanced gap” denotes the optimality gap reached by one of the settings “heuris-
tic”, “cuts”, or “heuristic+cuts”. Compared to the gap reduction defined in Section 7.4.1,
we use the primal bound computed by the current setting (included in the gap) instead of
the best known bound. If no primal bound is found, we set the gap to 100 %. Hence, the
presented values are again the lower bounds.

We display the gap reduction for France in Figures 7.8(a) and 7.8(b) for budget val-
ues in [1470, 1736] and [1743, 2002], respectively. Since not a single solution is found
for B ∈ [1414, 1463], we start with B = 1470 in Figure 7.8(a). For better readability,
we once more scale from −100 % to 100 % although the gap can be increased by more
than 100 %. For the first interval, negative gap reductions occur only for the setting “cuts”
where no optimality gap can be computed within the time limit. For the second budget
interval, we also give the absolute values of the optimality gaps in Figure 7.8(c). This
figure demonstrates that an increase in the gap only occurs if the absolute values are quite
low (≤ 4 %).

For almost all problems, the optimality gap is reduced significantly by the combina-
tion of both improvement techniques. Just for the easier problems with a budget greater
than 1848 standard cplex computes already quite low gaps, which we cannot decrease.
Since the cutset inequalities just improve the dual bound, a primal bound is usually found
later. This is the reason why the gaps can be higher when only the valid inequalities are
separated.

The gap reduction by the heuristic (with or without cutting planes) is dramatic, showing
the importance of this relative simple idea. To understand its effectiveness, we revisit the
primal heuristic once again briefly but from different perspectives. Table 7.7 displays all
considered aspects and the used budget intervals for the three network topologies. Based
on the intervals, the number of test instances differs per network. For Polska, the first
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Figure 7.8.: Reduction of optimality gaps and absolute gaps for France considering differ-
ent settings and budget values in [1743, 2002].
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Polska Atlanta France
[644, 840] [749, 1057] [1414, 2002]

# instances 29 45 85
# inst. first sol. by heur. (in %) 23 (79.3 %) 42 (93.3 %) 75 (88.2 %)
# inst. no sol. found without heur. − 11 26
# inst. no sol. found with heur. (in %) − 2 (18.2 %) 10 (38.5 %)
absolute increase in primal bound 0.2 % 0.6 % 2.8 %
% of time used to find first sol. with heur. 45.0 % 13.6 % 23.7 %

Table 7.7.: Performance of primal heuristic with respect to different aspects.

solution found is computed by the primal heuristic in 23 out of 29 cases, which corresponds
to 79.3 % of all instances. For Atlanta and France, this is the case for 42 out of 45 (93.3 %)
instances and 75 out of 85 (88.2 %), respectively. Note, for the remaining instances of
Atlanta and France, no primal solution is found at all within the time limit. The number
of not solved instances is reduced from 11 to 2 for Atlanta and from 26 to 10 for France
by the application of the presented primal heuristic. Hence, even for the more complex
network topologies, the proposed heuristic is very effective in finding a feasible solution.

Moreover, the absolute values of the first primal solution found by the heuristic (given
as a percentage) are usually larger than the values found without the heuristic if comparing
only those cases where a primal solution is computed with both settings. On average, the
reliability is increased by 0.2 % for Polska, 0.6 % for Atlanta and 2.8 % for France. Thus,
the larger the network topology, the more the first primal bound found is improved by the
primal heuristic.

Finally, regarding the computation times until the first solution is found, the primal
heuristic uses on average only 45.0 %, 13.6 % and 23.7 % of the time spent without the
heuristic for Polska, Atlanta and France, respectively. These speed-ups are implicitly also
included in Figures 7.6 and 7.7 but not as considerably as in the numbers of Table 7.7 since
the speed-up until the first solution is found is not necessarily conveyed to the end of the
solution process.

In summary, the results of this section demonstrate the gains of both the valid inequali-
ties and the primal heuristic, and especially of their combination.

7.5. Conclusion

In this chapter, we have applied the chance-constrained programming approach presented
in Chapter 6 to tackle the problem of assigning bandwidths for reliable fixed point-to-
point wireless networks under uncertain radio configurations. We have stated separated
as well as joint chance constraints modelling the capacity requirements under uncertainty.
Furthermore, we have introduced ILP formulations for the capacity planning problem in
broadband wireless networks including a budget-constrained model. To improve the per-
formance, we have introduced valid inequalities, their exact separation by ILPs, and a
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primal heuristic. The computational studies have revealed a reduction of the solving times
or optimality gaps for larger instances by means of the valid inequalities and the primal
heuristic. Furthermore, we have investigated the reliability of various network topologies
for different budget values and have compared the budget-constrained model to two alter-
native formulations which do not incorporate the joint outage probability constraint. The
results show a significant gain in reliability by the joint probability model, though solving
times increase.
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8. General Concept

In this part and chapter, we study one special concept of robust optimisation, the so-called
Γ-robustness. This approach limits the number of uncertain coefficients by a robustness
parameter Γ, i. e., it uses a budgeted or cardinality constrained uncertainty set. It com-
prises the advantages of the linear approach by Soyster [167] but provides the possibility
to control the level of conservatism. Γ-robustness has attracted a great deal of attention
during the last decade due to its wide application spectrum and computational tractability.

In the first section, we give an introduction to this concept stating the Γ-robust uncer-
tainty set, the robust counterpart, and commonly used measurements to evaluate a Γ-robust
solution. In the subsequent section, we summarise the known results on probability bounds
for the violation of a constraint subject to a Γ-robust uncertainty set. As an example, we
briefly summarise known results on the Γ-robust knapsack problem in Section 8.5. We
discuss a generalisation of Γ-robustness in detail in the subsequent part IV.

8.1. The Basic Principle

The most popular robust optimisation approach in the last years is Γ-robustness introduced
by Bertsimas and Sim [18, 19] in 2003. Its popularity mainly arises from two results [19]:
i) the robust counterpart of a LP with a Γ-robust uncertainty set remains computationally
tractable and a LP (see Section 8.2), and ii) there exist bounds on the probability that a
Γ-robust constraint is violated (see Section 8.4). Hence, Γ-robustness has been applied to a
variety of optimisation and real-world problems such as resource allocation problems, lo-
gistics, telecommunication/network problems, railway planning and revenue management
to name just some. In the following, we state the Γ-robustness concept formally.

Let Γ ∈ [0, n] denote the robustness parameter which adjusts the robustness against the
level of conservatism of the solution with n ∈ N denoting the number of coefficients which
are subject to uncertainty. The following assumptions on the vector u ∈ Rn of uncertain
data are necessary to define the concept of Γ-robustness.

• Each uncertain entry u j of u can be modelled as an independent and bounded random
variable.

• The distribution of each random variable need not to be known but symmetrical with
nominal value ū j. This together with the boundedness means for every realisation
of u holds u j ∈ [ū j − û j, ū j + û j], j ∈ {1, . . . , n}, where û j ≥ 0 denotes the largest
possible deviation.
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• For every realisation of the random vector u, up to bΓc many entries u j can deviate
simultaneously either to their minimum value ū j − û j or their peak value ū j + û j.
Additionally, one entry u j is allowed to change by at most (Γ − bΓc)û j.

The last assumption is quite intuitive in the following sense. It is most unlikely that all of
the n entries u j change at the same time. This assumption guarantees the feasibility of the
obtained solution if less than Γ many uncertain entries deviate. In case that more than Γ

maximal deviations occur, we present probabilistic guarantees that the robust solution is
feasible with high probability in Section 8.4.

Note, in this thesis without loss of generality we restrict to Γ ∈ N for simplicity even
though the Γ-robustness approach allows fractional values for Γ. Additionally, we assume
that every entry u j of the vector u is affected by uncertainty, thus û j > 0 for all j ∈
{1, . . . , n}.

In the following, we give a formal definition of the Γ-robust uncertainty set.

Definition 8.1. For a vector u ∈ Rn of uncertain data with n ∈ N, let ū, û ∈ Rn with û ≥ 0
denote the nominal and the deviation values, respectively, so that for every realisation
holds u j ∈ [ū j − û j, ū j + û j]. The Γ-robust uncertainty set UΓ with Γ ∈ {0, 1, . . . , n} is
defined as

UΓ B

u ∈ Rn

∣∣∣∣∣∣∣∃ δ ∈ [0, 1]n : ū j − δ jû j ≤ u j ≤ ū j + δ jû j ∀ j ∈ {1, . . . , n},
n∑

j=1

δ j ≤ Γ

 .
(8.1)

This definition allows more than Γ many simultaneous deviations as long as these de-
viations are not all maximal. Due to the convexity of UΓ, it is sufficient to consider only

realisations with δ j ∈ {0, 1}, j ∈ {1, . . . , n} and
n∑

j=1
δ j = Γ (Γ ∈ [0, n]) since these points are

the extreme points of the polytope. Note, for Γ = n the uncertainty setUΓ is equivalent to
the uncertainty set defined by Soyster [167],which is the most conservative. An example
of uncertainty sets for different values of Γ is displayed in Figure 8.1.

8.2. The Γ-robust Counterpart

In this section, we investigate the Γ-robust counterpart of a standard LP given in (1.1).
Let ai denote the i-th row of matrix A. The row by row representation of a standard LP is
given by

max ctx
s.t. aix ≤ bi ∀ i ∈ {1, . . . ,m} (8.2)

x ∈ Rn
≥0.
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Figure 8.1.: Γ-robust uncertainty sets for Γ = 0, 1, 2, nominal vector ū = (3, 4) and devia-
tion vector û = (2, 3), where the markers denote the extreme points.

The corresponding Γ-robust counterpart which consists of an exponential number of con-
straints is given as

max ctx

s.t. aix ≤ bi ∀ i ∈ {1, . . . ,m}, ai ∈ U
Γ
i (8.3)

x ∈ Rn
≥0,

where

UΓ
i =

ai ∈ R
n

∣∣∣∣∣∣∣ āi j − δ jâi j ≤ ai j ≤ āi j + δ jâi j,

n∑
j=1

δ j ≤ Γ, δ j ∈ {0, 1} ∀ j ∈ {1, . . . , n}

 .
In [72], the authors present a dynamic cut generation scheme to solve this exponential
sized formulation. In this approach, not all constraints of (8.3) are included in the formu-
lation at the beginning, but violated constraints are separated on the fly as robustness cuts.
Computational results show that this approach is promising for LPs but the computational
tractability for ILPs cannot be ensured. These difficulties for ILPs are also demonstrated
by Koster et al. [117].

A further approach which avoids the exponential nature of formulation (8.3), is to in-
clude only the most restrictive constraints as follows.

max ctx

s.t.
n∑

j=1

āi jx j + max
S⊆{1,...,n},|S |≤Γ

∑
j∈S

âi jx j ≤ bi ∀ i ∈ {1, . . . ,m} (8.4)

x ∈ Rn
≥0.
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In this model, we consider only the worst, which are the highest deviation values, as they
increase the left hand side most and hence, lead to the most restrictive constraints. Thus,
negative deviations are discarded. All other constraints in (8.3) are dominated by those
stated in (8.4). However, this model is non-linear. One possibility to linearise formu-
lation (8.4) is to replace each constraint for i ∈ {1, . . . ,m} by the following potentially
exponential many constraints.

n∑
j=1

āi jx j +
∑
j∈S

âi jx j ≤ bi ∀ S ⊆ {1, . . . , n} with |S | ≤ Γ (8.5)

An alternative linear reformulation of (8.4) without exponential many constraints can be
derived as follows. We consider the max-term for fixed variables x j and row i separately.
I. e.,

max
S⊆{1,...,n},|S |≤Γ

∑
j∈S

âi jx j = max
n∑

j=1

âi jx jzi j (8.6a)

s.t.
n∑

j=1

zi j ≤ Γ (8.6b)

zi j ∈ {0, 1} ∀ j ∈ {1, . . . , n}, (8.6c)

where zi j = 1 if and only if the j-th entry ai j in row i takes its peak value āi j + âi j,
which means that its deviation value âi j is included in the max-term. Constraint (8.6b)
guarantees that at most Γ many entries can deviate simultaneously. The coefficient matrix
formed by this constraint and the integrality constraints (8.6c) is totally unimodular. Thus,
the polytope of the feasible solutions of the LP relaxation has only integer vertices and we
can relax constraints (8.6c) obtaining a LP. By strong duality (Theorem 1.3), the objectives
of the LP and its dual coincide, where the dual problem is defined as follows.

min Γπi +

n∑
j=1

ρi j (8.7a)

s.t. πi + ρi j ≥ âi jx j ∀ j ∈ {1, . . . , n} (8.7b)
πi, ρi j ≥ 0 ∀ j ∈ {1, . . . , n} (8.7c)

Variable πi is the dual variable to constraint (8.6b) while variables ρi j are the duals to the
upper bound of the relaxed version of constraints (8.6c), i. e., zi j ≤ 1. Now, we replace the
max-term in (8.4) by (8.7) and relax the minimum. This last relaxation is possible as every
feasible solution for the relaxed constraint still fulfils it when including only the lowest
values. In summary, the compact Γ-robust counterpart of (8.2) reads
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8.2. The Γ-robust Counterpart

max ctx (8.8a)

s.t.
n∑

j=1

āi jx j + Γπi +

n∑
j=1

ρi j ≤ bi ∀ i ∈ {1, . . . ,m} (8.8b)

πi + ρi j ≥ âi jx j ∀ i ∈ {1, . . . ,m}, j ∈ {1, . . . , n} (8.8c)
x j, πi, ρi j ≥ 0 ∀ i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}. (8.8d)

This compact formulation has m(n+1) additional variables and n ·m additional constraints.
Thus, its size is polynomial in the size of the non-robust LP (8.2). This observation is
the crucial characteristic of the Γ-robustness concept introduced in [18, 19]. Applying
Γ-robustness to an (I)LP does not increase its theoretical complexity. However, it can
impair the computational tractability of the problem. In case of ILPs, Fischetti and Monaci
[72] show that the compact formulation typically performs better than their dynamic cut
generation scheme for formulation (8.3). Further computational studies in [116, 117] also
show that the compact formulation outperforms other approaches. The advantage of the
cutting plane approach to solve the non-compact formulation (8.3) is that it can handle
also non-compact nominal (non-robust) formulations occurring, e. g., in routing problems,
and it is also applicable to other uncertainty sets.

Uncertain Objective Now, we briefly present a result for a special case of a 0-1-optimi-
sation problem when the objective coefficients c are subject to uncertainty. We extend
this result for multi-band robustness; see Part IV. The non-linear (and non-exponential)
Γ-robust counterpart of such a problem reads

z∗ B min
n∑

j=1

c̄ jx j + max
S⊆{1,...,n},|S |≤Γ

∑
j∈S

ĉ jx j (8.9a)

s.t. x ∈ X ⊆ {0, 1}n. (8.9b)

Theorem 8.2. (Bertsimas and Sim [18]) Problem (8.9) can be solved by solving n + 1
nominal (non-robust) problems of the form

Gl = Γĉl + min

 n∑
j=1

c̄ jx j +

l∑
j=1

(ĉ j − ĉl)x j

 (8.10)

s.t. x ∈ X, (8.11)

i. e.,
z∗ = min

l=1,...,n+1
Gl. (8.12)

We assume ĉn+1 = 0. The main ideas of the proof are as follows. First, formulation (8.9)
is linearised via the dualisation approach described before introducing dual variables π
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and ρ j. The equivalent to constraints (8.8c) for this problem then reads

π + ρ j ≥ ĉ jx j ∀ j ∈ {1, . . . , n}.

Due to these constraints, an optimal solution of the compact Γ-robust counterpart satisfies

ρ j = max
{
ĉ jx j − π, 0

}
= max

{
ĉ j − π, 0

}
x j,

where the last equality holds since x j ∈ {0, 1}. This property is exploited and R≥0 is
decomposed into intervals [0, ĉn], [ĉn, ĉn−1], . . . , [ĉ2, ĉ1], [ĉ1,∞) to find the optimal value
of π. Note, we assume that the entries j are sorted non-increasingly regarding ĉ j for the
decomposition.

8.3. Evaluation of Robustness

A commonly used measurement to evaluate a Γ-robust formulation is the so-called price
of robustness which gives the trade-off between the probability of constraint violation and
the effect to the objective function of the nominal problem [19]. We use a slightly modified
definition based on the percentage change of the objective:

PoR B
|z − z(Γ)|
|z|

, (8.13)

with z being the optimal objective value of the nominal problem and z(Γ) denotes the
optimal objective value for the Γ-robust model. Hence, |z − z(Γ)| gives the deterioration
of the optimal value required to guarantee robustness. We include the absolute value for a
definition of PoR regardless of the objective sense.

A different approach to measure the gain of a Γ-robust solution is the protection of the
robust optimal solution; see [34]. The protection level can be computed as follows.

ProL B
|{σ ∈ Σ |Γ-robust solution is feasible in σ}|

|Σ|
, (8.14)

where Σ denotes the set of all possible or considered scenarios, where a scenario repre-
sents one realisation of the uncertain coefficients. Hence, ProL gives the percentage of
protected scenarios for which the Γ-robust solution is feasible. Koster et al. [116] apply
a less conservative variant of the (inverse of the) protection level to measure the gain of
Γ-robustness, the so-called realised robustness. It gives the average percentage of violated
constraints for all considered scenarios.

While the price of robustness is based only on the objective function value, the pro-
tection level considers the actual realisations of the uncertain data. The advantage of the
Γ-robust approach over the nominal problem can hence be depicted better by the value
ProL.
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8.4. Probability Bounds for Constraint Violation

The second major achievement of the works [18, 19] is the investigation of the probabilities
of constraint violation. In the following, we briefly cite the main results.

Theorem 8.3. (Bertsimas and Sim [19]) Let x̃ be an optimal solution of the Γ-robust coun-
terpart (8.8). The probability that the i-th constraint is violated satisfies

P{ai x̃ > bi} ≤ exp
(
−

Γ2

2n

)
. (8.15)

The probability bound (8.15) is independent of the solution x̃ but can be quite bad if the
fraction Γ2/(2n) is small. A better bound is given in the following theorem.

Theorem 8.4. (Bertsimas and Sim [18, 19]) Let x̃ be an optimal solution of the Γ-robust
counterpart (8.8). Then the following holds.

a)

P{ai x̃ > bi} ≤ B(n,Γ) =
1
2n

(1 − µ)
n∑

l=bνc

(
n
l

)
+ µ

n∑
l=bνc+1

(
n
l

) (8.16)

=
1
2n

(1 − µ)
(

n
bνc

)
+

n∑
l=bνc+1

(
n
l

) , (8.17)

where ν = (Γ + n)/2 and µ = ν − bνc.

b) Bound (8.16) is tight.

c) The bound (8.16) satisfies

B(n,Γ) ≤ (1 − µ)C(n, bνc) +

n∑
l=bνc+1

C(n, l), (8.18)

where

C(n, l) =


1
2n , if l = 0 or l = n

1
√

2π

√
n

(n−l)l · exp
(
n log

(
n

2(n−l)

)
+ l log

(
n−l

l

))
, otherwise.

d) For Γ = θ
√

n,
lim
n→∞

B(n,Γ) = 1 − Φ(θ), (8.19)

where

Φ(θ) =
1
√

(2π)

θ∫
−∞

exp
(
−

y2

2

)
dy

is the cumulative distribution function of a standard normal.
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noitems bound (8.15) bounds (8.16),(8.18) approximation (8.20)

5 5.0 5.0 5.0
10 9.6 8.2 8.4

100 30.3 24.3 24.3
200 42.9 33.9 33.9

2000 135.7 105.0 105.0

Table 8.1.: (Bertsimas and Sim [19]) Choice of Γ as a function of n so that the probability
of constraint violation is less than 1 %.

The best possible bound (8.16) is computational difficult for large n. This is the reason
why Bertsimas and Sim also derive bound (8.18) which is simple to compute and also “very
tight” [19]. Moreover, they use the De Moivre-Laplace approximation to the binomial
distribution to derive the following approximation of bound (8.19).

B(n,Γ) ≈ 1 − Φ

(
Γ − 1
√

n

)
(8.20)

For a comparison of these bounds, Table 8.1 states the choices of Γ for a selection of
values of n such that the probability of a constraint violation is below 1 %. Obviously,
using bounds (8.16) and (8.18) gives identical values for Γ. As bound (8.15) is usually
worse, it also gives higher values for Γ. Additionally, (8.20) approximates bound (8.16)
appropriately. In total, relatively small values for Γ are sufficient to guarantee a constraint
satisfaction of 99 %.

8.5. The Γ-Robust Knapsack Problem

In this section, we extend the classical 0-1 KP introduced in Section 1.3 to the Γ-robust KP
(Γ-RKP) using the same notation. We assume that the weights w are subject to uncertainty.
Diverse aspects of this problem have been investigated by a variety of authors. We name
just some basic works relevant for this thesis here. Bertsimas and Sim [18, 19] study the
Γ-RKP as an example in their experimental analysis of the price of robustness and the
computationally tractability of their newly introduced Γ-robustness approach. The Γ-RKP
polyhedron is studied by Klopfenstein and Nace [111] including (extended) Γ-robust cover
inequalities. These results are summarised and extended by a stronger class of extended
Γ-robust cover inequalities by Kutschka [118]. Furthermore, Monaci et al. [141] present
an exact solution algorithm using a dynamic program for the Γ-RKP which is based on the
DP presented in Section 1.3.1 and has a running time of O(ΓnB).

In the following, we summarise the known results which will be used and extended in
the remainder of this part.

The Γ-RKP asks to select a subset of items i ∈ N having an uncertain (positive) weight wi

with realisation in [w̄i − ŵi, w̄i + ŵi] and a (positive) profit pi such that a given capacity B
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8.5. The Γ-Robust Knapsack Problem

is not exceeded for any realisation of the weights and the total profit is maximized.

Definition 8.5. (Γ-robust KP) The Γ-robust (0-1) KP can be formalised as

max
∑
i∈N

pixi (8.21a)

s.t.
∑
i∈N

w̄ixi + max
S⊆N,|S |≤Γ

∑
i∈S

ŵixi ≤ B (8.21b)

xi ∈ {0, 1} ∀ i ∈ N (8.21c)

Introducing dual variables π and ρi to constraints (8.21b) and (8.21c), respectively, and
following the dualisation technique described in Section 8.2 we obtain the following com-
pact robust counterpart of the Γ-RKP (8.21).

max
∑
i∈N

pixi (8.22a)

s.t.
∑
i∈N

w̄ixi + Γπ +
∑
i∈N

ρi ≤ B (8.22b)

π + ρi ≥ ŵixi ∀ i ∈ N (8.22c)
π, ρi ≥ 0 ∀ i ∈ N (8.22d)
xi ∈ {0, 1} ∀ i ∈ N. (8.22e)

The Γ-robust knapsack polytope can be defined as follows; see [111].

Definition 8.6. (Γ-Robust Knapsack Polytope) The Γ-robust knapsack polytope PΓ
KP is

defined as the convex hull of the set of feasible solutions of the Γ-RKP (8.21):

PΓ
KP B conv

x ∈ {0, 1}n
∣∣∣∣∣∣∣∀ S ⊆ N with |S | ≤ Γ holds

∑
i∈N

w̄ixi +
∑
i∈S

ŵixi ≤ B

 (8.23)

= conv
{
x ∈ {0, 1}n

∣∣∣∃ π, ρ such that x, π, ρ satisfy (8.22b) − (8.22d)
}

(8.24)

The definition of the Γ-robust knapsack polytope uses the linearised version of con-
straint (8.21b) which is equal to constraints (8.22b)-(8.22d).

8.5.1. Γ-Robust Cover

The cover inequalities (1.14) introduced in Section 1.3 can be generalised to valid inequal-
ities for the Γ-robust knapsack polytope as follows; see Klopfenstein and Nace [111].

Definition 8.7. (Γ-Robust Cover) A set C̃ ⊆ N is a Γ-robust cover if∑
i∈C̃

w̄i + max
C′⊆C̃:|C′ |≤Γ

∑
i∈C′

ŵi > B.

It is minimal if for any item i ∈ C̃, C̃ \ {i} is not a robust cover.
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Just like (non-robust) cover inequalities can be strengthened to extended cover inequali-
ties (1.16) as explained in Section 1.3, Klopfenstein and Nace [111] extend Γ-robust cover
inequalities as follows.

Definition 8.8. (Extended Γ-Robust Cover) For a Γ-robust cover C̃, the corresponding
extended Γ-robust cover is defined as

E(C̃) := C̃ ∪


{

i ∈ N \ C̃

∣∣∣∣∣∣ w̄i + ŵi ≥ max
j∈C̃

(
w̄ j + ŵ j

)}
, if |C̃| ≤ Γ,{

i ∈ N \ C̃

∣∣∣∣∣∣ w̄i ≥ max
j∈C̃

w̄ j, w̄i + ŵi ≥ max
j∈C̃

(
w̄ j + ŵ j

)}
, if |C̃| > Γ.

(8.25)

If a Γ-robust cover C̃ can be partitioned into C̃ = C ∪ J with C ∩ J = ∅,

J = argmax
C′⊆C̃:|C′ |≤Γ

∑
i∈C′

ŵi,

and |C| ≥ 0, the extension E(C̃) can be strengthened; see Kutschka [118].

Definition 8.9. (Strengthened Extended Γ-Robust Cover) For a Γ-robust cover C̃ = C ∪ J,
we define the corresponding strengthened extended Γ-robust cover as

E+(C, J) := (C ∪ J) ∪
{

i ∈ N \ (C ∪ J)
∣∣∣∣∣ w̄i ≥ max

j∈C
w̄ j, w̄i + ŵi ≥ max

j∈J

(
w̄ j + ŵ j

)}
. (8.26)

Lemma 8.10. (Klopfenstein and Nace [111], Kutschka [118]) Let C̃ = C ∪ J ⊆ N be a
robust cover with extension E(C̃) and strengthened extension E+(C, J). Then the Γ-robust
cover inequality ∑

i∈C̃

xi ≤ |C̃| − 1, (8.27)

the extended Γ-robust cover inequality∑
i∈E(C̃)

xi ≤ |C̃| − 1, (8.28)

and the strengthened extended Γ-robust cover inequality∑
i∈E+(C,J)

xi ≤ |C̃| − 1 (8.29)

are valid for the Γ-robust knapsack polytope PΓ
KP.

Moreover, Klopfenstein and Nace [111] state cases for which an extended robust cover
inequality defines a facet of PΓ

KP.
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8.5.2. Separation of Γ-Robust Cover Inequalities

In this section, we briefly summarise an exact ILP based algorithm and a greedy heuristic
by Klopfenstein and Nace [111] to separate violated Γ-robust cover inequalities and an
exact ILP based algorithm by Kutschka [118] to separate violated strengthened extended
Γ-robust cover inequalities.

Let xLP be the solution of the LP relaxation of (8.22) with at least one xLP
i < {0, 1}.

Again, we assume integer weights w̄i, ŵi and B ∈ Z without loss of generality henceforth.
Define binary variables ȳi and ŷi, where ȳi = 1 if and only if i ∈ C ∪ J and ŷi = 1 if and

only if i ∈ J. The separation ILP introduced in [111] to separate a most violated Γ-robust
cover inequality (8.27) then reads

min
∑
i∈N

(1 − xLP
i )ȳi (8.30a)

s.t.
∑
i∈N

(w̄iȳi + ŵiŷi) ≥ B + 1 (8.30b)∑
i∈N

ŷi ≤ Γ (8.30c)

ŷi ≤ ȳi ∀ i ∈ N (8.30d)
ȳi, ŷi ∈ {0, 1} ∀ i ∈ N. (8.30e)

Similar to the non-robust separation problem (1.15), the objective (8.30a) minimises the
negative of the violation. This means, it maximises the violation of a potential robust
cover inequality. If the objective value is strictly less than 1, we have found a violated
Γ-robust cover inequality. Otherwise, the current LP solution xLP satisfies all Γ-robust
cover inequalities. Constraint (8.30b) ensures the cover condition while constraints (8.30c)
and (8.30d) guarantee the Γ-robustness of the cover.

For an optimal solution (ȳ∗, ŷ∗) of (8.30) with objective value < 1, the minimal Γ-robust
cover corresponding to a most violated Γ-robust cover inequality is defined as

J B {i ∈ N | ŷ∗i = 1}, C B {i ∈ N | ȳ∗i = 1} \ J.

The separation problem (8.30) reduces to a minimisation (surrogate) knapsack problem
in case of Γ = 0. Since the separation of cover inequalities is NP-hard [107], (8.30) is also
NP-hard. Klopfenstein and Nace [111] present a greedy heuristic which is an adaption of
a well-known greedy heuristic for the classical KP; see Martello and Toth [135]. The main
idea of the greedy heuristic is to first sort the items with respect to the ratio of profit to peak
weight non-decreasingly. Up to Γ many items with the smallest ratios are selected to define
the set J. As soon as the knapsack capacity is exceeded, this process is stopped. If |J| = Γ

and the capacity B is not exceeded, the remaining items are sorted non-decreasingly with
respect to the ratio of profit to nominal weight. The set C is then filled with items until
the capacity is exceeded; see Klopfenstein and Nace [111] for more details. We state a
detailed slightly improved version of this greedy heuristic in Section 9.1.1.

Kutschka [118] presents the following exact ILP based algorithm so separate violated
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strengthened extended cover inequalities (8.29). Define binary variables ȳi, ŷi and αi

where ȳi = 1 if and only if i ∈ C, ŷi = 1 if and only if i ∈ J, and αi = 1 if and only
if i ∈ E+(C, J) \ (C ∪ J). Note, the slightly different meaning of ȳi = 1 here in comparison
with ILP (8.30). The separation ILP then reads

min
∑
i∈N

(1 − xLP
i )(ȳi + ŷi) −

∑
i∈N

xLP
i αi (8.31a)

s.t.
∑
i∈N

w̄iȳi +
∑
i∈N

(w̄i + ŵi)ŷi ≥ B + 1 (8.31b)∑
i∈N

ŷi ≤ Γ (8.31c)

ȳi + ŷi + αi ≤ 1 ∀ i ∈ N (8.31d)
ȳi + α j ≤ 1 ∀ i, j ∈ N with w̄ j ≥ w̄i (8.31e)
ŷi + α j ≤ 1 ∀ i, j ∈ N with w̄ j + ŵ j ≥ w̄i + ŵi (8.31f)
ȳi, ŷi, αi ∈ {0, 1} ∀ i ∈ N. (8.31g)

Again, the objective (8.31a) minimises the negative of the violation while a violated
strengthened extended Γ-robust cover inequality is found if the objective value is strictly
less than 1. Constraint (8.31b) ensures the cover condition whereas constraint (8.31c)
guarantees that at most Γ many items are considered with their peak demand. Any item
can either be in C or J or E+(C, J) \ (C ∪ J) which is ensured by constraints (8.31d). Fi-
nally, constraints (8.31e) and (8.31e) formulate the requirements imposed on an item in
the extension.

For an optimal solution (ȳ∗, ŷ∗, α∗) of (8.31) with objective value < 1 the strengthened
extended Γ-robust cover is defined as E+(C, J) B {i ∈ N | ȳ∗i + ŷ∗i + α∗i = 1} with C B {i ∈
N | ȳ∗i = 1} and J B {i ∈ N | ŷ∗i = 1}.
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9. Application to Wireless Networks

The Γ-robust optimisation approach presented in the previous chapter has been widely
applied to a variety of problems. However, it is not as prevalently used for wireless com-
munication networks as, e. g., for fixed (line) networks; see Altin et al. [6], Bertsimas
et al. [21], Kutschka [118] to name just some publications. For wireless communication
networks, Paschalidis and Wu [152] apply Γ-robustness to a routing problem occurring in
wireless sensor networks. Such networks consist of autonomous sensors which control
different factors such as environmental conditions and transmit the collected data through
the network to a gateway. The authors of [152] apply Γ-robustness to uncertain energy
consumption for packet transmission and reception. Adasme and Lisser [4] utilise Γ-
robustness to model robust resource allocation in wireless networks which are based on
OFDMA. In this work, the power consumption is subject to uncertainty but occurs only in
the objective function. A further application of Γ-robustness is given by Parsaeefard and
Sharafat [151] who study robust power control in cognitive radio networks with uncertain
channel gains. Moreover, Zola et al. [181] investigate robust association for multi-radio
devices where the download rate is subject to uncertainty due to the possibility to choose
between different access networks.

In contrast, we apply the Γ-robustness approach to the planning of wireless cellular
networks with uncertain traffic demands or uncertain spectral efficiencies in this chapter.
First, we introduce the uncertainty of demands and derive a compact formulation of the
robust WNPP based on demand uncertainty (d-RWNPP) in Section 9.1. Moreover, we
recap two cutting plane approaches presented in Section 4.1 and introduce a further class
of cutting planes, the robust (extended) cover inequalities, to improve the solving perfor-
mance of the compact formulation of the d-RWNPP. The effectiveness of the cutting planes
as well as the robustness regarding different aspects such as price of robustness, level of
protection, and in comparison with conventional planning is analysed in a computational
study. Subsequently in Section 9.2, we apply Γ-robustness to the WNPP when the spec-
tral efficiencies, modelling interference, are subject to uncertainty (s-RWNPP). Again, we
derive a compact formulation and perform a computational study to evaluate different pos-
sibilities of defining nominal and deviation values. Finally, we investigate the quality of
interference modelling of s-RWNPP in comparison to the various formulations presented
in Chapter 5.

Before introducing Γ-robustness to the WNPP, we first briefly restate the nominal for-
mulation.

The Nominal Formulation of the WNPP The basic formulation of the WNPP intro-
duced in Section 4.1 extended by the conflict graph concept discussed in Section 5.3 reads
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as follows.

min
∑
s∈S

csxs + λ
∑
t∈T

ut (9.1a)

s.t.
∑
s∈St

zst + ut = 1 ∀ t ∈ T (9.1b)

xi + x j ≤ 1 i j ∈ E (9.1c)∑
t∈Ts

wt

est
zst ≤ bsxs ∀ s ∈ S (9.1d)

xs, zst, ut ∈ {0, 1} ∀ s ∈ S, (s, t) ∈ S ∗ T , t ∈ T (9.1e)

Note, we include the conflict graph in the basic formulation here to study the most general
model which can handle BS candidate sites, which comprise different configurations in
addition to the location. That is, by means of the conflict graph we can exclude the de-
ployment of two BSs at the same position but with different configurations and at the same
time limit the inter-cell interference; cf. Chapter 5.

9.1. The RWNPP with Demand Uncertainties

In this section, we focus on the uncertainty of TN demands in the WNPP and denote this
problem by d-RWNPP. The presented formulations and improvements are based on our
joint works [48, 49]. As TNs are aggregated users, uncertainties in the demands occur
due to fluctuating bit rate requirements as well as due to the movement of users from one
TN to another. Following the Γ-robustness approach discussed in Chapter 8, we model
demand values as symmetric and bounded random variables wt with realisations lying
in the interval [w̄t − ŵt, w̄t + ŵt], where w̄t denotes a nominal value and ŵt its highest
deviation. We limit the number of simultaneous deviations by a robustness parameter Γ ∈

{0, . . . , |T |}. The (non-linear) robust counterpart of the capacity constraints (9.1d) is then
given as follows; compare (8.4).∑

t∈Ts

w̄t

est
zst + max

T ′⊆Ts,|T ′ |≤Γ

∑
t∈T ′

ŵt

est
zst ≤ bsxs ∀ s ∈ S. (9.2)

As discussed in Section 8.2, the straightforward linearisation via the computation of all
possible subsets T ′ can lead to an exponential number of constraints; cf. constraints (8.5).
In [117], computations for a structurally comparable robust problem show that the expo-
nential-sized formulation is outperformed by the compact reformulation which is derived
via the dualisation technique described in detail in Section 8.2 and reads as follows.

min (9.1a)
s.t. (9.1b), (9.1c), (9.1e)
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∑
t∈Ts

w̄t

est
zst + Γπs +

∑
t∈Ts

ρst ≤ bsxs ∀ s ∈ S (9.3a)

πs + ρst ≥
ŵt

est
zst ∀ (s, t) ∈ S ∗ T (9.3b)

πs, ρst ≥ 0 ∀ s ∈ S, (s, t) ∈ S ∗ T . (9.3c)

Compared to the nominal problem (9.1), the compact robust counterpart (9.3) has |S| +
|S ∗ T | additional variables and |S ∗ T | additional constraints.

9.1.1. Performance Improvements

The performance of a B&B algorithm can be improved by adding valid inequalities; cf.
Section 1.2.2. Therefore, we study three types of cutting planes in the following whereby
the first two have already been presented in Section 4.1 and Section 5.3, respectively.

Variable upper bound constraints One class of valid inequalities for the WNPP
which are also valid for the d-RWNPP are the variable upper bound constraints (vub) (4.5)

zst ≤ xs ∀ (s, t) ∈ S ∗ T (9.4)

introduced in Section 4.1 and applied already in formulations for interference modelling in
Chapter 5. We investigate the gain of adding these constraints explicitly in a computational
study in Section 9.1.3.

Maximal clique inequalities A second class of cutting planes for the WNPP are the
maximal clique inequalities (mci) introduced in Section 5.3 in the context of a conflict
graph. This means, we can replace the conflict graph constraints (9.1c) by the mci∑

s∈U

xs ≤ 1 ∀U ⊂ S, U is a maximal clique in G = (S,E), (9.5)

where all maximal cliques are computed by the Bron-Kerbosch algorithm [31] with com-
plexity O(3n/3) [169]. We also evaluate the effectiveness of these inequalities in the com-
putational study in Section 9.1.3.

Robust cover inequalities The capacity constraints (9.1d) are knapsack constraints
with a variable right hand side. Hence, the Γ-robust version (9.3a)-(9.3c) resembles Γ-
robust knapsack constraints with variable right hand side. Rewriting (9.3a) for a fixed s as
a general Γ-robust knapsack constraint with variable right hand side leads to∑

i∈N

w̄izi + max
J⊆N:|J|≤Γ

∑
i∈J

ŵizi ≤ Bx, (9.6)

where N denotes the set of items, w̄i the nominal weight of item i, ŵi its deviation, and B
the knapsack capacity. For x = 1, (9.6) states a Γ-robust knapsack constraint as given
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in (8.21b). Due to this fact and since x = 0 implies zi = 0 for all i ∈ N, every valid
inequality for the Γ-RKP can be adapted to a valid inequality for (9.6) by multiplying its
right hand side with x.

In the following, we adapt the strengthened extended Γ-robust cover inequalities in-
troduced in Section 8.5 to valid inequalities for a Γ-RKP with variable right hand side.
For conciseness, we drop the word “strengthened” henceforth as we are only considering
strengthened extended Γ-robust cover inequalities and do not need the distinction between
extended and strengthened extended.

Definition 9.1. (Γ-Robust Knapsack Polytope with Variable Right Hand Side) The Γ-robust
knapsack polytope QΓ

KP with variable right hand side is defined as the convex hull of the
set of feasible solutions of the Γ-RKP where the capacity constraint (9.6) has a variable
right hand side.

QΓ
KP B conv

(z, x) ∈ {0, 1}n × {0, 1}

∣∣∣∣∣∣∣∀ S ⊆ N, |S | ≤ Γ holds
∑
i∈N

w̄izi +
∑
i∈S

ŵizi ≤ Bx


Corollary 9.2. Let C̃ = C ∪ J ⊆ N be a robust cover defined in Definition 8.7 with
extension E+(C, J) as defined in Definition 8.9. Then the Γ-robust cover inequality∑

i∈C∪J

zi ≤ (|C ∪ J| − 1)x, (9.7)

and the extended Γ-robust cover inequality∑
i∈E+(C,J)

zi ≤ (|C ∪ J| − 1)x (9.8)

are valid for the Γ-robust knapsack polytope QΓ
KP with variable right hand side.

This result is an immediate consequence from Lemma 8.10 as x ∈ {0, 1}.

Separation of extended Γ-robust cover inequalities We do not compute all ex-
tended robust cover inequalities, as explained in Section 8.5.2. Instead, only violated
inequalities are separated on the fly. For a non-integral LP solution (zLP, xLP) of (9.3), an
exact ILP based separation problem is given as follows; cf. (8.30).

min
∑
i∈N

(
xLP − zLP

i

)
(ȳi + ŷi) −

∑
i∈N

zLP
i αi (9.9a)

s.t. (8.31b) − (8.31g) (9.9b)

The objective (9.9a) minimises the negative of the violation of a potential robust cover
inequality where the extended robust cover is defined by the constraints of ILP (8.31).
If the optimal objective value is strictly less than xLP, the robust cover C ∪ J defines a
violated inequality of type (9.8) with C B {i ∈ N | ȳi = 1}, J B {i ∈ N | ŷi = 1}, and
extension E+(C, J) B {i ∈ N | ȳ∗i + ŷ∗i + α∗i = 1}.
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Solving the exact separation problem (9.9) consumes a significant amount of time. In-
stead, we develop the following heuristic. First, we adapt and slightly improve the greedy
heuristic by Klopfenstein and Nace [111] separating Γ-robust cover inequalities, which we
stated briefly in Section 8.5.2, in the following Algorithm 5.

Algorithm 5 Heuristic for Separating Γ-Robust Cover Inequalities
Input: weights w̄i, ŵi and current non-integral LP solution (zLP, xLP)
Output: Γ-robust cover C ∪ J and violation v

Step 0: Set v = 0, V̄ = 0, V̂ = 0, C = ∅, J = ∅.
For all i ∈ N, let αi =

xLP−zLP
i

w̄i+ŵi
and βi =

xLP−zLP
i

w̄i
.

Step 1: Let L(k) be the index of the k-th smallest coefficient in {αi}i∈N .
for k = 1 to Γ do

J ← J ∪ {L(k)}
V̄ ← V̄ + w̄L(k)

V̂ ← V̂ + ŵL(k)

v← v +
(
xLP − zLP

L(k)

)
if V̄ + V̂ > B and v < xLP then

STOP
end if

end for
Step 2: Let L′(k) be the index of the k-th smallest coefficient in {βi}i∈N\J.

for k = 1 to n − Γ do
V̄ ← V̄ + w̄L′(k)

if ŵL′(k) > min
i∈J

ŵi then
j := argmin

i∈J
ŵi

C ← C ∪ { j}
J ← J \ { j} ∪ {L′(k)}
V̂ ← V̂ − ŵ j + ŵL′(k)

else
C ← C ∪ {L′(k)}

end if
v← v +

(
xLP − zLP

L′(k)

)
if V̄ + V̂ > B and v < xLP then

STOP
end if

end for

In Step 0, we initialise the sets C and J and the parameters v, V̄ and V̂ , where v presents
the objective value of the separation problem, V̄ the sum of the nominal weights (w̄i) of all
items in the Γ-robust cover C∪ J, and V̂ presents the sum of the deviations (ŵi) of the items
in J. Moreover, we save the ratios of profit xLP−zLP

i to peak weight w̄i +ŵi in parameters αi

and the ratios of profit to nominal weight w̄i in parameters βi. Then the items are sorted
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service normal (%) high (%) bit rate (kbps)

data [10,20] [30,40] [512,2000]
web [20,40] [40,50] [128,512]
VoIP remaining remaining 64

Table 9.1.: Normal and high traffic profiles for calculation of TN demands

non-decreasingly with respect to αi.
In Step 1, the set J is filled by at most Γ many items with the lowest αi values which are

considered with their peak weight. If the capacity B is exceeded and the objective value
is less than xLP at any point in this step, the algorithm stops and returns J. Otherwise, it
continues with Step 2. In this step, the remaining items are first sorted non-decreasingly
according to βi. Afterwards, the set C is filled by the items with the lowest βi values which
are considered with their nominal weight. However, if the deviation value of the current
item L′(k), which should be included in C, is larger than the lowest deviation value of any
item in J, we reshuffle sets J and C as follows. The item j ∈ J with the lowest deviation
value is removed from J and included in C while the current item L′(k) is added to J. The
parameter V̂ is adapted accordingly. By this interchange routine, we can strengthen the
cover C∪ J as we might need less items to exceed the capacity B. As before, the algorithm
stops as soon as the capacity is exceeded and the objective value is less than xLP.

Algorithm 5 returns a Γ-robust cover C ∪ J and a corresponding (negative) violation v.
If it holds v < xLP for the final violation value v, the cover C ∪ J is strengthened ac-
cording to (8.26) if possible leading to E+(C, J) and we add an extended Γ-robust cover
inequality (8.26) with violation

−v + xLP +
∑

i∈E+(C,J)\(C∪J)

zLP
i .

9.1.2. Generating Test Instances

To evaluate the performance of the presented cutting planes as well as of the Γ-robust-
ness applied to the WNPP, we use the scenarios 20 200a, 30 300a, 40 400a and 40 450a
described in Section 5.9.1 and create three larger scenarios with 50 (60) BSs and 500
(600,1000) TNs analogously for a broad range of magnitudes of test instances. In total, the
sizes of the considered scenarios range from 20 to 60 BSs and from 200 to 1000 TNs. The
demand values computed regarding the traffic profiles given in Table 5.3 and repeated in
Table 9.1 in column “normal” are now assumed to be the nominal demands w̄t. In addition,
the peak demands w̄t + ŵt are computed analogously but regarding higher traffic profiles
as depicted in Table 9.1 in column “high”. In case that w̄t + ŵt < w̄t, we interchange the
two values. Furthermore as before, we set emin = 0.25 for the minimum required spectral
efficiency. All remaining parameters are fixed as described in Section 5.9.1. In particular,
the conflict graph is established via the minimum distance requirement with dmin = 500 m;
cf. Section 5.3.
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scenario min. max. average Γmax

s 20 200 13 34 25.20 26
s 30 300 19 42 32.97 34
s 40 400 21 48 36.85 38
s 40 450 21 50 39.33 40
s 50 500 20 53 41.16 42
s 60 600 20 57 44.38 46
s 60 1000 30 73 57.02 58

Table 9.2.: Minimum, maximum and average value of Γmax computed via (8.17) with prob-
ability 1 % and actually selected values for Γmax.

Due to the different dimensions of the test scenarios, the maximum value for the ro-
bustness parameter Γ also varies. To find a reasonable value Γmax per scenario, we use
the probability bound (8.17) assuming a probability of constraint violation of 1 %. This
bound is computed for every BS s with n = |Ts|. In Table 9.2, we display the minimum,
maximum and average Γmax value per scenario. To limit the number of problems to be
solved, we consider only even values for Γ. We set Γmax to the next larger even number of
the average value depicted in Table 9.2. We select Γmax according to the average value to
be secured against constraint violation on average. If we chose the maximum value, the
probability of constraint violation would be less than 1 % for every BS, but Γmax would
also be unjustifiably large for many BSs. Moreover, we will see in Section 9.1.5 that set-
ting Γmax to the average value is sufficient. In total, we consider Γ ∈ {0, 2, . . . ,Γmax} for
each scenario.

All computations in the following sections are performed on a Linux machine with
3.40GHz Intel Core i7-3770 processor using cplex 12.4. Additionally, we set a general
CPU time limit of two hours and a memory limit of 11 GB.

9.1.3. Analysis of Improvements

Apart from slightly different scenarios, the computational study performed in this section
to evaluate the improvements proposed in Section 9.1.1 differs from the computational
study presented in our work [49] in the number of threads that cplex is allowed to use.
In [49], we limited the number of threads to one “to obtain comparable results” as former
versions of the solver cplex were not able to use multiple threads as soon as user defined
inequalities were separated. In contrast, we do not limit the number of threads in the
present computational study to be able to evaluate the improvements we actually gain when
using the highest available computing power. Thus, the following evaluation is performed
from a more practical point of view than in [49].

To analyse the performance of the cutting planes presented in Section 9.1.1, we compute
the additional gap closed at the root node for four different settings: vub only (“vub”), mci
only (“mci”), extended robust cover inequalities only (“c”), all three types together (“all”).
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The additional gap closed is given by

DBcut − DBroot

PBbest − DBroot
,

with PBbest being the best known primal bound, DBroot the dual bound at the root node com-
puted without any cuts (also no internal cplex cuts), which is the LP relaxation, and DBcut

being the dual bound at the root node computed when the investigated cutting planes are
applied; see also Section 7.4.1.

In Figure 9.1, we display the minimum, average (over Γ) and maximum additional gap
closed for the studied cutting planes either with internal cplex cuts disabled (Figure 9.1(a))
or enabled (Figure 9.1(b)).

For disabled cplex cuts, the additional gap closed for the mci is always 0 %, which is
why we do not depict these results in Figure 9.1(a). A reason for this behaviour, which
differs from earlier results in our work [49], is that the capacity of BSs with a positive
LP solution value is used only sparsely in the investigated scenarios. Therefore, TNs can
be fully assigned to a BS (zLP

st = 1) even though xLP
s << 1. This causes the mci to be

less or even non-effective. Note that we only investigated the performance of the mcis in
combination with the vub constraints in [49].

For scenario s 40 450 and both scenarios with 60 BSs, some instances with the setting
“c” are stopped by the operating system due to exceeding the available memory. This is
possible as many cover inequalities are added but the memory limit is not checked at the
root node. Hence, the additional gaps closed obtained for these instances are only lower
bounds. In general, we observe that the average gap closed achieved for smaller scenarios
is higher than for larger when cplex cuts are disabled. For the setting “c”, the additional
gap closed ranges from 0 % to 100 % while the average lies between 41 and 82 % for
scenarios with up to 50 BSs. Such a high fluctuation occurs since a large number of cover
inequalities is generated but with a heuristic separation routine. Hence, for some instances,
strong inequalities are found while this is not the case for others impairing the solving
process by a large number of additional constraints. Additionally, the heuristic separation
is also the reason why the setting “all” does not always perform as good as the best among
the two other settings. When all cutting plane approaches are combined, significantly less
cover inequalities are added but there is no guarantee that all of these inequalities have
been found.

In summary, the separation of cover inequalities performs best on average for scenarios
with up to 50 BSs while “all” and “vub” yield the best average gap closed for the two
largest scenarios in case that internal cplex cuts are disabled.

By the setting “default”, we denote cplex with its default settings including its internal
cuts. The additional gap closed when these cuts are enabled are quite similar to all consid-
ered settings; cf. Figure 9.1(b), indicating that cplex closes most of the gap. However, for
scenarios 40 450 and s 60 1000 the activation of all cutting planes yields a slightly higher
gap closed (minimum, average and maximum) than “default”. Again, the setting “mci”
has hardly any positive effect on the solving of the root node. Nevertheless, as the mci
replace the distance constraints (9.1c) and the conflict graph is sparse for the investigated
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Figure 9.1.: Minimum, average and maximum additional gap closed for different settings
and scenarios when cplex cuts are dis- or enabled.

scenarios, the number of constraints is not increased. Therefore, the solving process is also
not deteriorated by these types of cutting planes.

Summing up, the performed computational study indicates that the vub constraints, the
extended robust cover inequalities as well as the combination of all cutting planes can
strengthen the compact formulation (9.3) while the mci hardly improve the performance.
For enabled cplex cuts, most of the gap is closed by the internal cuts. Nevertheless, it
should not be neglected that the adding of further constraints causes a different structure
of the B&B tree in cplex. Hence, even if the combination of all valid inequalities could not

135



9. Application to Wireless Networks

close the gap at the root node, the consecutive solving process might still be improved; see
also the numerical results in our work [49]. Additionally, we would like to point out that
all presented results have to be treated with caution as the performance of cplex can be
significantly influenced by adding (redundant) constraints; see the discussion in the final
remarks on pages 233 to 235.

Based on the results above and those achieved in our work [49], we decide to use the
setting “all” in the following section when continuing the solving process after the root
node.

9.1.4. The Price of Robustness

In this section, we investigate the solutions (primal and dual bounds) computed within four
hours for the considered values of Γ and the different scenarios. In Figure 9.2, we display
these primal (solid lines) and dual (dotted lines) bounds. For instances which are solved
to optimality, the two lines coincide. For s 60 1000 and Γ ≥ 20, the primal bounds found
within the time limit are quite close to the first solution where no BS is installed and no TN
is served (objective value 1000). Hence, the dual bound can only give an indication of the
magnitude of the optimal objective value. Moreover, for scenario s 60 600 and Γ = 44,
the best primal bound found within the time limit is 498. For a better readability, we do
not display these high numbers for s 60 600 and s 60 1000 in Figure 9.2 by setting the
maximum y-value to 45.

Due to the nature of the Γ-robust approach, the objective values rise with increasing
values of Γ in a stepwise manner, i. e., they are monotonically increasing functions. Thus,
we could have for instance replaced the primal value for Γ = 26 and s 60 600 by the lower
value for Γ = 28 as every objective value for a larger value of Γ is an upper bound for the
instance with a smaller Γ value. However, we have decided to display the actual bounds
obtained after the time limit is reached.

For (close to) optimal solutions, we observe that the objective values stagnate at some
point. For example for s 20 200, Γ ≥ 12 leads to the same objective value and hence, we
could have set Γmax = 12 obtaining already the most conservative solution. As mentioned
in Section 8.3, the increase in the objective is called price of robustness. We display the
percentage price of robustness PoR as defined in (8.13) in Figure 9.3. Note, due to the
bad primal bounds, which are far from optimality, for scenarios with 60 BSs and some
values of Γ we do not display PoR for these instances to obtain a readable figure. The
corresponding PoR values exceed 100 extremely. For all scenarios with up to 40 BSs, the
highest deterioration, i. e., increase of the objective value is less than or equal to 50 %. In
case of Γ ≤ 40 (Γ = 42), the highest deterioration for s 50 500 is 40 % (120 %).

Analogously to the objective value, also the PoR is a monotonically increasing function,
where the same smoothing as described above could be applied in Figure 9.3 in particular
for s 60 600.

The question remains, which value of Γ has to be chosen and thus, which deterioration
of the objective value is inevitable, to obtain a robust optimal solution that is feasible for a
number of realisations of the uncertain demand values.
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Figure 9.2.: Primal (solid lines) and dual (dotted lines) bounds for the considered values
of Γ and the different scenarios.
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Figure 9.3.: Percentage price of robustness PoR.

9.1.5. Level of Protection

In this section, we study the level of protection ProL defined in (8.14). A robust solution is
not feasible for a realisation if the capacity of at least one BS is exceeded. As the probabil-
ity distribution of demand values is unknown, we investigate two types of realisations of
the uncertain demands for which w̄t actually is the mean and w̄t + ŵt the highest deviation.
For the first type of realisation, we generate 1000 snapshots based on an (integer) uniform
distribution of wt in the interval [w̄t − ŵt, w̄t + ŵt]. Note, if the lowest value w̄t − ŵt is
negative, we use 0 as the lower bound. For the second type, we generate 1000 snapshots
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s 20 200 s 30 300 s 40 400 s 40 450 s 50 500 s 60 600 s 60 1000

uniform 12 10 12 16 18 20 20
normal 12 12 12 14 16 16 18

Γmax 26 34 38 40 42 46 58

Table 9.3.: Minimum Γ for ProL = 100 % per distribution.

based on an (integer) normal distribution in the same interval with nominal value w̄t and
standard deviation ŵt. More precisely, we compute a value following the described normal
distribution. In case this value is negative/less than w̄t − ŵt/higher than w̄t + ŵt, we replace
it by 0/w̄t − ŵt/w̄t + ŵt. Finally, we round the value to obtain only integer demand values.

In Figure 9.4, we display ProL for the two distributions, all scenarios and Γ ≤ 20 ( Γ ≤

18). Note, spikes can occur as solutions for two different values of Γ are not necessarily
comparable. We observe that the levels of protection for the uniform and the normal
distribution are quite close and that the trend of the curves is to increase for larger values
of Γ as expected.

In Table 9.3, we depict the lowest values for Γ per scenario for which the robust solu-
tion is feasible for all 1000 snapshots, i. e., the probability of a violated constraint is 0 %.
Compared to the values for Γmax displayed in Table 9.2 and computed via the probability
bound (8.17), where we assumed a probability for constraint violation of at most 1 %, we
observe that a value less than half as large as Γmax is sufficient to be secured against fluc-
tuating demand values for all investigated realisations. Note, these good results strongly
depend on the chosen probability distributions. In the following section we use the maxi-
mum of the two values for Γ in Table 9.3 to compare the robust solution with the solution
obtained by conventional planning.

9.1.6. Conventional Planning

In conventional planning of wireless communication networks, which is usually performed
in practice [148], uncertain parameters are assumed to be static. To be able to compensate
demand fluctuations, the planning should be performed with demand values equal or close
to the peak values; cf. Olinick [148]. Therefore, we solve the non-robust formulation (9.1)
with demands w̄t + ŵt and denote the optimal solution as conventional. Note, a planning
that considers only the nominal demands w̄t gives solutions which are infeasible for at
least 93 % (73 %) of the snapshots with a uniform (normal) distribution; see Figure 9.4
and Γ = 0.

For every scenario, the conventional formulation is solved to optimality within the time
limit. We compare these optimal solutions to the robust solutions obtained for the maxi-
mum of the two values of Γ depicted in Table 9.3. In both variants, all TNs can be served
in all scenarios. Hence, the only difference between the two solutions is the number of
deployed BSs. These numbers are given in Figure 9.5. We observe that we can save at
least one and up to three BSs for all scenarios with at least 30 BS candidates with our
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Figure 9.4.: Level of protection for two types of probability distribution of the traffic de-
mands.
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Figure 9.5.: Number of deployed BSs for the conventional planning and the Γ-robust ver-
sion with Γ chosen according to Section 9.1.5.

robust solution, which is feasible for all considered 1000 snapshots per studied probability
distribution, compared to conventional planning. Such a saving has a significant effect on
the capital as well as operational expenditures for a network operator.

9.1.7. Conclusion

In this section, we have applied Γ-robustness to the WNPP with uncertain demands and
have proposed a compact reformulation. Moreover, we have presented three types of valid
inequalities, variable upper bound constraints, maximal clique inequalities, and extended
Γ-robust cover inequalities and have developed a heuristic separation algorithm.

We have evaluated the Γ-robustness and the performance of the valid inequalities in a
computational study performed on seven test scenarios of various dimensions. Investiga-
tions at the root node have demonstrated that vub and the cover inequalities can strengthen
the formulation while the setting which activates all types has the greatest potential to
improve the subsequent solving process when internal cplex cuts are enabled. Further-
more, we have analysed the price of robustness, in particular, for scenarios with up to 40
BSs since we could not obtain reasonable primal bounds for the largest scenarios. The
percentage deterioration of the objective value is less than 50 % for all of these scenarios.

Additionally, we have computed the level of protection of the Γ-robust solutions for an
uniform as well as normal distribution of demands based on 1000 snapshots per distribu-
tion. We have used the smallest Γ values which yield solutions with a level of protection
of 100 % to compare our Γ-robust solutions to conventional network planning, where the
peak demands have to be fulfilled. This comparison has unveiled the economy of at least
one and up to three BSs, which represents savings of 14 to 29 %, for all but the smallest
scenario by means of Γ-robustness.
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9.2. The RWNPP with Uncertain Spectral Efficiencies

In this section, we apply the Γ-robustness approach to the WNPP (9.1) when the spectral
efficiencies are subject to uncertainty and the demands are assumed to be static, which is
denoted by s-RWNPP. Investigating this type of uncertainty, we continue the discussion of
interference modelling of Chapter 5. For that purpose, we would like to model the spectral
efficiencies est as symmetric and bounded random variables with realisations lying in an
interval [ēst − êst, ēst + êst] with nominal value ēst and deviation value êst. However, these
values are computed on a logarithmic scale based on the SINR value γst; see Section 5.1.
Due to the described nature of the values, the realisations do not lie in a symmetric interval.
Hence, we model the SINR values γst as symmetric bounded random variables instead and
derive the corresponding spectral efficiencies from the look-up Table 5.1 on page 41. We
assume that realisations of γst lie in the interval [γ̄st − γ̂st, γ̄st + γ̂st] with nominal value γ̄st

and deviation value γ̂st. Since the spectral efficiencies occur in the denominator in the
capacity constraints (9.1d), the worst case range is [γ̄st − γ̂st, γ̄st]. This means, the higher
the SINR value, the better. Let

e : R 7→ {0, 0.25, 0.4, 0.5, 0.66, 1, 1.33, 1.5, 1.6, 2, 2.66, 3, 3.2, 4, 4.5, 4.8}

be the mapping of SINR values given in dB to spectral efficiencies as defined in Table 5.1.
Again, the number of simultaneous deviations is limited by a robustness parameter Γ ∈

{0, . . . , |T |}. Then, the non-linear robust counterpart of the capacity constraints (9.1d) can
be formulated as follows.∑

t∈Ts

wt

e(γ̄st)
zst + max

T ′⊆Ts,|T ′ |≤Γ

∑
t∈T ′

(
wt

e(γ̄st − γ̂st)
−

wt

e(γ̄st)

)
zst ≤ bsxs ∀ s ∈ S, (9.10)

where we replace the fraction wt/e(γ̄st − γ̂st) by bs if e(γ̄st − γ̂st) = 0. As explained before,
the max-term can be reformulated as an ILP. Introducing dual variables πs and ρst, we
derive the linear compact robust counterpart for s-RWNPP; compare Sections 8.2 and 9.1.

min (9.1a)
s.t. (9.1b), (9.1e)∑

t∈Ts

wt

e(γ̄st)
zst + Γπs +

∑
t∈Ts

ρst ≤ bsxs ∀ s ∈ S (9.11a)

πs + ρst ≥

(
wt

e(γ̄st − γ̂st)
−

wt

e(γ̄st)

)
zst ∀ (s, t) ∈ S ∗ T (9.11b)

πs, ρst ≥ 0 ∀ s ∈ S, (s, t) ∈ S ∗ T . (9.11c)

Remark 9.3. The s-RWNPP (9.11), does not yield an exact formulation neither in terms
of SINR nor in terms of capacity.
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Proof. Since the nominal and deviation values γ̄st and γ̂st are predefined, they are not
necessarily the correct SINR values when the BS deployment is decided. Thus, violated
SINR conditions are possible and hence, also violated capacity constraints. �

9.2.1. Defining the Interval

The crucial part of the compact formulation (9.11) is the determination of the nominal
values γ̄st and the lowest values γ̄st−γ̂st. In this subsection, we present three possibilities to
determine γ̄st and three possibilities to determine γ̄st− γ̂st which can also be combined with
each other. We investigate the performance of the various definitions in a computational
study in Section 9.2.2.

As before, compare Section 5.1, we assume that the fading coefficient ast for the signal
from BS s to TN t is defined only by the path loss, i. e., ast = 10−

1
10 PdB

L (s,t). As a reminder,
the received power at TN t from BS s is computed as Pr(s, t) = psast with ps denoting the
transmission power of s.

The nominal value for a fixed pair (s, t) ∈ S ∗ T .

1. The best possible value for the SINR γst is the SNR value, in which no interference
is present. Hence, we set the nominal value γ̄st to the SNR value; see equation (5.1)
on page 40.

γ̄st = 10 log10

(
Pr(s, t)
η

)
2. The nominal value equal to the SNR as assumed in the first approach might be too

optimistic since it is unlikely that there occurs no interference at all in a realistic
network. Hence, in our second approach, we set the nominal value γ̄st to the SINR
value which includes the BS candidate with the strongest signal as interference:

γ̄st = 10 log10

(
Pr(s, t)

Pr(σ, t) + η

)
,

with σ = argmaxs′∈St\{s} as′t.

3. An alternative to incorporate interference in the nominal value is the following. First,
we compute the SNR value 10 log10 (Pr(s, t)/η) and then take the SINR value from
Table 5.1 with the next worse CQI as the nominal value. For example, for an SNR
value of 3 dB (corresponding to CQI 5), we set γ̄st = −1.0. We can generalise this
approach by taking the second or third worse value. We denote the number of shifts
by the parameter κ̄.

The lowest possible value for a fixed pair (s, t) ∈ S ∗ T .

1. Similar to the interference mitigation and the TN oriented approach proposed in
Sections 5.6 and 5.7, we include κ ∈ Z≥0 many BSs with the strongest signals as
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interferers in the lowest SINR value:

γ̄st − γ̂st = 10 log10

 Pr(s, t)∑
s′∈S′

Pr(s′, t) + η

 ,
with S′ ⊆ St \ {s}, |S′| = κt, κt B min{κ, |St|} and as′t ≥ aσt for every s′ ∈ S′

and σ < S′.

2. Including κ many worst interferers as proposed in the previous approach might be
too conservative since BSs are usually not installed right next to each other in a
realistic network. Hence, we now present a slight modification of the first approach.
We take κ times the average power of all interfering signals as the interference power
included in the SINR value:

γ̄st − γ̂st = 10 log10

 Pr(s, t)

κ ·

∑
σ∈St\{s}

Pr(σ,t)

|St |
+ η

 .
3. Following the third approach to define the nominal value γ̄st, we introduce a param-

eter κ̂ ∈ Z≥0 to denote the number of shifts of the SNR value regarding Table 5.1
to define the lowest SINR value. Note, to guarantee that γ̄st − γ̂st < γ̄st, we do not
combine this approach with a different possibility to define the nominal value than
the third approach and we stipulate κ̂ > κ̄.

9.2.2. Computational Study

In the computational study presented in this section, we analyse the performance of the
compact formulation (9.11) for the s-RWNPP with the different approaches to set the
nominal and the lowest SINR values proposed in the previous section. The criteria we
investigate are the number of deployed BSs and the number of actually served TNs, which
is the number of TNs with ut = 0 in the best solution minus the number of violated SINR
conditions (5.1). The studied scenarios are the same as described in Section 5.9.1 and
we find good values for Γmax via the probability bound (8.17) assuming a probability of
constraint violation of 1 %; see Section 9.1.2. In Table 9.4, we display the average value
per scenario. As before, we consider only even values for Γ and set Γmax to the next larger
even number of these average values.

The different investigated settings of nominal and lowest SINR values are summarised
in Table 9.5. For every setting, we also apply the performance improvements presented in
Section 9.1.1 where we adapt the computation of extended robust cover inequalities in a
straightforward way.

All computations are performed on a Linux machine with 3.40GHz Intel Core i7-3770
processor and a general CPU time limit of two hours. Additionally, we set a memory limit
of 11 GB and use cplex 12.4 [98].
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scenario average Γmax

20 200a 25.20 26
20 300b 32.10 34
20 400c 39.75 40
30 300a 32.97 34
30 400b 35.17 36
30 500c 43.03 44
40 400a 36.85 38
40 450a 39.33 40

Table 9.4.: The average values of Γmax computed via (8.17) with probability 1 % and actu-
ally selected values for Γmax.

γ̄st γ̄st-γ̂st

1. SNR 1. κ strongest interferers, κ ∈ {1, 5, 10}
1. SNR 2. κ times average interference, κ ∈ {1, 5, 10}
2. SINR with strongest interferer 1. κ strongest interferers, κ ∈ {1, 5, 10}
2. SINR with strongest interferer 2. κ times average interference, κ ∈ {1, 5, 10}
3. κ̄ = 1 3. κ̂ ∈ {2, 3}
3. κ̄ = 2 3. κ̂ = 3

Table 9.5.: Investigated settings of nominal and lowest SINR values.

γ̄st = SNR Foremost, we investigate the first setting for the nominal demands where γ̄st

is defined as the SNR value, i. e., the first two lines of Table 9.5. In Figure 9.6, we display
exemplarily for scenario 20 400c the objective values and the SINR-corrected objective
values υ (see (5.35) on page 63) for Γ ∈ {2, 4, . . . , 44}, where γ̄st-γ̂st is defined via the κ = 5
strongest interferers. As mentioned in Section 9.1.4, a characteristic of Γ-robustness is
that the objective value represents a monotonically increasing function. In contrast, the
SINR-corrected objective value υ, which is not explicitly optimised, is not monotonically
increasing due to the post-calculation of actually served TNs. Higher values of Γ can still
give a lower value for υ. We define the Γ yielding the lowest SINR-corrected objective
value as “best”. However, to be sure that we have found the best solution, we additionally
have to test larger values of Γ which causes significant computational overhead. Note that
this behaviour does not depend on the definition of the deviation interval.

In Table 9.6 on page 146, we display the number of actually served TNs and the num-
ber of deployed BSs for the non-robust formulation (Γ = 0) and the best values achieved
for Γ > 0 (without stating the precise value of the corresponding Γ here), where the two
possibilities to define γ̄st-γ̂st as well as all values κ ∈ {1, 5, 10} are considered. For in-
creasing values of κ, i. e., more BSs are considered in the interfering set S′, the solution
becomes more conservative and hence, the probability of a SINR violation decreases im-
plying an increasing number of actually served TNs. Moreover, if the strongest interferers
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Figure 9.6.: The objective value and the SINR-corrected objective value υ for scenario
20 400c and Γ ∈ {2, 4, . . . , 44}with γ̄st being defined as the SNR value and γ̄st-
γ̂st by the κ = 5 strongest interferers.

are considered, we can in general also serve more TNs than if considering the averaged
interference. However, up to 21 TNs (40 450a) cannot be covered for the best robust set-
ting (strongest interference and κ = 10). The non-robust formulation usually gives results
which are quite close to those of the best robust solution but deploys significantly less BSs.
Thus, the definition of the nominal value via the SNR value does not give satisfying results
in terms of robustness or interference modelling and we do not investigate this setting any
further.

γ̄st = SINR with strongest interferer We now investigate the second setting for the
nominal demands where γ̄st is set to the SINR value which regards the strongest interferer
as the only interference. Thus, we study the third and forth line in Table 9.5. As before,
we compute the number of actually served TNs for the non-robust formulation as well as
the two possibilities to define γ̄st-γ̂st with κ ∈ {1, 5, 10}. We display these values and the
number of deployed BSs for Γ = 0 and the best value for Γ > 0 (without stating the precise
value of the corresponding Γ here) in Table 9.7.

Again, the number of actually served TNs in general increases for an increasing value
of κ and including the strongest interferers instead of the averaged value gives better re-
sults. However as before, the non-robust results are quite close to the best robust results but
this time also the non-robust solution deploys an unjustified large amount of BSs. Thus,
also the definition of the nominal value via the SINR value with the strongest interferer
does not give satisfying results in terms of robustness or interference modelling and we
also do not investigate this setting any further.
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strongest interference average interference
Γ = 0 κ = 1 κ = 5 κ = 10 κ = 1 κ = 5 κ = 10

scenario T B T B T B T B T B T B T B

20 200a 185 3 192 13 192 14 192 14 164 9 179 11 194 14
20 300b 284 3 279 14 286 17 287 17 233 10 273 12 280 16
20 400c 388 4 371 17 385 18 390 18 325 12 356 17 376 18
30 300a 270 4 255 19 275 20 280 21 236 12 241 17 260 19
30 400b 398 4 359 22 381 24 385 25 342 16 357 19 364 21
30 500c 459 5 450 26 487 27 490 27 420 16 442 22 448 26
40 400a 380 4 344 28 379 31 384 32 345 15 329 21 341 27
40 450a 430 4 387 29 427 31 429 31 385 15 355 23 388 25

Table 9.6.: Number of actually served TNs and deployed BSs for γ̄st =SNR, Γ = 0 and
best values for one Γ > 0, where γ̄st-γ̂st is defined via κ ∈ {1, 5, 10} strongest
interferers or times the average interference.

strongest interference average interference
Γ = 0 κ = 1 κ = 5 κ = 10 κ = 1 κ = 5 κ = 10

scenario T B T B T B T B T B T B T B

20 200a 184 12 184 12 183 12 184 12 176 11 178 12 180 12
20 300b 266 14 266 14 283 17 283 17 262 13 265 15 273 16
20 400c 360 17 360 17 381 18 381 18 350 17 357 18 373 18
30 300a 263 20 263 20 271 21 273 21 252 19 242 19 254 18
30 400b 352 22 352 22 372 23 376 24 344 21 341 23 351 23
30 500c 451 26 451 26 483 26 483 27 440 26 445 26 468 24
40 400a 352 28 352 28 375 31 374 31 351 28 358 29 356 30
40 450a 384 29 384 29 419 31 424 31 387 29 390 27 401 29

Table 9.7.: Number of actually served TNs and deployed BSs for γ̄st =SINR with strongest
interferer, Γ = 0 and best values for Γ > 0, where γ̄st-γ̂st is defined via κ ∈
{1, 5, 10} strongest interferers or times the average interference.

γ̄st via κ̄ = 1 In this paragraph, we study the third approach to define the nominal values
via κ̄ = 1 many shifts. The number of actually served TNs and deployed BSs for the
non-robust formulation as well as the best values, including the respective Γ values, for the
robust formulation with κ̂ ∈ {2, 3} shifts of γ̄st-γ̂st are depicted in Table 9.8. The solution
obtained for the setting κ̂ = 2 typically covers more TNs than the setting κ̂ = 3 and also
than the non-robust formulation while the same number of BSs is deployed. Thus, the
setting κ̄ = 1 and κ̂ = 2 gives the best results so far.

As a further remark, we would like to point out that the results displayed in Table 9.8
indicate that the Γ-robustness approach does not behave as expected in the present appli-
cation. For higher numbers of TNs we would expect that a higher value of Γ gives the best
solution since the objective value represents a monotonically increasing function. But as
the number of actually served TNs is not optimised, we cannot expect the same mono-
tonicity for this number yielding fluctuating best Γ values for increasing numbers of TNs;
see also Figure 9.6.
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Γ = 0 κ̂ = 2 κ̂ = 3
scenario T B Γ T B Γ T B

20 200a 196 3 2 196 3 4 190 3
20 300b 267 4 2 286 4 28 273 4
20 400c 361 5 8 395 5 12 382 5
30 300a 276 4 12 298 4 14 290 4
30 400b 366 5 16 392 5 26 389 5
30 500c 490 5 26 486 5 2 485 5
40 400a 353 5 24 393 5 26 395 5
40 450a 429 5 10 437 5 16 433 5

Table 9.8.: Number of actually served TNs and deployed BSs for κ̄ = 1, Γ = 0, and κ̂ ∈
{2, 3} and the best value of Γ > 0.

Γ = 0 κ̂ = 3
scenario T B Γ T B

20 200a 186 3 2 187 4
20 300b 269 4 30 274 4
20 400c 379 5 26 382 5
30 300a 288 4 16 289 5
30 400b 373 5 12 390 5
30 500c 451 6 12 484 6
40 400a 362 5 8 392 5
40 450a 429 5 26 431 5

Table 9.9.: Number of actually served TNs and deployed BSs for κ̄ = 1, Γ = 0, and κ̂ = 3
and the best value of Γ.

γ̄st via κ̄ = 2 Finally, we investigate κ̄ = 2 shifts for the nominal value and κ̂ = 3
shifts for γ̄st-γ̂st. The number of actually served TNs and deployed BSs for the non-robust
formulation as well as the best robust formulation, including the respective Γ values, are
displayed in Table 9.9. The robust formulation can serve more TNs than the non-robust
formulation by deploying at most one BS more for every scenario. If we compare this set-
ting to κ̄ = 1 and κ̂ = 2, we observe that the latter setting serves more TNs than the present
one and does not deploy more BSs than the non-robust formulation. Altogether, κ̄ = 1
and κ̂ = 2 gives the best results in terms of number of covered TNs and deployed BSs.

In the next paragraph, we compare this setting to the TN coverage requirement for-
mulation, which we regard as the best model among the various interference modelling
formulations presented in Chapter 5. Additionally, we present a comparison to the con-
flict graph formulation which we use in d-RWNPP and subsequent formulations to limit
interference.
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s-RWNPP TN cov. req. conflict
scenario υ υl υ υl υ υl

20 200a 16 22 15 16 27 35
20 300b 30 65 18 20 28 58
20 400c 25 67 22 51 31 65
30 300a 18 47 25 42 59 94
30 400b 28 57 16 37 18 44
30 500c 34 96 24 60 42 116
40 400a 27 69 21 52 30 68
40 450a 33 86 31 48 36 69

Table 9.10.: SINR-corrected objective values υ and υl for s-RWNPP with the best set-
ting κ̄ = 1, κ̂ = 2 and for the TN coverage requirement formulation.

Comparison to other formulations In Table 9.10, we display the SINR-corrected ob-
jective values υ and υl as defined on pages 63 and 64 for s-RWNPP with κ̄ = 1 and κ̂ = 2
and for the TN coverage requirement as well as the conflict graph formulation. Compar-
ing υ with υl, we observe a significant increase which is due to (strongly) exceeded capac-
ities. The s-RWNPP formulation (9.11) can neither guarantee that no SINR requirement is
violated nor that no capacity is exceeded; see Remark 9.3.

With the exception of scenario 30 300a, the s-RWNPP gives (considerably) higher val-
ues for υ as well as for υl than the TN coverage requirement formulation. However, these
values are in general closer to the magnitude of the values for the conflict graph formula-
tion. In summary, the TN coverage requirement formulation is better suited to incorporate
interference modelling approximately in the WNPP but s-RWNPP gives similar results to
the conflict graph formulation.

9.2.3. Conclusion

In this section, we have applied the Γ-robustness concept to uncertain spectral efficiencies
in the WNPP. The compact formulation (9.11) strongly depends on the definition of the
deviation interval, hence, on γ̄st and γ̄st-γ̂st. Based on a computational study performed for
eight test scenarios of various dimensions, we have determined the best setting among the
presented possibilities which is to shift the SNR value once to obtain the nominal value
and twice to obtain the lowest value (κ̄ = 1 and κ̂ = 2). However, based on the best Γ

values stated in Tables 9.8 and 9.9, we also observe that the Γ-robustness approach does
not behave as expected in the studied application. For higher numbers of TNs we would
expect that a higher value of Γ gives the best solution. Moreover, a higher value of Γ does
not necessarily yield a solution at least as good as the best solution.

In summary, we cannot predict the number of violated SINR conditions or the number
of actually served TNs when varying the value of Γ. Thus, the Γ-robustness concept is not
suitable to model interference in the WNPP in the presented way, which can also be seen
in the comparison to the TN coverage requirement formulation.
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The compact formulation (9.3) of the RWNPP with uncertain demands discussed in Sec-
tion 9.1 consists of a huge number of variables. In fact, the number of variables is twice
the number of BSs and possible BS-TN pairs. Furthermore, the ILP (9.3) can have a weak
LP solution. A prominent procedure to tackle problems containing large numbers of vari-
ables and/or complex subproblems is column generation or B&P for ILPs as introduced in
Section 1.2.3. Applying a Dantzig-Wolfe decomposition, the solution process starts with
a subset of variables (columns) and only variables having the potential to improve the ob-
jective are generated on the fly. As demonstrated in an example in the subsequent section
as well as in a computational study in Section 10.3, this method can significantly improve
the LP solution compared to the compact model.

B&P is a commonly used technique to solve a variety of integer problems, in particular,
various wireless network design problems. Bjorklund et al. [27] investigate resource al-
location in ad hoc networks, where time slots are assigned to nodes or links, respectively.
The authors use a set covering formulation and a B&P algorithm to solve this problem.
The LP relaxations can be efficiently solved and “provide very tight bounds to the inte-
ger solutions”. For TDMA (time division multiple access) based networks, Gomes et al.
[85] study the problem of joint routing and scheduling, where time is divided into slots
and allocated to users. In case of integer flows, the authors apply a B&P algorithm which
solves the problem easily as soon as a critical region (bottleneck) is solved. Moreover, Fu
et al. [79] analyse the scheduling of wireless links and the control of the power transmis-
sion in STDMA (spatial-reuse TDMA) based networks, in which the same time slot can
be used for more than one user if these users are positioned sufficiently far away from
each other. Assuming that the allocated time is integer, the authors use a B&P algorithm
to solve the problem. They further introduce a new pricing problem (PP) and a smart
enumerating algorithm to solve the PPs achieving significant reduction in runtime. In the
work of Wilhelm and Gokce [177], surveillance systems for port and waterway security
via sensor networks are investigated. The aim is to find a strategic design for the sensors
which provides sufficient surveillance. Applying B&P, the authors propose a heuristic for
a basic initial solution for the restricted master problem (RMP), an effective method for
solving PPs and alternative branching rules. The computational study demonstrates that
their B&P algorithm requires less runtime than using cplex directly.

In this chapter, we present a complete B&P algorithm for the d-RWNPP and perfor-
mance improvements whereupon the results are based on our work [50]. First, we develop
the master problem (MP) via a Dantzig-Wolfe decomposition, present the RMP, the PP and
problem specific branching rules in Section 10.1. Afterwards, in Section 10.2, we propose
several techniques to speed up the B&P algorithm. The effectiveness of these performance
improvements is analysed in a computational study in Section 10.3. A comparison of the
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0 1 210

Figure 10.1.: An example consisting of two BSs and three TNs to demonstrate the im-
provement of the LP solution by means of column generation.

B&P algorithm to the compact formulation (9.3) is conducted in a separate computational
study in Section 10.4.

10.1. A B&P formulation

As pointed out in Section 1.2.3, the LP solution computed by a column generation ap-
proach can be significantly better than the LP relaxation of the compact model (9.3) if
there exist non-integer extreme points of the relaxed PP. To demonstrate this, we give a
tiny non-robust example with two BSs and three TNs, see Figure 10.1. Every BS has an
available bandwidth of 40 and entails costs of 4000. We assume that the BSs are not in-
terfering with each other so that no conflict graph exists. Every TN has a nominal demand
of 30 and no deviation. We choose the spectral efficiencies such that TNs 0 and 1 can be
assigned to BS 0 and TNs 1 and 2 to BS 1 represented by arrows in the figure. The scaling
parameter λ is set to 10000.

The LP solution of the compact model is 8000 with assignment variables z00 = z12 =

1 and z01 = z11 = 0.5 installing both BSs. The column generation algorithm, which
we present in the subsequent sections, gives a LP solution of 18000 with exactly two
reformulated assignment variables equal to one such that both BSs are installed, TN 0 is
assigned to BS 0, TN 2 to BS 1 and TN 1 remains uncovered. Since we have a minimisation
problem, this is a much better lower bound. In fact, for this tiny example the LP solution
of the column generation is the optimal integer solution.

Another reason for a B&P algorithm is the decomposition of the compact model into
master and pricing problems where constraints, that provide a structure for which the com-
putation of extreme points is a tractable problem, are outsourced to the PPs. For the d-
RWNPP, we move the embedded Γ-RKP constraints to the PPs leading to a MP which is
independent of Γ-robustness. By this means, we can apply the (extended) Γ-robust cover
inequalities introduced in Section 9.1.1 to enhance the solving performance for the PPs.

10.1.1. The Master Problem

To apply a Dantzig-Wolfe decomposition as introduced in Section 1.2.3, we neglect the
binary variables xs for simplicity in the following. We reformulate the compact formu-
lation (9.3) by substituting the assignment variables zst by the convex combination of
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the extreme points of conv(Zs), where Zs denotes the subproblem which consists of con-
straints (9.3a) and (9.3b), i. e.,

Zs B
{
(z, π, ρ) ∈ {0, 1}|Ts | × R≥0 × R

|Ts |

≥0

∣∣∣∣∣ ∑
t∈Ts

w̄t

est
zt + Γπ +

∑
t∈Ts

ρt ≤ bs, (10.1a)

π + ρt ≥
ŵt

est
zt ∀ t ∈ Ts

}
. (10.1b)

Therefore, we have one Γ-RKP per BS as subproblem which can be considered separately.
An extreme point (z, π, ρ) of conv(Zs) is represented by a subset τ ⊆ Ts of TNs with τ =

{t ∈ Ts | zt = 1} for which (10.1a) and (10.1b) are satisfied. Note that the extreme points
of an LP relaxation of a Γ-RKP are not necessarily integer and hence, a strictly better
lower bound than the LP relaxation can be possibly obtained by column generation. We
introduce a set Ts for every BS s ∈ S consisting of all extreme points of conv(Zs). Then,
we denote the new assignment variables by ζsτ for s ∈ S and τ ∈ Ts with

ζsτ =

1, the set of TNs τ ⊆ Ts is assigned to BS s (and Ts \ τ not)
0, otherwise.

For a full substitution of zst by the convex combination of the extreme points, we have to
add the convexity constraints ∑

τ∈Ts

ζsτ = 1 ∀s ∈ S, (10.2)

which guarantee that exactly one subset τ is selected. Note that the empty set is also in-
cluded in Ts. Since an assignment of TNs to a BS s is only possible if s is deployed, we can
replace the right hand side of (10.2) by the deployment indicator variable xs. Moreover,
we keep the non-coverage indicator variables ut as introduced for the compact formula-
tion (9.3). We can now state the MP as the following ILP.

min
∑
s∈S

csxs + λ
∑
t∈T

ut (10.3a)

s.t.
∑
s∈St

∑
τ∈Ts:t∈τ

ζsτ + ut = 1 ∀ t ∈ T (10.3b)∑
s∈U

−xs ≥ −1 ∀U ⊂ S,U max. clique in G (10.3c)

xs −
∑
τ∈Ts

ζsτ ≥ 0 ∀ s ∈ S (10.3d)

xs, ζsτ, ut ∈ {0, 1} ∀ s ∈ S, τ ∈ Ts, t ∈ T (10.3e)

The objective (10.3a) and the maximal clique inequalities (10.3c) are exactly the same
as the compact equivalents (9.1a) and (9.5). Furthermore, constraints (10.3b) present the
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reformulated coverage constraints (9.1b) and (10.3d) the relaxed version of the convexity
constraints (10.2). Such a relaxation is possible as the deployment of a BS without any
assigned TN is not reasonable due to the minimisation of installed BSs and non-covered
TNs. Note, these constraints are also reformulated vub constraints (9.4).

In the following, we describe two modifications of the MP which simplify the defini-
tion of the RMP and the PPs in the subsequent sections. First, it is sufficient to consider
only “≥” in constraints (10.3b) since we minimise the number of ut set to one. Thus, we
replace these constraints by∑

s∈St

∑
τ∈Ts:t∈τ

ζsτ + ut ≥ 1 ∀ t ∈ T . (10.4)

It is also sufficient to consider only maximal sets τ, to which no further TNs can be added
without violating the capacity constraint, since it is beneficial to assign as many TNs as
possible to a deployed BS when minimising the number of not covered TNs.

Second, the definition of all variables as binary is not necessary. Instead it is sufficient
to have

xs, ζsτ, ut ∈ Z≥0 ∀ s ∈ S, τ ∈ Ts, t ∈ T . (10.5)

The upper bound of 1 for all variables is guaranteed by constraints (10.3c) and (10.3d) as
well as the minimisation in the objective (10.3a).

Note, these modifications do not, in general, speed up the solving process of the com-
pact formulation (9.3) studied in Section 9.1. We ran tests for the instances s 20 200–
s 60 600 and Γ values described in Table 9.2 and a time limit of two hours. In only 11
cases out of 118 different settings, the compact formulation including similar modifica-
tions was solved faster than the compact formulation (9.3). This is the reason why we did
not consider these modifications in the computational study in Section 9.1.

The MP (10.3) describes the d-RWNPP completely. However, for each BS there exists a
(potentially) exponential number of extreme points/sets τ ∈ Ts resulting in a huge model.
Hence, we restrict the MP to subsets T′s ⊆ Ts for each s ∈ S obtaining the RMP and
compute further necessary columns by the PPs presented in the following section.

10.1.2. The Pricing Problems

As stated before, the RMP does not consider the total amount of assignment variables ζ at
the outset. To decide which variable has the potential to improve the objective value but is
not yet included in the RMP, we compute the reduced cost of ζsτ for all s ∈ S and τ ∈ Ts\T′s
by means of dual variables. For that purpose, we introduce dual variables αs for each vub
constraint (10.3d) and dual variables βt for each coverage constraint (10.4). The reduced
cost of ζsτ are then computed as the objective value minus the coefficients:

0 − (−αs) −
∑
t∈τ

βt.
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It is beneficial to add the variable ζsτ to the RMP if the reduced cost are negative, hence if∑
t∈τ

βt > αs.

To detect variables with negative reduced cost, we introduce one PP for each BS s as
follows. We define a binary decision variable at for every TN t ∈ Ts with

at =

1, TN t is in the newly constructed set τ ∈ Ts \ T′s
0, otherwise.

The PP for a fixed BS s determines an extreme point of conv(Zs) where the corresponding
variable ζsτ has the most negative reduced cost if such a variable exists. The problem can
be formulated as follows.

max
∑
t∈Ts

β̃tat (10.6a)

s.t.
∑
t∈Ts

w̄t

est
at + Γπ +

∑
t∈Ts

ρt ≤ bs (10.6b)

π + ρt ≥
ŵt

est
at ∀ t ∈ Ts (10.6c)

at ∈ {0, 1}, π, ρt ≥ 0 ∀ t ∈ Ts, (10.6d)

where β̃t is the optimal value of the dual βt of the current RMP and π, ρt are the dual
variables introduced for the compact Γ-robust counterpart of the capacity constraints; see
Section 9.1. Note, the index s is dropped here for these variables as the BS is fixed.
Obviously, a PP is a Γ-RKP.

If the objective value (10.6a) for an optimal solution (ã, π̃, ρ̃) is greater than the optimal
value α̃s, we have found a variable ζsτ with negative reduced cost, where τ B {t ∈ Ts | ãt =

1}. We add this new variable to the RMP and solve it again. The PPs are solved consecu-
tively for every BS s ∈ S. The whole process of solving the RMP giving new dual values
and then solving the PPs to decide if further variables are needed is repeated until no more
variables with negative reduced cost exist.

10.1.3. Branching Rules

By means of the previously described decomposition into RMP and PPs, we can solve the
LP relaxation of the MP (10.3) by column generation. However, the optimal LP solution
is not necessarily integer. Hence, a branching process has to be carried out.

A standard branching procedure is to create two child nodes based on the integrality
criterion. We apply this branching rule first to branch on non-integer BS deployment
indicator variables xs creating two child nodes with additional constraint xs ≤ 0 and xs ≥ 1,
respectively. If all of these variables are integer, we apply the same branching rule to the
non-coverage indicator variables ut.
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When no fractional xs or ut variables are left, we have to branch on non-integer assign-
ment variables ζsτ. However, the branching rule based on the integrality criterion leads to
the following difficulties. Enforcing ζsτ ≤ 0 in a child node requires to add the additional
constraint ∑

t∈τ

at +
∑
t<τ

(1 − at) ≤ |Ts| − 1

to the PP (10.6) corresponding to BS s. This constraint guarantees that we cannot add all
TNs in the set τ to a new subset of TNs and at the same time not adding any of the TNs
not in τ. Otherwise, we would generate the set τ again. Consequently, the PP is a Γ-RKP
with an additional constraint. Future branching decisions lead to further supplementary
constraints which destroy the structure of the PPs. On the other hand, if we do not enforce
the ζ-decision in the PP corresponding to s, it is possible that we compute exactly the same
set τ again which is a problem inherent to the column generation approach. To avoid these
difficulties, we develop different problem specific branching rules which are based on the
common technique to branch on the corresponding variables of the compact formulation;
see, e. g., Barnhart et al. [14]. Hence, we intend to apply the branching rule based on
the integrality criterion to the assignment variables zst. Branching on these variables in
the B&P approach comprises the generation of two child nodes with zst ≤ 0 and zst ≥ 1,
respectively, if

zLP
st B

∑
τ∈T′s:t∈τ

ζLP
sτ

is not integer in the current LP solution. Note that we have introduced the notation zLP
st

just for simplicity. In each branching step, we branch on the most fractional value that is
the zLP

st closest to 0.5.

For a BS-TN pair (s, t) with a non-integer value zLP
st , we generate two child nodes with

additional branching constraints
zLP

st ≤ 0 (10.7)

and
zLP

st ≥ 1, (10.8)

respectively. By the first constraint (10.7), every variable ζsτ is implicitly fixed to 0 for
all τ ∈ T′s with t ∈ τ. Hence, only new subsets τ′ \ {t} can be beneficial in this subproblem
enforcing at = 0 in the PP corresponding to BS s. Note, when the subset T′s is comple-
mented during the subsequent solving process, also constraints (10.7) and (10.8) have to
be updated accordingly.

On the other hand, constraint (10.8) guarantees that TN t is served by BS s. Including
this constraint in the subproblem, we have to consider a new dual variable corresponding
to (10.8) for the computation of the reduced cost of a new pricing variable. This new
dual variable has to be multiplied by at and this product is then added to the objective
function of the PP. However, the consideration of further dual variables complicates the
whole problem. Hence, instead of including new dual variables in the PPs, we reformulate
constraint (10.8) as follows. By the coverage constraints (10.3b), we know that ut = 0
as TN t is assigned to BS s. Further, by (10.8) ζστ = 0 for all BSs σ , s and subsets τ
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containing t. Combining these two observations, constraint (10.8) is equivalent to∑
σ∈S\{s}

∑
τ∈T′σ:t∈τ

ζστ + ut ≤ 0. (10.9)

Replacing (10.8) by (10.9), we do not have to consider the corresponding dual variable in
the PP for s. Instead, we set at = 0 in the PPs corresponding to σ ∈ S \ {s}. Hence, the
dual variable corresponding to (10.9) is multiplied by zero. Additionally, we can further
reduce the number of variables in the PP related to s by setting at = 1.

As mentioned earlier, in each node of the B&B tree it is necessary to know the path to
the root node to add all constraints of type (10.7) and (10.9) that have been computed on
this path and to adjust the PPs accordingly. Additionally, subsequent computed variables
have to be added to the corresponding branching constraints (10.7) and (10.9) respecting s
and t.

Proposition 10.1. The presented branching scheme is complete, i. e., all variables at every
leaf of the complete B&B tree are integer.

Proof. It is directly evident that the variables x and u are integer at the leaves of the B&B
tree as we branch on them if and only if they are fractional. On the other hand, the assign-
ment variables ζ are fixed to 0 if they occur in any of the constraints of type (10.7) or (10.9).
However, these constraints do not explicitly forbid fractional values of the remaining ζsτ

variables.
To exclude this, we assume the original assignment variables zst are integer but there

exists a BS s and a set τ1 with ζsτ1 fractional. By integrality of zst, it holds that zst = 1 for
all t ∈ τ1. Since

zst =
∑

τ∈Ts:t∈τ

ζsτ = 1,

there must exist at least one set τ2 , τ1 containing t with ζsτ2 fractional. Without loss of
generality, τ1 \ τ2 , ∅ and ζsτ1 + ζsτ2 = 1 (for ζsτ1 + ζsτ2 < 1, we replace ζsτ2 by the sum
over all assignment variables ζsτ with τ ∈ Ts, t ∈ τ and τ , τ1). For every t′ ∈ τ1 \ τ2 there
must exist (at least) one set τ3 containing t′ with ζsτ3 fractional but t < τ3. But then∑

τ∈Ts:t∈τ

ζsτ + ζsτ3 > 1,

which violates constraint (10.3d) for BS s as xs ≤ 1, a contradiction. �

10.2. Performance Improvements

A straightforward implementation of the B&P algorithm presented in the previous section
does not give satisfying results. Even small test instances cannot be solved to optimality.
Hence, we investigate several techniques to improve and to speed up the column generation
process for the d-RWNPP in this section.
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10.2.1. General Settings

In this subsection, we present general settings which we use for all computations.

Initial solution For the initialisation of the column generation approach, a (dual) feasi-
ble initial solution of the MP (10.3) is required (or infeasibility of the MP must be proven).
The quality of the initial solution impacts the dual solution of the initial RMP and thus,
also the quality of the lower and upper bounds for the optimal solution of the MP.

A promising initial solution can be computed by means of the LP relaxation of the com-
pact formulation (9.3). Denote by (xLP, uLP, zLP) the optimal LP solution of the compact
formulation. For every BS s ∈ S with xLP

s , 0, we sort the set of TNs with zLP
st , 0 such

that zLP
s0 ≥ zLP

s1 ≥ . . .. For some j ≥ 1 it holds zLP
st = xLP

s for the first j TNs (starting from 0)
due to the vub constraints (9.4). Hence, let τ denote the set of these TNs:

τ :=
{
t ∈ Ts

∣∣∣ zLP
st = xLP

s

}
= {0, . . . , j − 1} .

It holds τ ∈ Ts. Then, we consider the next TN j with zLP
s j < xLP

s . If the Γ-robust capacity
constraint ∑

t∈τ∪{ j}

w̄t

est
+ max
T ′⊆τ∪{ j},|T ′ |≤Γ

∑
t∈T ′

ŵt

est
≤ bs (10.10)

is still valid, we add this TN to the set τ, i. e., τ = τ∪{ j}. We add the subsequent TNs one by
one as long as the BS capacity is not exceeded. By this means, we create one appropriate
and as large as possible initial column per BS s ∈ S. Note that the corresponding solution
value in general differs from the LP solution value.

Absolute gap limit The pricing routine of a B&P algorithm stops if no further variables
with negative reduced cost exist. However, it is possible that a primal bound found earlier
is already an optimal solution. We introduce the following gap limit to stop the solving
process before no variables with negative reduced cost exist anymore. Let PB and DB
denote the primal and dual bound of the RMP, respectively. If |PB − DB| <abs gap, with
abs gapB gcd(mins∈S cs, λ) for integer values of cs and λ and gcd denotes the greatest
common divisor, then there cannot lie another integer solution between PB and DB and
we can stop the solving process. This reduces the tailing-off effect; cf. Vanderbeck [174].
Note, this absolute gap limit is automatically known by any solver for the compact for-
mulation (9.3) since all variables of this model are present in every step of the solution
process.

Aging Since we compute many columns, it is possible that pricing variables are dis-
carded by cutting off subtrees and hence, are not needed during the subsequent solving
process. Therefore, we mark the pricing variables as “removable” so that the correspond-
ing column can be removed from the LP due to aging or cleanup which is automatically
performed by the branch-and-price-and-cut framework scip [3] which we use in our com-
putational study in Section 10.3.
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Cutting planes As mentioned before, the PPs (10.6) are Γ-RKPs and hence, we can
apply the (strengthened) extended Γ-robust cover inequalities (8.29). We use the adapted
greedy heuristic by Klopfenstein and Nace [111] to separate these inequalities; compare
Algorithm 5 without a variable right hand side.

Set extension In the first pricing rounds, many dual variables βt have a value equal
to 0 since the RMP contains only very few columns providing poor dual information.
Vanderbeck [174] calls this the heading-in effect. A TN t with β̃t = 0 is not considered
in the PPs. Hence, the first sets computed in the PPs have a low cardinality. This is why
we extend the computed sets of TNs as follows. Assume, a PP for BS s has computed a
subset of TNs τ. For all t ∈ Ts \ τ with βt = 0, we include t in τ if the set τ ∪ {t} does not
violate the Γ-robust capacity constraint (10.10). Note, we assume an arbitrary ordering of
the TNs here. This extension is performed for every computed set of TNs in every B&B
node. As a consequence, it is possible that a TN is assigned to more than one BS in an
optimal solution. However, we can just drop the redundant assignments afterwards.

All described enhancements are implemented by default and we refer to the B&P algo-
rithm as simple henceforth.

10.2.2. The Lagrangian Bound

To evaluate the quality of the current LP solution found by the column generation algo-
rithm, we apply the so-called Lagrangian bound; see Desaulniers et al. [64]. Let ZLP

MP
denote the optimal objective value of the LP relaxation of the MP (10.3), ZLP

RMP of the cur-
rent LP relaxation of the RMP and let Z̃s be the optimal objective value of the PP (10.6)
corresponding to BS s ∈ S. Obviously, every optimal solution of the current RMP yields
an upper bound for the MP. Thus,

ZLP
MP ≤ ZLP

RMP.

Further, denote by
κ? = min

s∈S

(
α̃s − Z̃s

)
the minimum reduced cost in the current pricing round regarding all BSs. If κ? ≥ 0, there
does not exist a variable ζsτ with negative reduced cost and the optimal solution of the
current RMP is also an optimal solution of the MP.

Furthermore, we know that at most |S| many variables ζsτ are set to one in an optimal
solution of the MP since at most one subset of TNs can be assigned to each BS. This leads
to the upper bound ∑

s∈S

∑
τ∈Ts

ζsτ ≤ |S|.

Based on the previous observations, we can derive a lower bound on ZLP
MP for κ? < 0.

ZLP
RMP + |S|κ? ≤ ZLP

MP (10.11)
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10. A B&P Approach for the d-RWNPP

This bound states that we cannot reduce the optimal objective value of the current RMP by
more than |S| times the minimum reduced cost. This lower bound is called the Lagrangian
bound.

Let ξ denote the cardinality of a maximum independent set in the conflict graph G. At
most ξ many BSs can be deployed at the same time. Consequently, we can enhance the
lower bound (10.11) by replacing |S| with ξ.

The Lagrangian bound is used to speed up computations at B&B nodes, in particular
at the root node. Given a value gap, we leave the current node if −ξκ? < gap. To avoid
extensive fluctuations, we update the value of the Lagrangian bound only if the current
value −ξκ? is higher. This results in a stepwise behaviour of the Lagrangian bound. More-
over, in case ZLP

RMP is a multiple of gcd(mins∈S cs, λ), and gap≤ gcd(mins∈S cs, λ), there do
not exist integer solutions having a value less than ZLP

RMP and this value is a lower bound.
Therefore, we set gap=abs gap in our computational study.

We denote the B&P algorithm which includes the settings included in simple and the
Lagrangian bound as a stop criterion by LB henceforth.

10.2.3. Acceleration of the PPs

The time spent solving the PPs has significant influence on the overall performance of the
B&P algorithm. For example, it impacts the number of visited B&B nodes. Therefore, we
present several techniques to speed up the PPs in this subsection.

Stabilisation As explained, e. g., in Leitner et al. [122] and Vanderbeck [174], column
generation suffers from several drawbacks such as slow convergence (tailing-off effect),
generation of irrelevant columns mainly in the first iterations (heading-in effect), and pri-
mal degeneracy entailing multiple dual optimal solutions. These computational instabil-
ities cause long running times with many iterations. Many stabilisation techniques have
been developed to diminish these drawbacks; see Lübbecke and Desrosiers [127] for an
overview.

We focus on the primal degeneracy of the RMP and apply stabilisation using alternative
dual optimal solutions as described in Leitner et al. [122]. The dual of the LP relaxation
of the RMP, the Restricted Dual Problem (RDP), can be stated as the following LP.

max
∑
t∈T

βt −
∑

U⊆S: max. clique

γU (10.12a)

s.t.
∑
t∈τ

βt − αs ≤ 0 ∀ s ∈ S, τ ∈ T′s (10.12b)

βt ≤ λ ∀ t ∈ T (10.12c)

αs −
∑

U⊆S: max. clique, s∈U

γU ≤ cs ∀ s ∈ S (10.12d)

αs, βt, γU ≥ 0 ∀ s ∈ S, t ∈ T , U ⊆ S : max. clique (10.12e)
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with γU denoting the dual variables which correspond to the maximal clique inequali-
ties (10.3c). Further, constraints (10.12b) correspond to variables ζsτ, (10.12c) to ut and
constraints (10.12d) to xs. For a dual optimal solution (α̃, β̃, γ̃), we define the dual slack of
variable xs as follows.

∆s B cs − α̃s +
∑

U⊆S: max. clique, s∈U

γ̃U

For every dual optimal solution (α̃, β̃, γ̃), there exists another optimal solution (α?, β?, γ?)
of the RDP computed as

α?s = α̃s + ∆s = cs +
∑

U⊆S: max. clique, s∈U

γ̃U,

β? = β̃,

γ? = γ̃.

The solution (α?, β?, γ?) is optimal for the RDP since the objective value is not changed,
constraints (10.12d) are fulfilled with equality and constraints (10.12b) are satisfied more
conspicuously. Obviously, α?s ≥ α̃s. Hence, if we compare the objective value of the PP
to α?s instead of α̃s the comparison becomes more restrictive and the generated columns
are more likely to be relevant.

Even though the variables βt are of greater importance since they occur as cost in the
objective function of the PPs, we cannot increase their value in a given dual optimal so-
lution by adding the dual slack of variable ut. This would on the one hand increase the
objective value of the RDP and on the other hand we could not guarantee the compliance
of constraints (10.12b) anymore.

Note, the stabilisation is only performed at the root node since the dual values of the
branching constraints are typically unknown and cannot be computed easily in the subse-
quent B&B nodes.

We denote the B&P algorithm which includes the settings of algorithm LB and the sta-
bilisation approach by PP stab henceforth.

Suboptimal solving of PPs The proof that a primal solution of a PP is optimal can be
rather time consuming for larger test instances. Hence, we stop the solving process of a PP
if the optimality gap is less than 1 %. Furthermore, we restrict the number of B&B nodes
per PP to 500. If the gap limit is not reached within the first 500 B&B nodes, the gain of
solving this PP any further is not sufficient to justify the additional time consumption.

In the case that we have not found any new variable with negative reduced cost at the
current B&B node, we solve all PPs again without a gap limit and without the restriction
on the number of B&B nodes. By this means, we can guarantee that we have not missed
to compute a necessary variable at any node.

We denote the algorithm based on PP stab with the suboptimal solving of the PPs by
PP subopt.
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10.2.4. Limited Number of Added Columns

Per pricing round, we can add up to |S| many variables which can lead to a high number
of total variables. Therefore, it is reasonable to investigate the restriction of the number
of added variables per pricing round. We study the restriction to 1, 5, or 10 variables per
round. Even though we restrict this number, we solve all (necessary) PPs and sort the
computed variables by their reduced cost in ascending order. We then add the variable or
the five or ten variables with the most negative reduced cost.

The setting which limits the number of added columns per pricing round is denoted by
added cols and includes the setting PP subopt.

10.2.5. A Primal Heuristic

The primal bounds computed during a B&P procedure are in general rather poor. To
overcome this drawback we could solve the current RMP to optimality once in a while.
However, this would take some time if the solving process has progressed due to the num-
ber of columns in the current subset. This is why we develop a primal heuristic which can
be called at the end of each B&B node.

We intend to compute a feasible solution (x̂, û, ζ̂) from the current LP solution denoted
by (xLP, uLP, ζLP). For this purpose, we define a new set S? of BSs based on xLP

s as follows.

S? B
{
s ∈ S

∣∣∣ xLP
s > 0.5

}
.

For all BSs not in this set, we fix x̂s = 0 and ζ̂sτ = 0 ∀ s ∈ S \ S?, τ ∈ T′s. Furthermore, we
keep all already decided assignments by setting ζ̂sτ = 1 ∀ (s, τ) if ζLP

sτ = 1.
To determine the remaining values, we solve the following sub-ILP which is based on

the current RMP.

min
∑
s∈S?

csxs + λ
∑
t∈T

ut (10.13a)

s.t.
∑
s∈S?t

∑
τ∈T′s:t∈τ

ζsτ + ut = 1 ∀ t ∈ T (10.13b)∑
s∈U

−xs ≥ −1 ∀U ⊂ S?,U max. clique (10.13c)

xs −
∑
τ∈T′s

ζsτ ≥ 0 ∀ s ∈ S? (10.13d)

xs, ζsτ, ut ∈ {0, 1} ∀ s ∈ S?, τ ∈ T′s, t ∈ T (10.13e)

To speed up the primal heuristic, we set a limit of one on the number of solutions. There-
fore, as soon as an integer solution with a value better than the known primal solution
of the RMP is found, the solving process of the sub-ILP is stopped. Based on this solu-
tion, we set the remaining values for (x̂, û, ζ̂) to the values of (10.13) and add (x̂, û, ζ̂) as a
new primal solution to the RMP. We denote the B&P algorithm which applies this primal
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identifier # BSs # TNs ξ

BP 20 200a 20 200 12
BP 20 200b 20 200 11
BP 20 200c 20 200 12
BP 30 300a 30 300 14
BP 30 300b 30 300 14
BP 30 300c 30 300 15

Table 10.1.: Number of BSs and TNs, and the maximum independent set number of the
six test scenarios.

heuristic and includes the setting added cols with the best parameter (to be determined)
by heuristic.

10.3. Computational Study

In this section, we present a summary of the comprehensive computational study presented
in our work [50] which investigates the performance of the techniques illustrated in Sec-
tion 10.2. First, we briefly describe the considered scenarios and give some information
on the general settings for the performed computations. Afterwards, we analyse the gains
of the different settings achieved at the root node and for the complete solving process.

10.3.1. The Scenarios

We consider six different scenarios of two dimensions which are generated as described
in Section 5.9.1 as well as Section 9.1.2 and displayed in Table 10.1. The conflict graph
is established via the minimum distance requirement with dmin = 500 m. Additionally, we
set emin = 0.5 bps/Hz. In this computational study, we consider demand values in bit per
second (not kbps) and do not round. Additionally, we set cs = 4000 and λ = 1000. Fur-
thermore, we fix abs gap = gcd(4000, 1000) = 1000. We consider Γ ∈ {0, 1, . . . , 20} for
all scenarios where the maximum value is set to 20 since initial computations performed
with the compact model (9.3) showed a constant solution for Γ ≥ 20 for all scenarios.

All computations are performed on a Linux machine with 3.40GHz Intel Core i7-2600
processor, a memory limit of 11 GB RAM and a general CPU time limit of two hours. We
use scip 3.0.0 [3] with cplex 12.4 [98] as underlying LP solver. Furthermore, the PPs are
directly solved using cplex.

The various investigated algorithms are summarised in Table 10.2 based on the descrip-
tions given in Section 10.2.

In the following subsection, we analyse the quality of the LP relaxation and the be-
haviour of the Lagrangian bound exemplarily for scenario BP 30 300b. We chose this
scenario randomly from the group of the three larger scenarios since the root node of
BP 20 200a-c is mostly solved too fast to reveal the information we would like to present.
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Identifier Description

simple straightforward B&P, initial solution via compact LP, absolute gap limit,
aging of pricing variables, (strengthened) extended cover inequalities for
PPs, extended sets of TNs

LB as simple and uses the Lagrangian bound as stop criterion at each B&B
node

PP stab as LB plus stabilisation at the root node

PP subopt as PP stab plus solving the PPs suboptimally: gap limit of 1 %, at
most 500 B&B nodes

added cols as PP subopt plus the number of added variables per pricing round is
limited

heuristic as added cols plus deploying a primal heuristic

Table 10.2.: Summary of all settings described in Section 10.2.

10.3.2. LP Relaxation and Lagrangian Bound

In Figure 10.2, we display the values of the LP relaxation of the compact model (9.3)
and the values of the LP solutions computed at the root node via the column generation
algorithm for Γ ∈ {0, 1, . . . , 50}. Note, we consider values for Γ of up to 50 here to illustrate
the complete behaviour of the LP solutions for this specific scenario even though, we
set Γ ≤ 20 for all other computations. For the more complex problems with 6 ≤ Γ ≤ 32,

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

48000

49000

50000

51000

52000

Γ

compact LP solution
root LP ColGen

Figure 10.2.: Comparison of the LP solution of the compact model and the LP solution at
the root node of the column generation algorithm for scenario BP 30 300b
and Γ ∈ {0, 1, . . . , 50}.
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(b) Zoomed in to rounds 60 to 133.

Figure 10.3.: LP solution and Lagrangian bound per pricing round at the root node for
scenario BP 30 300b and Γ = 4.

the value of the LP solution computed via column generation is significantly better than the
value of the LP relaxation of the compact model. By “significantly” we signify the actual
values rather than the percentage value since, for example, 50001 is preferred to 49999
as a lower bound due to the fact that the parameters in the objective are multiples of
thousand. Concluding, Figure 10.2 demonstrates one reason to apply a B&P algorithm
to the d-RWNPP.

Sticking to scenario BP 30 300b, we analyse the behaviour of the Lagrangian bound
introduced in Section 10.2.2 in Figure 10.3 exemplarily for Γ = 4. We display the La-
grangian bound and the value of the current LP solution per pricing round at the root
node. For a better readability, we omit the value of the Lagrangian bound at the first
round (−611000). As explained in Section 10.2.2, the Lagrangian bound has a stepwise
behaviour which becomes apparent in the figure. Furthermore, in the first 60 rounds the
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simple LB PP stab PP subopt

time 0.0% 0.0% 9.5% 90.5%
BP 20 200a rounds 19.0% 57.1% 19.0% 28.6%

vars 4.8% 23.8% 38.1% 42.9%

time 0.0% 4.8% 14.3% 81.0%
BP 20 200b rounds 28.6% 71.4% 19.0% 14.3%

vars 23.8% 23.8% 42.9% 38.1%

time 0.0% 4.8% 23.8% 71.4%
BP 20 200c rounds 0.0% 71.4% 28.6% 9.5%

vars 9.5% 28.6% 66.7% 23.8%

time 0 2 10 51
total absolute rounds 10 42 14 11
values vars 8 16 31 22

total 18 60 55 84

Table 10.3.: Percentage of instances for which each of the four settings simple, LB,
PP stab and PP subopt gives the best result per scenario and the total ab-
solute values for BP 20 200a–c.

gap between the bound and the value of the LP solution is quite large but it decreases fast
in the subsequent pricing rounds; see Figure 10.3(b). As we stop the solving of the root
node if the gap between the value of the LP solution and the Lagrangian bound is less
than abs gap= 1000, there is still a gap between the two curves at the last pricing round.
The application of the Lagrangian bound as a stop criterion reduces the number of pricing
rounds needed to solve the root node from 692 to 133 rounds for the present scenario and
Γ value. Therefore, the Lagrangian bound has also the potential to reduce the time spent
solving the root node.

10.3.3. Performance of Column Generation at the Root Node

In this subsection, we analyse the performance of the different settings summarised in Ta-
ble 10.2 for the column generation algorithm at the root node. The aspects we investigate
are time consumption, number of pricing rounds and number of computed variables. De-
tailed results for scenario BP 30 300b can be found in our work [50]. We give a general
overview here.

First, we compare the four settings simple, LB, PP stab, and PP subopt by counting
the number of cases in which each setting gives the best result per scenario. “Best” regards
either the lowest time, number of rounds, or number of variables. If two settings give the
same best result, the counters for both settings are increased. The results for scenarios
BP 20 200a–c are given in Table 10.3 and for BP 30 300a–c in Table 10.4.

The last four lines in each table give the total absolute values regardless of the scenarios
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simple LB PP stab PP subopt

time 0.0% 9.5% 19.0% 71.4%
BP 30 300a rounds 4.8% 66.7% 19.0% 14.3%

vars 0.0% 4.8% 81.0% 14.3%

time 0.0% 38.1% 38.1% 23.8%
BP 30 300b rounds 0.0% 66.7% 28.6% 4.8%

vars 0.0% 28.6% 66.7% 4.8%

time 0.0% 23.8% 23.8% 52.4%
BP 30 300c rounds 0.0% 85.7% 19.0% 0.0%

vars 0.0% 4.8% 90.5% 4.8%

time 0 15 17 31
total absolute rounds 1 46 14 4
values vars 0 8 50 5

total 1 69 81 40

Table 10.4.: Percentage of instances for which each of the four settings simple, LB,
PP stab and PP subopt gives the best result per scenario and the total ab-
solute values for BP 30 300a–c.

in each group. We do not sum over scenarios with different dimensions since they are
too diverse in their solving behaviour. Considering the overall total number, the setting
PP subopt performs best for the smaller instances whereas PP stab is the best setting for
the larger scenarios. Regarding the different aspects separately, the setting LB performs the
fewest pricing rounds for both types of scenarios while PP stab adds the fewest number of
variables and PP subopt consumes the least time. These observations are quite intuitive.
First, the Lagrangian bound stops the solving process earlier which implies a reduction in
the number of pricing rounds. Second, by means of the stabilisation we compute other
variables which can be more effective. Hence, fewer variables are necessary. Finally,
the suboptimal solving of the PPs saves time at the expense of increasing the number of
pricing rounds and computed variables. However, as the time is usually the most restrictive
resource in real world applications, we regard PP subopt as the most appropriate setting.
This setting most frequently gives the best result concerning the time independent of the
dimension of the scenarios.

The number of computed pricing variables is in general quite high. This leads to the
question if it is beneficial to restrict the number of added variables per pricing round. We
test the effect of adding at most 1, 5, or 10 variables per round. Again, we count the cases
in which each setting gives the best result regarding solving time, number of rounds and
number of variables, see Table 10.5 for BP 20 200a–c and Table 10.6 for BP 30 300a–c.

The highest percentage of instances with the lowest number of computed variables is
obtained by added cols with a limit of 1 independent of the dimension of the scenarios.
However, the restriction on the number of variables in general deteriorates the solving
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PP subopt
added cols added cols added cols

1 5 10

time 57.1% 19.0% 4.8% 19.0%
BP 20 200a rounds 57.1% 14.3% 9.5% 28.6%

vars 9.5% 81.0% 4.8% 4.8%

time 52.4% 4.8% 23.8% 23.8%
BP 20 200b rounds 47.6% 4.8% 23.8% 28.6%

vars 14.3% 52.4% 33.3% 0.0%

time 52.4% 0.0% 4.8% 42.9%
BP 20 200c rounds 52.4% 0.0% 14.3% 52.4%

vars 0.0% 81.0% 9.5% 9.5%

time 34 5 7 18
total absolute rounds 33 4 10 23
values vars 5 45 10 3

total 72 54 27 44

Table 10.5.: Percentage of instances for which each of the four settings PP subopt,
added cols 1, added cols 5 and added cols 10 gives the best result per
scenario and the total absolute values for BP 20 200a–c.

PP subopt
added cols added cols added cols

1 5 10

time 76.2% 0.0% 0.0% 23.8%
BP 30 300a rounds 76.2% 0.0% 0.0% 23.8%

vars 9.5% 81.0% 0.0% 9.5%

time 57.1% 0.0% 4.8% 38.1%
BP 30 300b rounds 76.2% 0.0% 4.8% 23.8%

vars 0.0% 85.7% 14.3% 0.0%

time 47.6% 0.0% 9.5% 42.9%
BP 30 300c rounds 66.7% 0.0% 0.0% 33.3%

vars 0.0% 61.9% 14.3% 23.8%

time 38 0 3 22
total absolute rounds 46 0 1 17
values vars 2 48 6 7

total 86 48 10 46

Table 10.6.: Percentage of instances for which each of the four settings PP subopt,
added cols 1, added cols 5 and added cols 10 gives the best result per
scenario and in the total absolute values.

166



10.4. Numerical Comparison of Compact Formulation and B&P

process at the root node compared to PP subopt; see the overall total absolute numbers.
Hence, we no longer consider the setting added cols and the setting heuristic is the
setting PP subopt combined with the primal heuristic proposed in Section 10.2.5.

10.3.4. Performance of the B&P Algorithm

For each group of scenarios, where the groups are defined with respect to the dimen-
sion, we have considered 63 = 3 · 21 different settings as Γ ∈ {0, 1, 2, . . . , 20}. To
give an overview on the performance of the five different settings simple, LB, PP stab,
PP subopt, and heuristic regarding the complete solving process, we compute the per-
centage of these 63 instances per group which have at most a certain gap after the time
limit of two hours is reached. The results are displayed in Figure 10.4 for the scenarios
BP 20 200a–c as well as BP 30 300a–c.

Scenarios BP 20 200b and BP 20 200c can be solved for most values of Γ within a few
seconds regardless of which setting. This is the reason why around 75 % of the smaller
instances are solved to optimality with any setting; see Figure 10.4(a). Moreover, all
instances of the first group solved by the setting heuristic have an optimality gap of less
than 5.5 % while all instances of the group of the larger scenarios have an optimality gap
of less than 12 % when solved by heuristic. These results are the best we can achieve
by the improved B&P algorithm. However, already by means of PP subopt which is
included in heuristicmore than 60 % (95 %) of the larger (smaller) instances are solved
with a gap less than or equal to 4 %. Concerning the straightforward approach simple,
around 43 % (85 %) of the larger (smaller) instances are solved to optimality, whereas an
optimality gap could not be computed at all for 30 % (10 %) due to missing dual bounds.
Overall, the results demonstrate a clear outperformance of the settings PP subopt and
heuristic compared to simple for computing small gaps within two hours.

In the following section, we investigate the performance of the B&P algorithm with
the best settings PP subopt and heuristic directly compared to the compact formula-
tion (9.3) in a continuative computational study. We perform computations on a selection
of scenarios taken from Section 9.1 and on BP 20 200a–c and BP 30 300a–c.

10.4. Numerical Comparison of Compact Formulation
and B&P

To compare the compact formulation (9.3) of the d-RWNPP including the improvements
presented in Section 9.1.1 to the B&P algorithm with the best settings PP subopt and
heuristic, we run tests for the scenarios with at most 40 BSs presented in Section 9.1
and for all scenarios presented in Section 10.3. We choose the values of Γ regarding the
magnitude of the scenarios, i. e., Γ ∈ {0, 2, . . . , 40} and Γ ∈ {0, 1, 2, . . . , 20}, respectively.
Thus in total, we solve 21 instances for ten scenarios.

All computations are performed on a Linux machine with 3.40GHz Intel Core i7-3770
processor and a general CPU time limit of two hours. Additionally, we set a memory limit
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Figure 10.4.: Percentage of the 63 instances per group of scenarios (BP 20 200a–c or
BP 30 300a–c and Γ ∈ {0, 1, 2, . . . , 20}) with a gap less than an optimality
gap given at the x-axis for a time limit of two hours and the different settings.

of 11 GB. Note, we also use scip here to solve the compact formulation (9.3) to obtain
comparable results.

In Table 10.7 we display the number of instances per scenario that are solved to opti-
mality with the different algorithms. The compact formulation solves all instances of the
scenarios consisting of 20 BSs and half (one third) of the instances with 30 (40) BSs. In
contrast, PP subopt and heuristic cannot solve any of the instances for the scenarios
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identifier compact PP subopt heuristic

BP 20 200a 21 13 14
BP 20 200b 21 20 20
BP 20 200c 21 21 21
BP 30 300a 11 0 9
BP 30 300b 18 4 6
BP 30 300c 10 8 8
s 20 200 21 0 0
s 30 300 15 0 0
s 40 400 9 0 0
s 40 450 9 0 0

Table 10.7.: Number of instances out of 21 per scenario solved to optimality.

instance compact heuristic

BP 20 200a 47.57 904.61
BP 20 200b 1.09 409.10
BP 20 200c 1.33 134.40
BP 30 300a 302.87 2436.15
BP 30 300b 238.61 2656.15
BP 30 300c 447.77 2858.09
s 20 200 79.07 –
s 30 300 988.24 –
s 40 400 1706.31 –
s 40 450 1239.87 –

Table 10.8.: Average solving time for solved instances.

presented in Section 9.1 (identifier ”s” and values rounded to kbps). However, the num-
ber of solved instances for scenarios presented in Section 10.3 (identifier ”BP” and values
given in bps) and 20 BSs is reasonable. For these scenarios and 30 BSs, heuristic per-
forms better than PP subopt but still solves less than half of the instances that can be
solved by the compact formulation. In summary, the B&P algorithm with the best setting
heuristic is clearly outperformed by the compact formulation in terms of numbers of
solved instances.

In Table, 10.8 we display the solving time per scenario averaged over all instances
solved to optimality by either the compact formulation or heuristic. The compact for-
mulation is considerably faster than heuristic. This algorithm needs at most 16 % of
the average time needed by heuristic and can, in general, solve more instances. The
numbers displayed in Table 10.8 further demonstrate that the scenarios taken from Sec-
tion 9.1 are harder to solve than the scenarios presented in Section 10.3. However, these
more difficult scenarios can still be solved in a reasonable amount of time by the compact
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formulation if they can be solved to optimality at all within the time limit.

10.5. Conclusion

In this chapter, we have presented a complete B&P approach for the d-RWNPP based
on our work [50]. Additionally, we have introduced seven different settings in total to
accelerate the solving process and analysed the performance in a computational study
executed on six test instances of two dimensions. We have evaluated five settings at the
root node and for the complete solving process.

The limitation on the number of added variables per pricing round crystallised to have
a negative effect on the solving performance. Though, all other enhancements have in
general a positive effect on the solving time, the number of processed pricing rounds and
the number of added variables. The suboptimal solving of the PPs performs best at the
root node while the primal heuristic which also includes the suboptimal solving of the
PPs emerged to be the best setting regarding the complete solving process. Certainly, the
judgement of the best performance depends on the focus of the evaluation.

Moreover, we have performed a computational study to compare the best settings for
the B&P algorithm to the compact ILP which has demonstrated that even the best setting
of the B&P algorithm cannot compete with the (improved) compact formulation (9.3).
Nevertheless, for more sophisticated robustness models such as the multi-band robustness
investigated in Part IV or the recoverable robustness studied in Part V, the compact model
becomes considerably more difficult due to higher numbers of variables and constraints.
For such concepts, the presented B&P algorithms might give better results compared to
the blown-up compact formulation since the applied robustness approach just affects the
PPs and not the complete problem.

Furthermore, an aspect for future investigations on accelerating the B&P algorithm is
the solving of the PPs by a dynamic programming algorithm. We present such an algorithm
for multi-band RKPs in the subsequent part.
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Part IV.

Multi-Band Robustness
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11. General Concept

The Γ-robustness concept studied in Part III might estimate the deviations just roughly if
the probability of deviation varies noticeably within the deviation interval, which com-
prises only the extreme values. In such a case, Γ-robustness can lead to a too conservative
uncertainty set. To overcome this limitation, the deviation interval can be partitioned into
multiple intervals, so-called bands, and the total number of realisations in each band is
bounded by one or two parameters per band. Especially in case that historical data on the
uncertain coefficients is available, a so-called multi-band uncertainty set can more effec-
tively approximate the distribution of the deviations than a Γ-robust uncertainty set.

A first attempt to use multiple deviation bands was made by Bienstock [22] by means
of the so-called histogram model for portfolio optimisation problems in finance. This
concept has also been applied to wireless network design problems by Bienstock and
D’Andreagiovanni [23] and D’Andreagiovanni [58]. The first theoretical framework of the
multi-band robustness concept was presented in Büsing and D’Andreagiovanni [34], [35].
These works comprise fundamental investigations of the properties of this concept in case
of a lower as well as upper bound on the number of realisations per band, multi-band
robust counterparts and first studies on probabilistic bounds for feasibility guarantees. A
good overview on the history of the multi-band concept with lower and upper bounds can
be found at the website given in [59]. Shortly after the works [34, 35], Mattia [138] pub-
lished a multiple interval concept in a technical report. This concept is quite similar to
the multi-band robustness but more restricted as the probability distribution of the random
variables is assumed to be symmetric and no lower bounds on the number of realisations
per interval are assumed. Kutschka [118] studies polyhedral properties of the multi-band
RKP and shows that the multi-band RKP polytope is full-dimensional if and only if the
highest possible weight of every item does not exceed the knapsack capacity. Additionally,
the author states trivial facets of the polytope and derives (extended) cover inequalities,
which are valid.

In the following section, we briefly present the basic concept of multi-band robustness
based on [34].

11.1. The Basic Principle

The following assumptions on the vector u ∈ Rn of uncertain data with n ∈ N are necessary
to define the concept of multi-band robustness.

• Each uncertain entry u j of u can be modelled as an independent and bounded random
variable.
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• The distribution of each random variable is unknown but a realisation is equal to
the summation of a nominal value ū j and a deviation lying in the range [ûK−

j , û
K+

j ],
where ûK−

j , û
K+

j ∈ R represent the maximum negative and positive deviations with
K−, K+ ∈ Z.

In the multi-band robustness, the deviation interval [ûK−
j , û

K+

j ] of each uncertain coeffi-
cient u j is partitioned into K = −K− + K+ + 1 disjoint bands based on K deviation values:

−∞ < ûK−
j < . . . < û−1

j < û0
j = 0 < û1

j < . . . < ûK+

j < ∞.

A band k ∈ {K−, . . . ,−1} of the set of negative deviation bands corresponds to a range[
ûk

j, û
k+1
j

)
while a band k ∈ {1, . . . ,K+} of the set of positive deviation bands corresponds

to a range
(
ûk

j, û
k+1
j

]
. Additionally, k = 0 denotes the zero-band which is represented by

the single value û0
j . Thus, a realisation u j of an uncertain coefficient u j lies in band k ∈

{K−, . . . ,K+} if and only if

u j ∈
[
ū j + ûk

j, ū j + ûk+1
j

)
for k ∈ {K−, . . . ,−1} (11.1a)

u j = ū j for k = 0 (11.1b)

u j ∈
(
ū j + ûk

j, ū j + ûk+1
j

]
for k ∈ {1, . . . ,K+}. (11.1c)

For each band k, we define a lower bound γk and an upper bound Γk on the number of
deviations falling in this band with 0 ≤ γk ≤ Γk ≤ n. We assume

∑K+

k=K− γk ≤ n to guarantee
the existence of a feasible solution and γ0 = 0, Γ0 = n to allow that all values or none
deviate.

The multi-band robust uncertainty set can be defined as follows, which represents a
slightly modified and corrected version of the uncertainty set given by Kutschka [118].

Definition 11.1. For a vector u ∈ Rn of uncertain data with n ∈ N, define K bands
with γk, Γk ∈ {0, 1, . . . , n} for all k ∈ {K−, . . . ,K+} and let ū j, ûk

j ∈ R such that for ev-
ery realisation holds (11.1). The multi-band robust uncertainty setUmb is defined as

Umb B

{
u ∈ Rn

∣∣∣∣∣∣∃ δk
j ∈ {0, 1}

Kn : ū j +

−1∑
k=K−

δk
jû

k
j ≤ u j < ū j +

−1∑
k=K−

δk
jû

k+1
j

or u j = ū j + δ0
j û

0
j ,

or u j +

K+∑
k=1

δk
jû

k
j < u j ≤ ū j +

K+∑
k=1

δk
jû

k+1
j , (11.2)

γk ≤

n∑
j=1

δk
j ≤ Γk ∀ k ∈ {K−, . . . ,K+},

K+∑
k=K−

δk
j = 1 ∀ j ∈ {1, . . . , n}

}
.
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Figure 11.1.: Five-band robust uncertainty sets for two combinations of Γ−2, Γ−1, Γ1, Γ2.
Dashed lines are not included in the set.

We give an example of a multi-band robust uncertainty set in case of two uncertain
coefficients which extends the Γ-robust example given in Figure 8.1 on page 117.

Example 11.2. For a problem with two uncertain coefficients u1, u2 and nominal vec-
tor ū = (3, 4), we model five deviation bands with coefficients û−2 = (−2,−3), û−1 =

(−1,−2), û0 = (0, 0), û1 = −û−1, and û2 = −û−2. We assume γk = 0 for all k ∈
{−2,−1, 0, 1, 2} and Γ0 = 2. We depict two five-band robust uncertainty sets in Fig-
ure 11.1 where the first corresponds to Γ−2 = Γ2 = 1 and Γ−1 = Γ1 = 2 and the second
to Γ−2 = Γ1 = 2, Γ−1 = Γ2 = 1.

Note, the five-band uncertainty sets presented in Figure 11.1 are not convex. However,
by the multi-band robustness approach, we secure solutions against the convex hull of
the uncertainty set. The convex hulls of the uncertainty sets given in Example 11.2 are
displayed in Figure 11.2.

We assume henceforth that the left hand side of a linear constraint ux ≤ b is affected
by uncertainty, where x ≥ 0. For this type of inequality, positive deviations contribute
most to a feasible worst-case realisation of the uncertain data u. Thus, we only focus on
positive deviation bands in the remainder of this part. For worst-case realisations which
also include negative bands, Büsing and D’Andreagiovanni [35] introduce frequency pro-
files which determine the number of coefficient realisations u j per band of a worst-case
realisation vector u ∈ Umb.

Moreover, we drop the lower bound γk on the number of realisations in band k; compare
the multiple interval concept by Mattia [138]. The multi-band uncertainty set including
only positive bands with upper bounds can be stated as follows.

Definition 11.3. For a vector u ∈ Rn of uncertain data with n ∈ N, define K bands
with Γk ∈ {0, 1, . . . , n} for all k ∈ {0, . . . ,K} and let ū j, ûk

j ∈ R such that for every real-
isation holds u j ∈

(
ū j + ûk−1

j , ū j + ûk
j

]
for one band k ∈ {1, . . . ,K} or u j = ū j + û0

j . The
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Figure 11.2.: Convex hulls of five-band robust uncertainty sets given in Figure 11.1.

multi-band robust uncertainty set Umb+ with only positive bands and upper bounds is de-
fined as

Umb+ B
{
u ∈ Rn

∣∣∣ u j = ū j + δ j ∀ j ∈ {1, . . . , n}, δ ∈ Smb+
}
, (11.3)

with scenarios set

Smb+ B

{
δ ∈ Rn

∣∣∣∣∣∣ δ j ∈
[
û0

j , û
K
j

]
,
∣∣∣∣{ j ∈ {1, . . . , n} : δ j = û0

j

}∣∣∣∣ ≤ Γ0,∣∣∣∣{ j ∈ {1, . . . , n} : δ j ∈
(
ûk−1

j , ûk
j

]}∣∣∣∣ ≤ Γk ∀ k ∈ {1, . . . ,K}
}
. (11.4)

We call δ ∈ Smb+ a feasible scenario.

Note, we use an alternative representation for Umb+ for a simple introduction of the
following dominance relation. Let δ, δ′ ∈ Smb+ be two feasible scenarios. We say δ
dominates δ′ if δ j ≥ δ

′
j ∀ j ∈ {1, . . . , n}. Hence, a solution x ≥ 0 which is feasible under

scenario δ, i. e., (ū j + δ j)x j ≤ b j ∀ j ∈ {1, . . . , n}, remains feasible for δ′.
The following lemma is a direct consequence of Lemma 1 given in [35].

Lemma 11.4. Let δ ∈ Smb+ be a feasible scenario. If δ j , ûk
j for any j ∈ {1, . . . , n}

and k ∈ {0, . . . ,K}, there exists a feasible scenario δ′ ∈ Smb+ dominating δ.

By means of this lemma, it is sufficient to consider only vectors u ∈ Umb+ with u j ∈

{ū j + û0
j , ū j + û1

j , . . . , ū j + ûK
j } for the determination of a worst-case realisation.

11.2. The Robust Counterpart

In this section, we investigate the multi-band robust counterpart of a standard LP in row
by row representation given in (8.2) assuming only positive deviation bands; cf. [35, 118]
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for the general multi-band robust counterpart. The corresponding multi-band robust coun-
terpart which consists of an exponential number of constraints is given as

max ctx (11.5a)

s.t. aix ≤ bi ∀ i ∈ {1, . . . ,m}, ai ∈ U
mb+
i (11.5b)

x ∈ Rn
≥0, (11.5c)

where Umb+
i is the multi-band robust uncertainty set of row i. Similar to the Γ-robustness

concept, (11.5) can be reformulated to a formulation with a polynomial number of con-
straints, which are the most restrictive.

max ctx
s.t. max

ai∈U
mb+
i

aix ≤ bi ∀ i ∈ {1, . . . ,m} (11.6)

x ∈ Rn
≥0,

This model is non-linear due to the inner maximisation. However, we can linearise it as
follows. For row i and fixed variables x, the inner maximisation is equal to

n∑
j=1

āi jx j + max
n∑

j=1

K∑
k=0

âk
i jx jzk

i j (11.7a)

s.t.
n∑

j=1

zk
i j ≤ Γk ∀ k ∈ {0, . . . ,K} (11.7b)

K∑
k=0

zk
i j = 1 ∀ j ∈ {1, . . . , n} (11.7c)

zk
i j ∈ {0, 1} ∀ j ∈ {1, . . . , n}, k ∈ {0, . . . ,K}, (11.7d)

where zk
i j = 1 if and only if coefficient ai j deviates in band k. The underlying matrix of the

maximisation problem in (11.7) is totally unimodular; see [35, 118]. Hence, we can relax
the binary constraints (11.7d) to 0 ≤ zk

i j ≤ 1, where the upper bound is dominated by con-
straints (11.7c) and is thus redundant. For the resulting LP, we introduce dual variables π
and ρ for constraints (11.7b) and (11.7c), respectively, and apply strong duality. The dual
of the maximisation problem in (11.7) can then be stated as

min
K∑

k=0

Γkπ
k
i +

n∑
j=1

ρi j (11.8a)

s.t. πk
i + ρi j ≥ âk

i jx j ∀ j ∈ {1, . . . , n}, k ∈ {0, . . . ,K} (11.8b)

πk
i ≥ 0 ∀ j ∈ {1, . . . , n}, k ∈ {0, . . . ,K} (11.8c)
ρi j free. (11.8d)
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Analogously to the compact Γ-robust counterpart developed in Section 8.2, we rewrite
the non-linear formulation (11.6) using the dual (11.8) and obtain the compact multi-band
robust counterpart

max ctx (11.9a)

s.t.
n∑

j=1

āi jx j +

K∑
k=0

Γkπ
k
i +

n∑
j=1

ρi j ≤ b ∀ i ∈ {1, . . . ,m}, k ∈ {0, . . . ,K} (11.9b)

πk
i + ρi j ≥ âk

i jx j
∀ i ∈ {1, . . . ,m}, j ∈ {1, . . . , n},
k ∈ {0, . . . ,K} (11.9c)

x, π ≥ 0, ρ free. (11.9d)

This compact formulation possesses m(n + K + 1) additional variables and nm(K + 1)
extra constraints. Thus, its size is polynomial in the size of the non-robust LP (8.2). As a
consequence, applying multi-band robustness to an (I)LP does not increase its theoretical
complexity.

Similar to the separation of robustness cuts for the Γ-robustness approach presented
in [72], an alternative formulation to the compact multi-band robust model (11.9) is to
solve the non-robust formulation (8.2) and separate violated model constraints as included
in (11.5b); see Büsing and D’Andreagiovanni [34].
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The classical KP introduced in Section 1.3 is NP-hard but can be solved in pseudo-poly-
nomial time via a DP with complexity O(nB) as stated in Section 1.3.1. Further algorithms
usually first order the items according to non-increasing profit-weight ratios and then de-
rive upper and lower bounds which can be used to fix variables before applying B&B
techniques; cf. Pisinger [153] and the references therein.

The Γ-RKP with uncertain weights introduced in Section 8.5 is a generalisation of the
KP and hence, also NP-hard. Nevertheless, there exist DPs which solve fairly large in-
stances within reasonable time. Klopfenstein and Nace [110] present a DP which is a
modification of the DP for the KP and has complexity O(nB2) while Monaci et al. [141]
develop an algorithm explicitly for the Γ-RKP improving the complexity to O(ΓnB). The
crucial part of the latter algorithm is the ordering of items according to non-increasing
deviation values.

In this chapter, we investigate a further generalisation of the Γ-RKP, the multi-band
RKP, where multi-band robustness has been introduced in Chapter 11. The presented
results are based on our joint work [52]. The multi-band RKP has not been studied in-
tensively. Kutschka [118] proves the full-dimensionality of the associated polytope under
certain prerequisites and derives (extended) cover inequalities. In [35, 138], the authors
consider a special case of multi-band robustness where uncertainties occur only in the ob-
jective coefficients. Mattia [138] shows that the resulting problem can be solved by solving
at most (n + 1)K nominal problems, where K is the number of bands. Since uncertain ob-
jective coefficients can be transformed to uncertain weights for the KP, the latter algorithm
would yield a O(nK+1B) algorithm. However, as we show by a counterexample in Sec-
tion 12.2, the stated algorithm is incorrect since the domain for the dual variables in the
robust counterpart is not correct. Büsing and D’Andreagiovanni [35] present a corrected
version requiring the solving of O(nK2

) nominal problems, yielding a O(nK2
B) algorithm

for the multi-band RKP.
We develop two DPs. The first algorithm proposed in Section 12.2 has a complexity

linear in the number of items but not in the knapsack capacity (O(nBK+1)). As the capacity
can be significantly higher than the number of items, we propose a second DP in Sec-
tion 12.3, which has a complexity linear in the capacity (O(K!nK+1B)). As a side effect,
we generalise a result of Bertsimas and Sim [19] on combinatorial optimisation problems
with uncertain objective. Additionally in Section 12.4, we develop practical improvements
to speed-up the solving process. The performance of the different algorithms is analysed
in a computational study in Section 12.5.

In the following section, we briefly present a compact ILP formulation of the multi-band
RKP.
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12.1. Compact Formulation of the Multi-Band RKP

We first extend the notation used to describe the KP in Section 1.3 and the Γ-RKP in
Section 8.5 as follows.

We assume that there exist K ≥ 2 deviation bands and a realisation w̃i of the random
variable wi, which models an uncertain weight, has a deviation value lying in band k ∈
{1, . . . ,K} if and only if w̃i ∈ (w̄i + ŵk−1

i , w̄i + ŵk
i ], with nominal weight w̄i ∈ Z≥0 and

deviation value ŵk
i ∈ Z≥0 in band k. Moreover, we presume an increasing ordering among

the deviation values for each item i ∈ N, i. e., ŵk
i< ŵk+1

i for every k ∈ {1, . . . ,K − 1}.
The number of possible deviation values lying in band k is limited by a parameter Γk > 0
and B ∈ Z≥0 is presupposed. Note, we consider here a special case of the multi-band
robustness concept presented in Chapter 11 as we neglect negative bands. Moreover, we
drop the notation of the zero-band but still allow no deviation.

Now, we can formulate the K-band RKP as the following IP with binary decision vari-
ables xi indicating whether item i is included in the knapsack.

max
∑
i∈N

pixi (12.1a)

s.t.
∑
i∈N

w̄ixi + DEV(x, ŵ) ≤ B (12.1b)

xi ∈ {0, 1} ∀ i ∈ N (12.1c)

We maximise the profit in (12.1a) while the knapsack capacity should not be exceeded
which is guaranteed by constraint (12.1b). The deviation term DEV is computed via the
following ILP for an allocation of the decision variables x, where the binary variables yk

i
define the selection of the items in band k.

DEV(x, ŵ) = max
∑
i∈N

K∑
k=1

ŵk
i xiyk

i (12.2a)

s.t.
∑
i∈N

yk
i ≤ Γk ∀ k ∈ {1, . . . ,K} (12.2b)

K∑
k=1

yk
i ≤ 1 ∀ i ∈ N (12.2c)

yk
i ∈ {0, 1} ∀ i ∈ N, ∀ k ∈ {1, . . . ,K} (12.2d)

This formulation maximises the sum of the deviation values on condition that at most Γk

many deviations can lie in band k; see constraints (12.2b), and the weight of each item can
deviate at most in one band; see constraints (12.2c). Note, the possibility of no deviation
is implicitly included in the inequality sign of the latter constraints.

Since the polytope described by (12.2) is integral [34], which implies that the underlying
matrix is totally unimodular, by strong duality, we can replace DEV(x, ŵ) in (12.1) by its
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dual problem

min
K∑

k=1

Γkπk +
∑
i∈N

ρi (12.3a)

s.t. πk + ρi ≥ ŵk
i xi ∀ k ∈ {1, . . . ,K}, ∀ i ∈ N (12.3b)

πk, ρi ≥ 0 ∀ i ∈ N, ∀ k ∈ {1, . . . ,K}, (12.3c)

with πk denoting the dual variables which correspond to constraints (12.2b) and ρi corre-
sponding to constraints (12.2c). Note that ρi > 0 and not free since we have an inequality
in constraints (12.2c) in contrary to constraints (11.7c). Including (12.3) in (12.1), we
derive the compact reformulation of the K-band RKP as follows.

max
∑
i∈N

pixi (12.4a)

s.t.
∑
i∈N

w̄ixi +

K∑
k=1

Γkπk +
∑
i∈N

ρi ≤ B (12.4b)

πk + ρi ≥ ŵk
i xi ∀ i ∈ N, k ∈ {1, . . . ,K} (12.4c)

xi ∈ {0, 1}, πk, ρi ≥ 0 ∀ i ∈ N, k ∈ {1, . . . ,K} (12.4d)

Using the notation (α)+ to denote max{α, 0}, for fixed values of the vectors x ∈ {0, 1}n

and π ∈ RK
≥0 the optimal value of vector ρ in (12.4) can be computed according to con-

straints (12.4c)-(12.4d) as

ρi =

(
max

k∈{1,...,K}

{
ŵk

i xi − πk

})+

=

(
max

k∈{1,...,K}

{
ŵk

i − πk

})+

xi ∀ i ∈ {1, . . . , n} (12.5)

since x ∈ {0, 1}n; see [18]. Furthermore for integer deviation values, optimal dual vari-
ables πk and ρi are also integer and obviously, πk ≤ maxi∈N

{
ŵk

i

}
for all bands k ∈ {1, . . . ,K}

in an optimal solution.

12.2. A DP for the Multi-Band RKP

In this section, we present an exact DP for the K-band RKP which depicts a straightforward
generalisation of the DP for the KP [106, 135] and its generalisation for the Γ-RKP [110].

Applying (12.5), let f ( j, b, π) denote the highest profit for a given vector π and a feasible
solution of ILP (12.4) with weight b, in which only items {1, . . . , j} ⊆ N with j ∈ N are
incorporated assuming an arbitrary ordering. The value, f ( j, b, π) can be formulated as a
classical equality KP

f ( j, b, π) = max

 j∑
i=1

pixi

∣∣∣∣∣∣∣
j∑

i=1

(w̄i + DEVπ(i)) xi = b, xi ∈ {0, 1}, i ≤ j


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with total capacity b and

DEVπ(i) B
(

max
k∈{1,...,K}

{
ŵk

i − πk

})+

.

It must hold b ∈
{
0, 1, . . . , B −

∑K
k=1 Γkπk

}
to fulfil constraint (12.4b). Furthermore, for the

dual variables πk applies

πk ∈ Πk B
{
0, 1, . . . ,max

i∈N

{
ŵk

i

}}
∀ k ∈ {1, . . . ,K}. (12.6)

Similar to the DP described in Section 1.3.1, the DP then consists of the computation of
all values of f by the recursive equation

f ( j, b, π) = max
{
f ( j − 1, b, π), f ( j − 1, b −

(
w̄ j + DEVπ( j)

)
, π) + p j

}
(12.7)

with initial values

f (1, b, π) =


0, if b = 0

p1, if b = w̄1 + DEVπ(1)
−∞, otherwise

and π ∈ Π1 × . . . × ΠK , b ∈
{
0, 1, . . . , B −

∑K
k=1 Γkπk

}
. More precisely, f ( j, b, π) is either

equal to the profit when item j is not included or to the profit when j is included. In the
second case, the optimal solution value is the sum of the profit p j of the item and the profit
of ILP (12.4) with weight b minus the weight of item j. This means, we can add item j
only if there is enough capacity available for its weight.

Formally, the optimal solution value of (12.1) is determined by

max

 f (n, b, π)

∣∣∣∣∣∣∣ π ∈ Π1 × . . . × ΠK , b ∈

0, 1, . . . , B −
K∑

k=1

Γkπk


 . (12.8)

Lemma 12.1. The complexity of the DP described by (12.7) and (12.8), which uses the
sets Πk for k ∈ {1, . . . ,K} given in (12.6), is O(nBK+1).

Proof. The computation of

max

 f (n, b, π)

∣∣∣∣∣∣∣ b ∈
0, 1, . . . , B −

K∑
k=1

Γkπk




for a fixed vector π ∈ Π1 × . . . × ΠK corresponds to solving a (non-robust) KP with a
capacity of B −

∑K
k=1 Γkπk. By (12.7), this can be done in O(nB); see also Algorithm 1 on

page 19. Moreover, |Πk| ≤ B + 1 as ŵk
i ≤ B for all i ∈ N and k ∈ {1, . . . ,K}. Hence, the

complexity of the presented DP is O(nBK+1). �
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item ŵ1
i xi ŵ2

i xi

1 4 8
2 3 7
3 1 3

Table 12.1.: Deviation values for the counterexample.

Note, the complexity O(nBK+1) is linear in the number of items n. However, in many
applications, the capacity B is larger than the number of items. Hence, an algorithm with
complexity linear in the capacity is desirable. For the one-band RKP (Γ-RKP), Monaci
et al. [141] derive such a DP. Its crucial assumption is an ordering of the items according
to non-increasing deviation values. As no comparable ordering of items with more than
one deviation value exists, an extension of this DP to a DP for the problem studied would
result in an algorithm with complexity O(nΓ`BK) for one ` ∈ {1, . . . ,K}.

Furthermore, conveying the algorithm stated in Mattia [138] for a combinatorial opti-
misation problem with uncertain objective coefficients to the multi-band RKP, the sets Πk

would be defined as

Πk = Π̃k B
{
ŵk

i

∣∣∣i ∈ N
}
∪ {0} ∀ k ∈ {1, . . . ,K} (12.9)

leading to an algorithm with complexity O((n + 1)(K+1)B). However, the sets (12.9) are not
correct. By means of the following counterexample of a two-band RKP with three items,
we show that for an optimal solution of (12.3) π1 ∈ Π̃1 and π2 ∈ Π̃2 is not satisfied and
hence, these sets cannot be used to compute an optimal solution of the two-band RKP.

The considered deviation values are given in Table 12.1. Further, we set Γ1 = 2 and Γ2 =

1. Then, the lowest objective value for the dual problem (12.3), which we can compute by
using the sets in (12.9), is 13 with corresponding solution π1 = 0, π2 = 3, ρ1 = 5, ρ2 =

4, ρ3 = 1. However, the optimal solution value is 12 with π1 = 0, π2 = 4, ρ1 = 4, ρ2 =

3, ρ3 = 1 and thus, π2 < Π̃2.

In the following section, we present a DP with complexity linear in the capacity which
uses modified versions of the sets Π̃k in (12.9) and which are smaller in magnitude com-
pared to the sets defined in (12.6).

12.3. An Improved DP

In the first part of this section, we derive a DP with complexity linear in the capacity in case
the coefficient matrix is subject to uncertainty. Based on the achieved results, we propose
a polynomial time algorithm if uncertainty occurs only in the objective coefficients in the
subsequent part.
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12. The Multi-Band RKP

12.3.1. Uncertainty in the Coefficient Matrix

By (12.5), we can restate the dual problem (12.3) as minimising the function χ of π which
is given as

χ : RK
≥0 → R : χ(π) =

K∑
k=1

Γkπk +
∑
i∈N

DEVπ(i). (12.10)

Note, we neglect xi here for simplicity. The inclusion would just cause the usage of a new
set I B {i ∈ N | xi = 1} instead of N.

Remark 12.2. The function χ is piecewise linear.

Proof. Every term in the maximum of χ is linear. Additionally, χ is convex since linear
functions are convex, the maximum of convex functions is convex and the summation of
convex functions is also convex. �

Therefore, we know that any local minimum of function χ is also a global minimum.
To derive properties of a global minimum for K > 1, we use a well-known result for
the Γ-RKP, the one-band RKP. Assuming that items are sorted by non-increasing weight
deviations ŵ1

i , the following lemma holds.

Lemma 12.3. (Monaci et al. [141]) A subset I ⊆ N is feasible for the one-band RKP if
and only if ∑

i∈I:i≤iΓ1

(
w̄i + ŵ1

i

)
+

∑
i∈I:i>iΓ1

w̄i ≤ B

where iΓ1 denotes the Γ1-th item in I if |I| ≥ Γ1, otherwise iΓ1 is the index of the last item
in I.

Corollary 12.4. For K = 1, χ takes a global minimum at π1 = ŵ1
Γ1+1, where ŵ1

Γ1+1 denotes
the (Γ1 + 1)-largest deviation value.

Proof. We show that π1 = ŵ1
Γ1+1 is an optimal solution of (12.3) when only items in I B

{i ∈ N | xi = 1} are considered. By Lemma 12.3, we know that∑
i∈I:i≤iΓ1

(
w̄i + ŵ1

i

)
+

∑
i∈I:i>iΓ1

w̄i ≤ B

⇔
∑
i∈I

w̄i +
∑

i∈I:i≤iΓ1

ŵ1
i ≤ B.

Based on this result, we construct an optimal solution y of the ILP (12.2) with yi = 1 ⇔
i ≤ iΓ1 and objective value

∑
i∈I:i≤iΓ1

ŵ1
i . Setting π1 = ŵ1

Γ1+1 it holds for the objective value
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of (12.3):

Γ1π1 +
∑
i∈I

(
ŵ1

i − π1

)+
= Γ1ŵ1

Γ1+1 +
∑

i∈I:i≤iΓ1+1

(
ŵ1

i − ŵ1
Γ1+1

)
= Γ1ŵ1

Γ1+1 +
∑

i∈I:i≤iΓ1

(
ŵ1

i − ŵ1
Γ1+1

)
= Γ1ŵ1

Γ1+1 +
∑

i∈I:i≤iΓ1

ŵ1
i − Γ1ŵ1

Γ1+1

=
∑

i∈I:i≤iΓ1

ŵ1
i .

By strong duality, π1 = ŵ1
Γ1+1 is optimal. Thus, χ takes a global minimum at π1 = ŵ1

Γ1+1,
where ŵ1

Γ1+1 denotes the (Γ1 + 1)-largest deviation value. �

For K > 1,we consider the case that all entries of the vector π but one are fixed. Then
we limit the domain for the remaining π` in such a way that χ(π) is as low as possible
regarding the fixed entries of π.

For simplicity, we write k , ` instead of k ∈ {1, . . . ,K}\{`} for ` ∈ {1, . . . ,K} henceforth.

Lemma 12.5. If πk is fixed for all k , ` with ` ∈ {1, . . . ,K}, then the optimal π` which
minimises (12.10) is contained in{(

ŵ`
i −max

k,`

{(
ŵk

i − πk

)+
})+

∣∣∣∣∣ i ∈ N
}
.

In fact, the minimum is taken by the (Γ` + 1)-largest of these values.

Proof. If πk is fixed for all k , `, then

χ(π) =
∑
k,`

Γkπk + Γ`π` +
∑
i∈N

(
max

k∈{1,...,K}

{
ŵk

i − πk

})+

=
∑
k,`

Γkπk + Γ`π` +
∑
i∈N

max
{
ŵ`

i − π`,max
k,`

{
ŵk

i − πk

}
, 0

}
=

∑
k,`

Γkπk +
∑
i∈N

max
k,`

{(
ŵk

i − πk

)+
}

+ χ̃(π`)

with

χ̃(π`) B Γ`π` +
∑
i∈N

(
ŵ`

i − π` −max
k,`

{(
ŵk

i − πk

)+
})+

= Γ`π` +
∑
i∈N

(
ŵ`

i −max
k,`

{(
ŵk

i − πk

)+
}
− π`

)+

.

Defining

d̂`i B
(
ŵ`

i −max
k,`

{(
ŵk

i − πk

)+
})+

,
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12. The Multi-Band RKP

the function χ̃(π`) is equal to Γ`π` +
∑

i∈N

(
d̂`i − π`

)+
. This function is the objective of the

dual problem (12.3) of a Γ`-RKP with deviation values d̂`i . Applying Corollary 12.4, we
know that an optimal solution is given by setting the π` to the (Γ` + 1)-largest deviation
value. �

Since every local minimum of the convex function χ as defined in (12.10) is a global
minimum, we have to find a point with a gradient equal to zero. If a linear segment with a
gradient equalling zero exists, also the corresponding corners have the same property and
still constitute global minima of the function χ. At such a corner, χ is not differentiable in
one direction, i. e., the directional derivatives differ.

For an index ` ∈ {1, . . . ,K} (an index set K ⊆ {1, . . . ,K}), we denote by e` (eK ) the unit
vector with all entries set to zero apart from position(s) ` (K) which is (are) set to 1.

Theorem 12.6. If π ∈ RK
≥0 is a point of non-differentiability of the function χ with

∇e`χ(π) , −∇−e`χ(π)

for an ` ∈ {1, . . . ,K}, then there exists at least one i ∈ N with π` = ŵ`
i or ŵ`

i − π` = ŵl
i − πl

for one l , `.

Proof. First, we recall the definition of the directional derivative in the direction e` and of
the negative directional derivative in the direction −e` which are used in this proof.

∇e`χ(π) = lim
h↘0

χ(π + he`) − χ(π)
h

= lim
h↘0

χ(π1, . . . , π`−1, π` + h, π`+1, . . . , πK) − χ(π)
h

−∇−e`χ(π) = lim
h↘0

χ(π − he`) − χ(π)
−h

= lim
h↘0

χ(π1, . . . , π`−1, π` − h, π`+1, . . . , πK) − χ(π)
−h

Hence,∇e`χ(π) , −∇−e`χ(π) implies χ(π+he`)−χ(π) , −χ(π−he`)+χ(π). For h→ 0, a dif-
ference between χ(π+ he`) and χ(π) can only occur due to differences in the term DEVπ(i)
in the definition of χ in (12.10). We now define a partition of the set of items N for point π
based on the difference values ŵk

i − πk which determine DEVπ(i).

I0 B
{
i ∈ N

∣∣∣ ŵk
i − πk < 0 ∀ k ∈ {1, . . . ,K}

}
,

Ik B
{
i ∈ N

∣∣∣ ŵk
i − πk > ŵk′

i − πk′ ∀ k′ ≤ k − 1, ŵk
i − πk ≥ ŵk′

i − πk′ ∀ k′ ≥ k + 1,

and ŵk
i − πk ≥ 0

}
∀ k ∈ {1, . . . ,K}

The set I0 is the set of items for which all difference values (deviation minus dual) are
negative. For band k, the set Ik is the set of items for which k is the smallest index
whereby DEVπ(i) is defined by the corresponding difference ŵk

i − πk. By definition, the
sets Ik for all bands k ∈ {0, 1, . . . ,K} are pairwise disjoint defining a partition of N =

I0∪
⋃K

k=1 Ik. Analogously for the point π+he`, we define sets Ih
0 and Ih

k by replacing ŵ`
i −π`

by ŵ`
i − (π` + h) and for point π− he`, sets I−h

0 and I−h
k by replacing ŵ`

i −π` by ŵ`
i − (π` − h).
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These sets are also pairwise disjoint and thus,

N = I0 ∪

K⋃
k=1

Ik = Ih
0 ∪

K⋃
k=1

Ih
k = I−h

0 ∪

K⋃
k=1

I−h
k .

The transition from point π + he` to point π and then to π − he` leads to the following
subset relations.

(a) I−h
0 ⊆ I0 ⊆ Ih

0 ,

(b) Ih
` ⊆ I` ⊆ I−h

` ,

(c) I−h
k ⊆ Ik ⊆ Ih

k ∀ k , `.

This means, the changes in the sets by transition, e. g., from π+he` to π can only be caused
by items shifting from Ih

` to I0 ∪
⋃

k,` Ik since ŵ`
i − (π` + h) ≤ ŵ`

i − π` and all other values
remain the same. Hence, the following subset relations are also immediate.

(d) I` \ Ih
` ⊆

(
Ih
0 \ I0 ∪

⋃
k,`

(Ih
k \ Ik)

)
,

(e) Ih
k \ Ik ⊆ I` \ Ih

` ∀ k , `, in particular
⋃
k,`

(
Ih
k \ Ik

)
⊆ I` \ Ih

` ,

(f) I−h
` \ I` ⊆

(
I0 \ I−h

0 ∪
⋃
k,`

(Ik \ I−h
k )

)
, and

(g)
⋃
k,`

(
Ik \ I−h

k

)
⊆ I−h

` \ I`.

For i ∈ I` \ Ih
` by (d), either

i) i ∈ Ih
0 \ I0 ⇒ ŵk

i − πk < 0 ∀ k , ` but ŵ`
i − π` ≥ 0 and ŵ`

i − (π` + h) < 0 hence, for h
small π` = ŵ`

i , or

ii) i ∈
⋃
k,`

(Ih
k \ Ik)⇒ ŵk

i − πk ≤ ŵ`
i − π` and ŵk

i − πk > ŵ`
i − (π` + h) for at least one k , `.

Hence, for h small ŵk
i − πk = ŵ`

i − π`.

Based on these relations, we can now rephrase the numerators of the directional deriva-
tives as follows.

χ(π + he`) − χ(π)

=
∑
k,`

Γkπk + Γ`(π` + h) +
∑

i∈
⋃
k,`

Ih
k

max
k,`

{
ŵk

i − πk

}
+

∑
i∈Ih

`

(ŵ`
i − (π` + h))

−

K∑
k=1

Γkπk −
∑

i∈
⋃
k,`

Ik

max
k,`

{
ŵk

i − πk

}
−

∑
i∈I`

(ŵ`
i − π`)

(b),(c)
= Γ`h +

∑
i∈

⋃
k,`

(Ih
k \Ik)

max
k,`

{
ŵk

i − πk

}
− |Ih

` |h −
∑

i∈I`\Ih
`

(ŵ`
i − π`)

(e),i),ii)
= (Γ` − |Ih

` |)h
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By means of an analogue argumentation applying (b),(c),(f), and (g), we obtain

χ(π − he`) − χ(π) = (|I`| − Γ`)h.

In total, we have

∇e`χ(π) , −∇−e`χ(π)

⇔ lim
h↘0

χ(π + he`) − χ(π)
h

, lim
h↘0

χ(π − he`) − χ(π)
−h

⇔ lim
h↘0

(Γ` − |Ih
` |) , lim

h↘0
(Γ` − |I`|)

⇔ lim
h↘0
|Ih
` | , |I`|

⇔∃ i ∈ I` \ Ih
` for h↘ 0

i),ii)
⇒ π` = ŵ`

i or ŵ`
i − π` = ŵk

i − πk for at least one i ∈ N and k , `.

This concludes the proof. �

We have shown now that in an optimal solution of (12.3) either a dual variable π` is
equal to a deviation value ŵ`

i or two difference values of the form ŵk
i − πk for two distinct

bands coincide. In the following, we intend to exclude the latter case from the space of
optimal solutions but πk = 0 remains possible. To this end, we first prove a result for the
directional derivatives at a point with the undesirable property in the following lemma.

Lemma 12.7. Let π? ∈ RK
≥0 be a point with π?k <

{
ŵk

i

∣∣∣ i ∈ N
}
∪ {0} ∀ k ∈ {1, . . . ,K}

and ŵ`
j−π

?
` = ŵκj−π

?
κ > 0, for one j ∈ N and `, κ ∈ {1, . . . ,K}, ` , κ. Furthermore, let α B

ŵ`
j − π

?
` and K B {k ∈ {1, . . . ,K} | ŵk

j − π
?
k = α} whereas we write k < K instead of k ∈

{1, . . . ,K} \K for simplicity. Similar to the proof of Theorem 12.6, we define a partition of
the item set N into two sets, one consisting of all items for which argmaxk∈K

{
ŵk

i − π
?
k

}
∈ K

and the other one containing the remaining items:

I?
K
B

{
i ∈ N

∣∣∣∣∣ max
{
max
k∈K

{
ŵk

i − π
?
k

}
,max

k<K

{
ŵk

i − π
?
k

}
, 0

}
= max

k∈K

{
ŵk

i − π
?
k

}}
, I? B N \ I?

K
.

Then, for the directional derivatives in the direction eK at π? holds

∇eKχ(π?) = −∇−eKχ(π?) =
∑
k∈K

Γk − |I?K |.

Proof. In order to define the numerators of the directional derivatives and analog to N =

I?
K
∪ I?, we define a partition of the set of items at points π? + heK and π? − heK as

Ih
K
B

{
i ∈ N

∣∣∣∣∣ max
{
max
k∈K

{
ŵk

i − π
?
k − h

}
,max

k<K

{
ŵk

i − π
?
k

}
, 0

}
= max

k∈K

{
ŵk

i − π
?
k − h

}}
,

Ih B N \ Ih
K
,
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and analogously, I−h
K

and I−h B N \ I−h
K

. If h is sufficiently small, I?
K

= Ih
K

= I−h
K

and I? =

Ih = I−h. Then, the numerators can be computed as follows.

χ(π? + heK ) − χ(π?)

=
∑
k∈K

Γk
(
π?k + h

)
+

∑
k<K

Γkπ
?
k +

∑
i∈Ih

max
k<K

{
(ŵk

i − π
?
k )+

}
+

∑
i∈Ih
K

max
k∈K

{
ŵk

i − π
?
k − h

}

−

K∑
k=1

Γkπ
?
k −

∑
i∈I?

max
k<K

{
(ŵk

i − π
?
k )+

}
−

∑
i∈I?
K

max
k∈K

{
ŵk

i − π
?
k

}
= h

∑
k∈K

Γk +
∑
k∈K

Γkπ
?
k +

∑
k<K

Γkπ
?
k −

K∑
k=1

Γkπ
?
k +

∑
i∈Ih

max
k<K

{
(ŵk

i − π
?
k )+

}
+

∑
i∈Ih
K

max
k∈K

{
ŵk

i − π
?
k

}
−

∑
i∈Ih
K

h −
∑
i∈I?

max
k<K

{
(ŵk

i − π
?
k )+

}
−

∑
i∈I?
K

max
k∈K

{
ŵk

i − π
?
k

}
= h

∑
k∈K

Γk − |Ih
K
|h,

and
χ(π? − heK ) − χ(π?) = |I?

K
|h − h

∑
k∈K

Γk.

Hence, for the directional derivatives holds

lim
h↘0

χ(π? + heK ) − χ(π?)
h

= lim
h↘0

h
∑

k∈K
Γk − |Ih

K
|h

h
= lim

h↘0

∑
k∈K

Γk − |Ih
K
|


= lim

h↘0

∑
k∈K

Γk − |I?K |

 = lim
h↘0

|I?
K
|h − h

∑
k∈K

Γk

−h
= lim

h↘0

χ(π? − heK ) − χ(π?)
h

.

�

Using this result, we can now show that there exists an optimal solution of (12.3) in
which no two difference values for two distinct bands coincide.

Lemma 12.8. For a point π? ∈ RK
≥0 with π?k <

{
ŵk

i

∣∣∣ i ∈ N
}
∪ {0} ∀ k ∈ {1, . . . ,K} and ŵ`

j −

π?` = ŵκj − π
?
κ > 0, for one j ∈ N and `, κ ∈ {1, . . . ,K}, ` , κ, there exists a point π ∈ RK

≥0

with πk ∈
{
ŵk

i

∣∣∣ i ∈ N
}
∪ {0} for at least one k ∈ {1, . . . ,K} and χ(π) ≤ χ(π?).

Proof. We use α, K and the partitioning sets I?
K

and I? as defined in Lemma 12.7, whereby
we know that

∇eKχ(π?) = −∇−eKχ(π?) =
∑
k∈K

Γk − |I?K |

holds for the directional derivatives in the direction eK at π?.
If the derivative is non-positive, we now increase all π?k , k ∈ K simultaneously until we

reach a point π ∈ RK
≥0 with π` ∈ {ŵ`

i | i ∈ N} ∪ {0} for (at least) one ` ∈ {1, . . . ,K}. On the
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12. The Multi-Band RKP

other hand, if the derivative is (strictly) positive, we decrease all π?k , k ∈ K simultaneously
until we reach a point π ∈ RK

≥0 with π` ∈ {ŵ`
i | i ∈ N} or π` = 0 for (at least) one ` ∈

{1, . . . ,K}.

In case of a non-positive derivative, i. e,
∑

k∈K Γk − |I?K | ≤ 0, we define the minimum
value possible to add to π?k without changing the partition of the item set as

ε+ B min

 min
k ∈ K , i ∈ N :
ŵk

i − π
?
k > 0

{
ŵk

i − π
?
k

}
, min

k ∈ K , k′ < K , i ∈ N :
ŵk

i − π
?
k > ŵk′

i − π
?
k′

{
ŵk

i − π
?
k − ŵk′

i + π?k′
} .

ε+ describes the minimum difference between a dual variable π?k and a deviation value or
between two difference values. Note, this minimum exists since ŵk

j − π
?
k = α > 0. Now,

we define

πk B

π?k + ε+ k ∈ K
π?k k < K .

If ε+ is defined by the first minimum, the point π has the required property that πk ∈

{ŵk
i | i ∈ N} ∪ {0}. Otherwise, ε+ = ŵ`

i − π
?
` − ŵk′

i + π?k′ for one i ∈ N, ` ∈ K , k′ < K and we
define α B ŵ`

i − π` and a new set K ′ :=
{
k ∈ K | ŵk

i − πk = α
}
. Then we start again from

the beginning repeating the same steps. We continue this procedure until one πk has the
desired property.

What remains to show is that the objective is not increased when increasing some π?k
by ε+. For that purpose, we first show that the set I?

K
remains the same. So, we define a

set IK analogously to I?
K

by replacing every π?k by πk. By the definition of these two sets, it
holds IK ⊆ I?

K
. We now show I?

K
⊆ IK , i. e., these sets are equal. To this end, we consider

an item i ∈ I?
K

and show i ∈ IK . We have

• ε+ ≤ ŵk
i − π

?
k − ŵk′

i + π?k′ for all i ∈ I?
K
, k ∈ K and k′ < K :

max
k∈K

{
ŵk

i − πk

}
= max

k∈K

{
ŵk

i − π
?
k − ε

+
}

≥ max
k∈K

{
ŵk

i − π
?
k − ŵk

i + π?k + ŵk′
i − π

?
k′

}
∀ k′ < K

= ŵk′
i − π

?
k′ ∀ k′ < K .

Hence, max
k∈K

{
ŵk

i − πk

}
≥ max

k′<K

{
ŵk′

i − πk′
}
.

• ε+ ≤ ŵk
i − π

?
k for all i ∈ I?

K
and k ∈ K :

max
k∈K

{
ŵk

i − πk

}
= max

k∈K

{
ŵk

i − π
?
k − ε

+
}
≥ max

k∈K

{
ŵk

i − π
?
k − ŵk

i + π?k
}

= 0.
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Hence, i ∈ IK and thus, I?
K
⊆ IK . Then, for the objective function holds

χ(π) =
∑
k∈K

Γk
(
π?k + ε+) +

∑
k<K

Γkπ
?
k +

∑
i∈IK

max
k∈K

{
ŵk

i − π
?
k − ε

+
}

+
∑

i∈N\IK

max
k<K

{(
ŵk

i − π
?
k

)+
}

=

K∑
k=1

Γkπ
?
k + ε+

∑
k∈K

Γk +
∑
i∈I?
K

max
k∈K

{
ŵk

i − π
?
k

}
− ε+|I?

K
| +

∑
i∈N\I?

K

max
k<K

{(
ŵk

i − π
?
k

)+
}

= χ(π?) + ε+

∑
k∈K

Γk − |I?K |


≤ χ(π?).

The second case, when the directional derivative
∑

k∈K Γk − |I?K | is strictly positive, can be
handled quite analogously to the previous case.

We define the minimum value which is possible to subtract from π?k without any change
of the partition as follows.

ε− B min

 min
k ∈ K , i ∈ N :
π?k − ŵk

i > 0

{
π?k − ŵk

i

}
, min

k ∈ K , k′ < K , i ∈ N
ŵk′

i − π
?
k′ > ŵk

i − π
?
k

{
ŵk′

i − π
?
k′ − ŵk

i + π?k
}

Moreover, we define

πk B

π?k − ε− k ∈ K
π?k k < K .

Again, if ε− is defined by the first minimum, we stop the decrease of π?. Otherwise, we
compute the new value of α, define a new set K ′ and start again from the beginning as
described in the first case.

Once more we have to show that the objective value does not increase when decreas-
ing π? as described. To this end, let IK be the set of items obtained by replacing π? by π
in I?

K
. Obviously, I?

K
⊆ IK . To prove also IK ⊆ I?

K
, we show N \ I?

K
⊆ N \ IK .

For that purpose we consider an item i ∈ N \ I?
K

, i. e.,

max
{
max
k∈K

{
ŵk

i − π
?
k

}
,max

k′<K

{
ŵk′

i − π
?
k′

}
, 0

}
=

0 (a)
max
k′<K

{
ŵk′

i − π
?
k′

}
. (b)

(a) is equivalent to

max
k∈K

{
ŵk

i − π
?
k

}
< 0⇔ ŵk

i − π
?
k < 0 ∀ k ∈ K .

By the definition of ε−,

ŵk
i − π

?
k + ε− = ŵk

i − πk ≤ 0 ∀ k ∈ K ⇒ i < IK .
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12. The Multi-Band RKP

(b) is equivalent to

max
k∈K

{
ŵk

i − π
?
k

}
< max

k′<K

{
ŵk′

i − π
?
k′

}
⇔ ŵk

i − π
?
k < max

k′<K

{
ŵk′

i − π
?
k′

}
∀ k ∈ K .

Again, by the definition of ε−,

ŵk
i − π

?
k + ε− = ŵk

i − πk < max
k′<K

{
ŵk′

i − πk′
}
∀ k ∈ K ⇒ i < IK .

Altogether, we have IK = I?
K

. For the objective function (12.10) then holds

χ(π) =
∑
k∈K

Γk(π? − ε−) +
∑
k<K

Γkπ
?
k +

∑
i∈IK

max
k∈K

{
ŵk

i − π
?
k + ε−

}
+

∑
i∈N\IK

max
k<K

{
ŵk

i − π
?
k

}
=

K∑
k=1

Γkπ
?
k − ε

−
∑
k∈K

Γk +
∑
i∈I?
K

max
k∈K

{
ŵk

i − π
?
k

}
+ ε−|I?

K
| +

∑
i∈N\I?

K

max
k<K

{
ŵk

i − π
?
k

}
= χ(π?) − ε−

∑
k∈K

Γk − |I?K |


< χ(π?).

�

We summarise the previous achievements in the following complexity result.

Theorem 12.9. There exists a DP which solves (12.4) in O(K!nK+1B).

Proof. By Theorem 12.6 and Lemma 12.8, we know that for an optimal π ∈ RK
≥0 holds π` ∈

{ŵ`
i | i ∈ N} ∪ {0} for at least one ` ∈ {1, . . . ,K}. We prove the claim by mathematical

induction for K ≥ 2.
For K = 2, we can either first choose π1 ∈ {ŵ1

i | i ∈ N} ∪ {0} or π2 ∈ {ŵ2
i | i ∈ N} ∪ {0}

having n + 1 possibilities each and two options to choose the starting ` ∈ {1, 2}. For a
fixed π` with ` ∈ {1, 2}, the remaining optimal πl, l , `, lies in {ŵl

i− (ŵ`
i −π`)

+ | i ∈ N}∪ {0}
as shown in Lemma 12.5. Again, we have n + 1 possibilities for πl. For a fixed π, the
optimal ρ is fixed; cf. Lemma 12.5, and the problem reduces to a knapsack problem which
can be solved in O(nB) by the DP (12.7) and (12.8). In total, we have a runtime of O(2n3B)
for K = 2.

Now, we assume that the claim holds for K − 1. Thus, the (K − 1)-band RKP can be
solved in O((K − 1)!nK B). For the K-band RKP, we choose a ` ∈ {1, . . . ,K} and one π`
from {ŵ`

i | i ∈ N}∪{0} having K(n+1) many possibilities to fix the first π`. After the fixation,
the problem reduces to a (K−1)-band RKP. In total, we have a runtime ofO(K!nK+1B). �

The set Π1 × . . . × ΠK is implicitly described in this proof. For K = 2, we state a closed
form in Section 12.5.
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12.4. Practical Improvements

12.3.2. Uncertain Objective Coefficients

Based on the presented results, we give a polynomial time algorithm to solve a binary
optimisation problem with uncertain objective coefficients, correcting the result in [138]
and extending the result in Theorem 8.2 for the Γ-RKP.

The problem with uncertain objective coefficients is defined as

min
∑
i∈N

cixi (12.11a)

s.t. x ∈ X, (12.11b)

where the feasible region is X ⊆ {0, 1}n and ci are subject to uncertainty. The uncertainty is
modelled by a multi-band robust uncertainty set with c̄i denoting the nominal value and ĉk

i
the deviation in band k. The multi-band robust counterpart of (12.11) can be formalised as

min
∑
i∈N

c̄ixi + max
π∈Π1×...×ΠK

DEV(x, π) (12.12a)

s.t. x ∈ X, (12.12b)

with

DEV(x, π) B
∑

k∈{1,...,K}

Γkπk +
∑
i∈N

(
max

k∈{1,...,K}
{ĉk

i − πk}

)+

xi. (12.13)

Rewriting (12.12) by using (12.13), we obtain

min

 ∑
k∈{1,...,K}

Γkπk + min
x∈X

∑
i∈N

(
c̄i +

(
max

k∈{1,...,K}
{ĉk

i − πk}

)+)
xi


∣∣∣∣∣∣∣ π ∈ Π1 × . . . × ΠK

 (12.14)

The set Π1 × . . . ×ΠK is again implicitly defined in the proof of Theorem 12.9 just replac-
ing ŵ by ĉ.

Corollary 12.10. The problem (12.11) with uncertain objective coefficients defined in a
multi-band robust uncertainty set can be solved in O(K!nK).

Proof. Solve the equivalent formulation (12.14) and use the same argumentation as in the
proof of Theorem 12.9. �

12.4. Practical Improvements

By Theorem 12.6 and Lemma 12.8, we can now define alternatives to the sets Πk defined
in (12.6). However, a straightforward application of the former results leads to sets which
are still quite large. In this section, we present some improvements to reduce the size of
the sets and to speed up the solving process in general.
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12. The Multi-Band RKP

12.4.1. Reducing the Size of Πk

For a reduction of the number of π-vectors to be considered in the DP, we define a mapping
per band to sort the corresponding deviation values non-increasingly:

hk : N → N with ŵk
hk(i) ≥ ŵk

hk(i+1),∀i ∈ {1, . . . , n − 1}, k ∈ {1, . . . ,K}

Lemma 12.11. There exists a point π defining a minimum of function χ with πk ∈ {ŵk
i | i ∈

N} ∪ {0} for at least one k ∈ {1, . . . ,K} (cf. Lemma 12.8) and

πk ≤ ŵk
hk(Γk+1) ∀k ∈ {1, . . . ,K}.

Proof. Let π? be a point defining a minimum of χwith π?` > ŵ`
h`(Γ`+1) =: α for one band ` ∈

{1, . . . ,K}. Construct a point π with χ(π) ≤ χ(π?) as follows.

π` B α, πk B π?k ∀k , `.

Note that π still satisfies the property of Lemma 12.8. To show χ(π) ≤ χ(π?), let z B
π?` − π` > 0. We define a partition of the sets of items as N = I≤ ∪ I> with I≤ := {i ∈
N | h−1

` (i) ≤ Γ`}, I> := {i ∈ N | h−1
` (i) > Γ`}. For i ∈ I≤ holds

max
k∈{1,...,K}

{
ŵk

i − πk

}
= max

{
max

k,`

{
ŵk

i − π
?
k

}
, ŵ`

i − π
?
` + z

}
≤ max

k∈{1,...,K}

{
ŵk

i − π
?
k

}
+ z

and

max
{

max
k∈{1,...,K}

{
ŵk

i − πk

}
, 0

}
≤ max

{
max

k∈{1,...,K}

{
ŵk

i − π
?
k

}
, 0

}
+ z.

On the other hand, for i ∈ I> holds in particular ŵ`
i ≤ α and thus,

max
{

max
k∈{1,...,K}

{
ŵk

i − πk

}
, 0

}
= max

{
max

k,`

{
ŵk

i − π
?
k

}
, ŵ`

i − α, 0
}

≤max
{

max
k∈{1,...,K}

{
ŵk

i − π
?
k

}
, 0

}
Hence, regarding the objective value χ(π) we have

χ(π) =

K∑
k=1

Γkπk +
∑
i∈N

max
{

max
k∈{1,...,K}

{
ŵk

i − πk

}
, 0

}

≤

K∑
k=1

Γkπ
?
k − Γ`z +

∑
i∈I≤

(
max

{
max

k∈{1,...,K}

{
ŵk

i − π
?
k

}
, 0

}
+ z

)
+

∑
i∈I>

max
{

max
k∈{1,...,K}

{
ŵk

i − π
?
k

}
, 0

}
= χ(π?),
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a contradiction. �

For a further reduction of the necessary values of πk, recall that ŵk
i < ŵk+1

i for all
bands k ∈ {1, . . . ,K − 1} and all items i ∈ N.

Lemma 12.12. There exists a point π defining a minimum of function χ satisfying the
properties of Lemma 12.11, i. e.,

a) πk ∈
{
ŵk

i

∣∣∣ i ∈ N
}
∪ {0} for at least one k ∈ {1, . . . ,K},

b) πk ≤ ŵk
hk(Γk+1) for all k ∈ {1, . . . ,K},

and

c) πk+1 ≥ πk ≥ 0 for all k ∈ {1, . . . ,K − 1}.

Proof. We assume π? defines a minimum of χ and π?` > π
?
`+1 ≥ 0 for one ` ∈ {1, . . . ,K−1}

but properties a) and b) are fulfilled. We construct a point π with χ(π) ≤ χ(π?) that has the
properties a) and b) and satisfies π` ≤ π`+1. We distinguish the following two cases.

I) There exists at least one band k′ , ` with π?k′ ∈
{
ŵk′

i

∣∣∣ i ∈ N
}
∪ {0}.

II) Band ` is the only band satisfying π?` ∈
{
ŵ`

i

∣∣∣ i ∈ N
}
∪ {0}.

Case I): Define z B π?` − π
?
`+1 > 0 and the new point π

π` Bπ
?
` − z = π?`+1

πk Bπ
?
k ∀k , `,

which still satisfies properties a) and b). If follows for all items i ∈ N

ŵ`
i − π` = ŵ`

i − π
?
`+1 < ŵ`+1

i − π?`+1

and hence,

max
{

max
k∈{1,...,K}

{ŵk
i − πk}, 0

}
= max

{
max

k,`
{ŵk

i − π
?
k }, ŵ

`
i − π`, 0

}
≤max

{
max

k,`
{ŵk

i − π
?
k }, ŵ

`+1
i − π?`+1, 0

}
≤max

{
max

k∈{1,...,K}
{ŵk

i − π
?
k }, 0

}
.

For the objective function χ we have

χ(π) =

K∑
k=1

Γkπk +
∑
i∈N

max
{

max
k∈{1,...,K}

{ŵk
i − πk}, 0

}
≤

∑
k,`

Γkπ
?
k + Γ`(π?` − z) +

∑
i∈N

max
{

max
k∈{1,...,K}

{ŵk
i − π

?
k }, 0

}
<χ(π?).
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Case II): If we just used the same argumentation as in case I), we would obtain a point π
which does not necessarily satisfy property a) anymore. Hence, we use a modified ap-
proach in the following. Due to the assumption that band ` is the only band satisfying π?k ∈{
ŵk

i

∣∣∣ i ∈ N
}
∪{0} and by Lemma 12.5, we know that π?`+1 ∈ {(ŵ

`+1
i −maxk,`+1{ŵk

i −π
?
k })

+ | i ∈
N}. Again, we distinguish two cases:

i) π?`+1 = 0,

ii) π?`+1 = ŵ`+1
i − ŵk

j + π?k for at least one k , ` + 1 and j ∈ N.

For case i), we construct a new point π with χ(π) < χ(π?) as follows.

π` B 0, πk B π?k ∀k , `.

Note that π still fulfils the properties a) and b). It holds

ŵ`
i − π` = ŵ`

i < ŵ`+1
i = ŵ`+1

i − π?`+1

and with the same argumentation as in case I),

max
{

max
k∈{1,...,K}

{ŵk
i − πk}, 0

}
≤ max

{
max

k∈{1,...,K}
{ŵk

i − π
?
k }, 0

}
.

Therefore, for the objective function χ we have

χ(π) =

K∑
k=1

Γkπk +
∑
i∈N

max
{

max
k∈{1,...,K}

{ŵk
i − πk}, 0

}
≤

∑
k,`

Γkπ
?
k + Γ` · 0 +

∑
i∈N

max
{

max
k∈{1,...,K}

{ŵk
i − π

?
k }, 0

}
< χ(π?).

For case ii), we construct a new point π in such a way that we will be able to use the
same argumentation as in the proof of Lemma 12.8 to construct a further point π̃ which
than satisfies all required properties. Therefore, we define α B π?`+1 − ŵ`+1

j and K B {k ∈
{1, . . . ,K} | ŵk

j − π
?
k = α} analogously to the proof of Lemma 12.8. Note that ` + 1 ∈ K

but ` < K . Moreover, we set

ε B min
k ∈ K , i ∈ N :
ŵk

i − π
?
k > 0

{ŵk
i − π

?
k }

and z B π?` − π
?
`+1 > 0. Then the new point π is constructed as

π` Bπ
?
` − z − ε = π?`+1 − ε

πk Bπ
?
k ∀k , `,
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which still satisfies property b). If follows for all items i ∈ N

ŵ`
i − π` = ŵ`

i − π
?
`+1 + ε ≤ ŵ`

i − π
?
`+1 + π?`+1 − ŵ`−1

i < 0

and hence,

max
{

max
k∈{1,...,K}

{ŵk
i − πk}, 0

}
= max

{
max

k,`
{ŵk

i − π
?
k }, ŵ

`
i − π`, 0

}
≤max

{
max

k,`
{ŵk

i − π
?
k }, 0

}
≤max

{
max

k∈{1,...,K}
{ŵk

i − π
?
k }, 0

}
.

For the objective function χ we have

χ(π) =

K∑
k=1

Γkπk +
∑
i∈N

max
{

max
k∈{1,...,K}

{ŵk
i − πk}, 0

}
≤

∑
k,k′

Γkπ
?
k + Γ`(π?` − z − ε) +

∑
i∈N

max
{

max
k∈{1,...,K}

{ŵk
i − π

?
k }, 0

}
<χ(π?).

Although π does not satisfy property a) but ŵ`+1
j −π

?
`+1 = ŵk

j−π
?
k for one j ∈ N and k , `+1,

we can apply the same argumentation as in the proof of Lemma 12.8 to construct a new
point π̃ satisfying property a). By the definition of π`, it is not possible that π`+1 can become
smaller again than π`. In case of a negative considered derivative, π`+1 is increased by ε+

and π` not. Note that property b) is preserved by the definition of ε+. If the considered
derivative is positive, π`+1 is decreased by ε− ≤ ε. �

By means of this lemma, we have to consider only vectors π in the DP with 0 ≤ πk ≤ πk+1

for all k ∈ {1, . . . ,K − 1} and πk ≤ ŵk
hk(Γk+1) for all k ∈ {1, . . . ,K}.

Corollary 12.13. For K = 2, there exists a point π defining a minimum of function χ
satisfying the properties of Lemma 12.12, where property c) is replaced by π2 > π1 ≥ 0
or π2 = π1 = 0.

12.4.2. Acceleration of the Solving Process

The decrease of the size of the set Π B Π1 × . . . × ΠK achieved in the previous section is
just of practical relevance as the worst-case size remains the same. However, even though
the size can be reduced in practice, solving a classical KP for every possible π ∈ Π still
consumes a large amount of time. To decrease the solving time, we order the elements
in Π such that the most relevant are considered first and the least relevant are most likely
not taken into account at all.
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For a fixed π ∈ Π, the following KP has to be solved.

max
∑
i∈N

pixi

s.t.
∑
i∈N

(w̄i + DEVπ(i))xi ≤ B −
K∑

k=1

Γkπk

xi ∈ {0, 1} ∀ i ∈ N

We use an upper bound for this problem, which we derive in the following, to define an
order of the elements in Π. A straightforward upper bound is an optimal solution of the
LP relaxation which is computed by a greedy algorithm. This algorithm sorts the items
by their profit-to-weight ratio pi/(w̄i + DEVπ(i)) non-increasingly and includes the items
with the largest ratio in the knapsack as long as the capacity is not exceeded. To use the
capacity completely, just a fraction of the last element, the so-called critical item, might be
put into the knapsack. We improve this bound as described in Martello and Toth [135] by
interchanging items closely before or after the critical item. We save this upper bound for
every π ∈ Π and sort the elements non-increasingly regarding the bound. A vector π with a
large upper bound has a higher potential to increase the objective. Furthermore, if the upper
bound of π is less than or equal to the current best known solution, an optimal solution of
the corresponding KP cannot improve the best known solution and thus, we disregard the
optimal solving of the KP. Additionally, the whole solving process terminates as the upper
bound of the next element is not higher than the current best solution.

12.5. Computational Study

In this section, we present an extensive computational study to evaluate the performance of
the derived algorithms in practice. To obtain computationally tractable formulations and
algorithms, we focus on two bands in this study.

We investigate the following four algorithms. The DP presented in Section 12.2 utilis-
ing the sets Πk as defined in (12.6) is the basic algorithm and denoted by simple. When
replacing the Cartesian product of the sets Πk by Πreduced which is based on the results
from Section 12.4.1 and will be defined in (12.15), we obtain the algorithm reduced. If we
order the (π1, π2)-pairs as described in Section 12.4.2 in the algorithm reduced, we call the
resulting algorithm improved. Finally, to evaluate the performance of the best DP, we ad-
ditionally solve the ILP (12.4) for all instances and call this algorithm ilp. In all three DPs,
we solve the underlying KPs for fixed vectors π via the algorithm “MinKnap” developed
by Pisinger [153]. The considered algorithms are summarised in Table 12.2.

In the following, we derive a closed form expression of the set Πreduced for K = 2.
Assuming π1 ∈ {ŵ1

1, . . . , ŵ
1
n} in an optimal solution, we first define

Π1 B {0} ∪
{

ŵ1
h1(i)

∣∣∣∣∣∣ i ≤ Γ1 + 1 and ŵ1
h1(i) ≤

⌊
B
Γ1

⌋}
,
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Algorithm Description

simple The DP using the simple sets Πk as defined in (12.6) with complexityO(nB3).
reduced The DP using the set Πreduced as defined in (12.15) with complexityO(2!n3B).
improved As algorithm reduced but the elements in Πreduced are ordered non-

increasingly regarding the upper bounds as described in Section 12.4.2 and
the solving process stops as soon as the current upper bound is less than or
equal to the best solution.

ilp The ILP (12.4) is solved with cplex.

Table 12.2.: Summary of algorithms considered in the computational study.

and then for every π1 ∈ Π1, we define

Π2(π1) B {0} ∪
{ (

ŵ2
i −

(
ŵ1

i − π1

)+
)+

∣∣∣∣∣ i ∈ N and

π1 <
(
ŵ2

i −
(
ŵ1

i − π1

)+
)+

≤ min
{

ŵ2
h2(Γ2+1),

⌊
B
Γ2

⌋} }
.

Furthermore when assuming π2 ∈ {ŵ2
1, . . . , ŵ

2
n} in an optimal solution, we define

Π′2 B {0} ∪
{

ŵ2
h2(i)

∣∣∣∣∣∣ i ≤ Γ2 + 1 and ŵ2
h2(i) ≤

⌊
B
Γ2

⌋}
,

and for every π2 ∈ Π′2

Π′1(π2) B {0} ∪
{ (

ŵ1
i −

(
ŵ2

i − π2

)+
)+

∣∣∣∣∣∣ i ∈ N and(
ŵ1

i −
(
ŵ2

i − π2

)+
)+

≤ min
{

ŵ1
h1(Γ1+1),

⌊
B
Γ1

⌋
, π2 − 1

}}
.

Combining these sets, we get the set of all (π1, π2)-pairs which have to be considered in
the DP as

Πreduced B

 ⋃
π1∈Π1

{π1} × Π2(π1)

 ∪
 ⋃
π2∈Π

′
2

Π′1(π2) × {π2}

 . (12.15)

All computations are performed on a Linux machine with 3.40GHz Intel Core i7-3770
processor and a general CPU time limit of two hours. To solve the ILP, we use the standard
version of cplex 12.4 [98].
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-1.96σ 0σ 0.98σ 1.96σ

33.65 % 13.85 %
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50 % 83.65 % 97.5 %

Γ2Γ1

Figure 12.1.: Sketch to explain the computation of the robustness parameters Γ1 and Γ2.

12.5.1. Generation of Test Instances

Based on Klopfenstein and Nace [109] and Pisinger [154], we randomly generate hard
instances to study the performance of the different algorithms.

The nominal weights are uniformly distributed in a given interval [1,R], where R = 100
and R = 1000 defines the range, and the profits are proportional to the nominal weights
plus a fixed charge, i. e., pi = w̄i + 10. Hence, the instances are strongly correlated
and hard to solve; see [154]. Furthermore, the knapsack capacity B is randomly cho-

sen from
[

1
3

∑
i∈N

w̄i,
2
3

∑
i∈N

w̄i

]
∩ Z. To create two-band robust instances, we additionally have

to compute two deviation values ŵ1
i and ŵ2

i for each i ∈ N with ŵ1
i < ŵ2

i . For that pur-
pose, we define a maximum deviation δ ∈ {0.2, 0.5, 1.0} relative to the nominal weight,
where, e. g., δ = 0.2 signifies a maximum deviation of at most 20 % of the nominal weight.

Hence, ŵ2
i = δw̄i. Assuming an (almost) equal bandwidth in each band, we set ŵ1

i =

⌈
ŵ2

i
2

⌉
.

Finally, we consider three different numbers of items n ∈ {200, 500, 1000}. For each set-
ting, we generate a series of ten instances.

The number of possible values for the robustness parameters Γ1 and Γ2 is quite large.
To focus on the most meaningful values, we assume a normal distribution of the devia-
tion values; see Figure 12.1. 95 % of the deviation values lie between −1.96σ and 1.96σ,
where σ denotes the standard deviation; cf. the cumulative distribution function of the
standard normal distribution. In particular, 97.5 % of the values are less than 1.96σ.
This point is reflected by Γ2. As we are interested only in positive deviations, we con-
sider 0.98σ = 1.96σ/2 for Γ1. At this point, we have a probability of 83.65 %. Further-
more, we have a probability of 33.65 % = 83.65 % − 50 % between 0σ and 0.98σ and a
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Figure 12.2.: Speed-up factors of algorithm reduced normalised to simple averaged over
ten instances and five Γ2-values for different settings and sizes.

probability of 13.85 % = 97.5 % − 83.65 % between 0.98σ and 1.96σ. This, means we
have the following ratio.

Γ1

Γ2
=

33.65 %
13.85 %

= 2.43

Thus, we assume Γ2 ∈ {d0.01ne, d0.02ne, d0.03ne, d0.04ne, d0.05ne}, where Γ2 = d0.05ne
means that at most 5 % of all weights deviate, and Γ1 = d2.43 · Γ2e. Note, we round 2.43·Γ2

to receive only integer values for Γ1 since the DP (12.8) requires integer parameters.

12.5.2. Comparison of different sets Π

First, we compare the performance of algorithm reduced to simple. For that purpose, we
examine the solving times of the two algorithms and compute a speed-up factor for re-
duced. For example, a solving time of 100 s for simple and a solving time of 10 s for
reduced gives a speed-up factor of 10. For every setting consisting of a range R, a number
of items n, and a maximum deviation δ, we take the mean over the ten instances. Further-
more, since differences in the solving time for different values of Γ2 are marginal, we also
average over Γ2 and display the results in Figure 12.2. The average speed-up factor ranges
from 1.31 to 12.20. In general, for higher range R and higher δ, we can also achieve higher
speed-up factors. In simple, the size of the sets Πk, which is defined by the actual deviation
values, has the strongest impact on the computing time, whereas the number of items plays
a minor role. In contrast, the number of items influences the computing time of reduced
most considerably while the deviation values are less important. Hence, the high speed-up
factors achieved by reduced for n = 200 cannot be retained for higher numbers of items.

Without averaging, the individual minimum speed-up factor achieved by reduced ranges
from 1 to 14.09.
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Figure 12.3.: Speed-up factors of algorithm improved normalised to reduced averaged over
ten instances and five Γ2-values for different settings and sizes.

12.5.3. Evaluation of Practical Improvements

We now compare improved to reduced by means of speed-up factors, where we once more
average over instances and Γ2-values. A graphical evaluation of the results is depicted in
Figure 12.3. For R = 100, δ = 0.2 and n = 200, no speed-up factor is computed since the
solving times of improved are strictly below 10−2 s. For better readability, we nevertheless
draw a bar of height 1. For the remaining settings, the average speed-up factor achieved
by improved ranges from 4.67 to 86.05. For an increasing number of items and R =

1000, the speed-up factor also increases because the stop criterion if the upper bound
of a (π1, π2)-pair is below the current best known solution gains more significance for a
higher number of items. For example, the stop criterion catches after 157 (π1, π2)-pairs
have been considered for an instance with n = R = 1000, δ = 1 and Γ2 = d0.01ne while
240382 pairs are considered by reduced. On the contrary, for one of the smallest instances
(n = 200, R = 1000, δ = 0.2 and Γ2 = d0.01ne), the number of considered (π1, π2)-pairs is
only reduced from 155 to 8. Hence, the reduction for the highest number of items is the
largest. For R = 100, these effects cannot be seen that clearly since the problems are quite
small and are solved in less than 1.5 s with both algorithms.

Without averaging, the minimum speed-up factor that can be achieved by improved is 2
and the maximum is 500.

12.5.4. Comparison to ILP Formulation

The absolute solving times averaged over ten instances and five Γ2-values for the algo-
rithm ilp and for improved are displayed in Table 12.3. Note, some of the 50 problems per
average value are not solved within the time limit by ilp. These instances are not consid-
ered in the average. However, we give the number of the remaining instances, which are
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12.6. Conclusion

δ 0.2 0.5 1.0

n
R

100 1000 100 1000 100 1000
il
p

200 671 (44) 540 (44) 578 (37) 1388 (37) 626 (29) 885 (25)
500 1666 (36) 490 (13) 1501 (23) 571 (12) 1718 (25) 882 (14)

1000 1966 (36) 83 (4) 1161 (17) 103 (6) 362 (7) 105 (4)

im
pr
o
v
e
d 200 0.000 0.213 0.007 0.360 0.025 0.383

500 0.002 0.613 0.028 2.075 0.103 4.030
1000 0.012 1.073 0.059 5.705 0.219 16.116

Table 12.3.: Absolute solving times in seconds of ilp and improved for different settings
averaged over ten instances and five Γ2-values. The number of instances (out
of 50) not exceeding the time limit by ilp are given in parenthesis.

solved to optimality, in parenthesis. The lowest average time consumption for ilp is 105 s
(R = 100, δ = 1.0, n = 1000) but only 4 out of 50 instances are solved within the time
limit. In contrast, improved requires at most 16 s for these largest instances. Hence, for the
2-band RKP, the presented DP improved clearly outperforms ilp.

As mentioned before, the runtime of algorithm improved strongly depends on the num-
ber of items. Which means, if the number of items is doubled, also the runtime is increased
by a factor of 2. Such a factor cannot be computed for algorithm ilp as more quantities
than the number of items influence its running time.

12.5.5. Larger Instances

The solving times of the DP improved are quite low (at most 18.01 s) for all instances.
Therefore, we now briefly study the performance of improved for larger instances. We
generate instances with R ∈ {1000, 10000}, n ∈ {500, 1000, 2000, 5000, 10000}, and δ as
before. Again, we generate ten instances for each setting. Note, we create only entities
for a combination of R and n which has not been considered before. The absolute solving
times are displayed in Figure 12.4. For R = 10000, n = 10000 and δ = 0.5, only two
instances are solved within the time limit whereas no instance for δ = 1.0 is solved. For
all other settings, the instances are solved within a reasonable time of at most 5811.76 s on
average.

12.6. Conclusion

In this chapter, we have considered a generalisation of the RKP, the multi-band RKP, where
the weights of the items have several deviation values lying in different bands. Based on
the compact formulation, we have developed a DP with a complexity linear in the number
of items n. However, the complexity also depends on the capacity which is raised to the
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Figure 12.4.: Absolute solving times in seconds of algorithm improved averaged over ten
instances and five Γ2-values for different settings and sizes.

power of the number of bands K plus one. Since the capacity is usually higher than the
number of items, we have additionally developed a DP with a complexity linear in the
capacity B, i. e., O(K!nK+1B). From this, it can be concluded that a binary combinatorial
optimisation problem with uncertain objective can be solved by solving O(K!nK) similar
problems with certain objective. We have improved the DP in practice and compared the
performance of the resulting algorithm to the former two DPs by means of solving times
in an extensive computational study with randomly generated instances of various sizes.
On the one hand, the results have demonstrated a clear benefit of the DP with a complexity
linear in the capacity compared to the first DP. On the other hand, the results have shown
the effectiveness of the presented improvements in practice. Furthermore, a comparison of
the improved DP and cplex solving the compact ILP has illustrated that the improved DP
clearly outperforms the ILP. Finally, we have tested the performance of the improved DP
for large instances with up to 10000 items whereupon most instances are solved within a
time limit of two hours.

Due to the good performance of the improved DP, we apply this algorithm as subroutine
to a wireless network planning problem in Section 13.2.
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13. Application to Wireless Networks

13.1. The Two-Band RWNPP

As stated earlier, multi-band robustness introduced in Chapter 11 generalises Γ-robustness
formalised in Chapter 8 via a refinement of the deviation range. But the question remains,
what is the actual gain achieved by multi-band robustness? To investigate this issue, we
apply the multi-band robustness approach to the WNPP proposed in Section 4.1 assuming
uncertain traffic demands and evaluate the obtained solutions in comparison to the Γ-robust
solutions achieved in Section 9.1. Thus, we compare the number of deployed BSs for
solutions with a protection level of 100 % revealing the gain of multi-band robustness.

To obtain a computationally tractable multi-band robust formulation, we consider only
two positive deviation bands. Thus, we set K− = 0 and K+ = K = 2 treating the nom-
inal band implicitly again. In the following sections, we first extend the notation of the
uncertainty of demands introduced for the Γ-robust approach in Section 9.1 and state the
compact formulation of the two-band robust WNPP. Afterwards, we evaluate the two-band
robustness in comparison to the Γ-robust solutions computed in Section 9.1.

13.1.1. The Compact Formulation

For the two-band robust approach, we assume that the interval [w̄t, w̄t + ŵt] of realisations
of the random variables w̃t modelling the traffic demand is partitioned into the following
two sub-bands. [

w̄t, w̄t + ŵ1
t

]
,
(
w̄t + ŵ1

t , w̄t + ŵ2
t

]
,

where ŵ1
t denotes the first deviation value and ŵ2

t > ŵ1
t the second. Note, the first interval

also includes the nominal value. We introduce two robustness parameters Γ1 and Γ2 to
limit the number of realisations falling in the first band and in the second, respectively.

Following Section 12.1 and applying the standard LP duality manipulation, the compact
formulation for the two-band RWNPP can be stated as follows.

min
∑
s∈S

csxs + λ
∑
t∈T

ut (13.1a)

s.t.
∑
s∈St

zst + ut = 1 ∀ t ∈ T (13.1b)

xi + x j ≤ 1 ∀ i j ∈ E (13.1c)∑
t∈Ts

w̄t

est
zst + Γ1π

1
s + Γ2π

2
s +

∑
t∈Ts

ρst ≤ bsxs ∀ s ∈ S (13.1d)
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π1
s + ρst ≥

ŵ1
t

est
zst ∀ (s, t) ∈ S ∗ T (13.1e)

π2
s + ρst ≥

ŵ2
t

est
zst ∀ (s, t) ∈ S ∗ T (13.1f)

xs, zst, ut ∈ {0, 1}, π1
s , π

2
s , ρst ≥ 0 ∀ s ∈ S, (s, t) ∈ S ∗ T , t ∈ Ts. (13.1g)

Additionally, we apply the vub constraints (4.5) and the maximal clique inequalities (5.9),
which are also valid cutting planes for model (13.1).

13.1.2. The Gain of Multi-Band Robustness

In this section, we evaluate the gain we can achieve by the two-band robustness applied
to the WNPP in comparison with the Γ-robustness in a proof-of-concept implementation.
For that purpose, we use the scenarios with up to 50 BSs investigated in the computational
study performed for the d-RWNPP in Section 9.1. All computations are performed on a
Linux machine with 3.40GHz Intel Core i7-3770 processor and a general CPU time limit
of four hours. Moreover, we use the standard version of cplex 12.4 [98] as ILP solver.

Following the setting to define test instances for the two-band RKP presented in Sec-
tion 12.5.1, we assume (almost) equidistant bands and define the two deviation values per
TN as follows.

ŵ2
t B ŵt, ŵ1

t =

⌈
ŵ2

t

2

⌉
,

where ŵt is the highest deviation value as generated in Section 9.1.2.
In Section 9.1.5, we have determined the maximum value ΓProL=100 % of the robustness

parameter Γ such that no snapshot of 1000 generated for a uniform as well as normal
distribution of demand values is violated (ProL = 100 %); cf. Table 9.3. Setting Γ2 =

ΓProL=100 % and Γ1 = 0 would yield the Γ-robust solution. Thus, we know that any solution
for Γ2 > ΓProL=100 % has the same quality as the Γ-robust solution, i. e., ProL = 100 %.
Therefore, we investigate only Γ2 ∈ {0, 1, . . . ,ΓProL=100 %}.

To determine the range of values to be considered for Γ1, we extract the number of
deployed BSs Σ of the ΓProL=100 %-robust solution; cf. Table 9.3. Then we set the maximum
value for Γ1 to ⌈

|T |

Σ

⌉
,

which is the average number of TNs assigned to a deployed BS if all TNs are covered.
As an example, for scenario s 20 200 the Γ-robust solution with ΓProL=100 % = 12 deploys
four BSs. Hence, we investigate Γ1 ∈ {1, . . . , 50} and Γ2 ∈ {0, 1, . . . , 12}. Note, we do not
consider Γ1 = 0 as this setting would just give the Γ-robust solutions. For all five studied
scenarios with up to 50 BSs, we depict the maximum considered values for Γ1 and Γ2 in
Table 13.1.

Before evaluating the gain achieved by multi-band robustness, we study the correlation
between Γ1 and Γ2 exemplarily for s 20 200. To this end, we display those (Γ1,Γ2)-pairs,
for which the obtained solution yields a protection level of 100 % in Figure 13.1. The
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scenario max. Γ1 max. Γ2

s 20 200 50 12
s 30 300 76 12
s 40 400 80 12
s 40 450 90 16
s 50 500 84 18

Table 13.1.: Maximum values of Γ1 and Γ2 for all investigated scenarios.
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Figure 13.1.: (Γ1,Γ2)-pairs yielding solutions with ProL = 100 %, where the snapshots
follow either a uniform or a normal distribution, for scenario s 20 200.

snapshots used to compute ProL are the same as used in the computational study in Sec-
tion 9.1.5 and obey either an uniform or a normal distribution. Note, the solutions for
larger Γ1 and Γ2 values, which are not displayed in the figure, are also feasible for all
snapshots. The diagrams are just condensed for better readability.

Apart from some outliers for which the solution is feasible for all snapshots by chance, a
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scenario Γ-obj. obj. uniform normal

s 20 200 16 15 (2, 8), (5, 7), (6, 6), (9, 5),
(16, 4), (18, 3), (20, 2),
(23, 1), (30, 0)

(1, 9), (3, 8), (9, 5),
(14, 3), (21, 1), (30, 0)

s 30 300 16 16 (2, 9), (3, 7), (8, 6),
(12, 5), (14, 4),(18, 3),
(21, 2), (25, 1), (36, 0)

(1, 11), (2, 10), (4, 9),
(6, 8), (8, 6), (14, 4),
(16, 3), (21, 1), (36, 0)

s 40 400 20 20 (1, 9), (4, 3), (7, 2),
(16, 1), (31, 0)

(1, 9), (3, 6), (4, 5), (6, 4),
(7, 2), (19, 1), (35, 0)

s 40 450 20 20 (2, 13), (3, 6), (12, 5),
(19, 3), (22, 2), (34, 1),
(38, 0)

(1, 9), (7, 6), (12, 5),
(17, 4), (19, 3), (20, 2),
(29, 0)

s 50 500 24∗ 24∗/21 (1, 16), (3, 15), (6, 14),
(8, 13), (10, 12), (12, 11),
(14, 10), (17, 9), (19, 8),
(21, 7), (25, 5), (28, 4),
(32, 3), (34, 2), (37, 1),
(43, 0)

(8, 11), (20, 6), (28, 3),
(38, 0)

Table 13.2.: Non-dominated (Γ1,Γ2)-pairs with lowest objective value and ProL = 100 %
for a uniform as well as normal distribution in the snapshots for different
scenarios and the corresponding Γ-robust objective, where ∗ denotes a non-
optimal value.

linear correlation for Γ1 and Γ2 becomes apparent. Moreover, for the computational study
performed for the two-band RKP in Section 12.5, we had defined Γ1 = d2.43 · Γ2e. The
results in Figure 13.1 indicate that this is, in general, a reasonable choice in case of a
normal as well as uniform distribution of demand values. If we decrease the value of Γ2

by one, we have to increase the value of Γ1 by three to obtain a solution still feasible for
all snapshots.

For the subsequent comparison of two-band robust solutions to Γ-robust solutions, we
focus on non-dominated (Γ1,Γ2)-pairs with ProL = 100 % and the lowest objective value.
By non-dominated, we mean that a decrease of Γ1 or Γ2 yields a solution that is not feasible
for at least one snapshot. In Table 13.2, we state all non-dominated pairs yielding the
lowest objective value for an uniform as well as a normal distribution. Additionally, we
state the objective value of the corresponding Γ-robust solution. Only for the smallest
scenario s 20 200 and both demand distributions, there exists a two-band robust solution
with a lower objective value than the Γ-robust objective. The Γ-robust solution deploys
four BSs and serves all 200 TNs, thus yielding an objective value of 16. In case of a
uniform (normal) distribution of demand values, 9 (6) non-dominated (Γ1,Γ2)-pairs deploy
only three BSs while serving 197 TNs yielding an objective value of 15. Moreover, for
s 50 500 and a normal distribution, we can also reduce the objective value by 12.5 % by
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means of multi-band robustness. However, the time limit is reached for all pairs listed in
the column “uniform” and for (8, 11) in the column “normal”. Therefore, we cannot be
sure if there also exists a (Γ1,Γ2)-pair which yields an optimal solution that is feasible for
all snapshots generated with an uniform distribution.

The presented results reveal a potential to save cost, i. e., to decrease the objective value
of the WNPP, by means of multi-band robustness compared to the Γ-robust solution. How-
ever, this gain strongly depends on the test scenario and the Γ-robust solution. On the one
hand, if the load of an installed BS is close to the available bandwidth, then the deployed
BSs in the Γ-robust solution are more or less the critical number of necessary BSs and
some changes in the deviation values do not have a significant impact on the number of
installed BSs. On the other hand, if significantly less than the available bandwidth is used
in the Γ-robust solution, it is easier to assign all TNs of one BS to others if some deviation
values are halved. For the investigated scenarios, the assignment of TNs in the Γ-robust
formulation seems not to be a complex task once the BS decision is made. Thus, if it
was more challenging, e.g., when the available bandwidth is halved to 5 MHz, there would
exist more possibilities to economise one or more BSs. Additionally, an increase of the
number of deviation bands, i. e., a further refinement of the deviation interval might also
have the potential to save cost.

13.1.3. Conclusion

In this section, we have proposed a compact formulation of the two-band RWNPP and have
investigated the gain achieved by this model in comparison to the Γ-robust solutions taken
from Section 9.1. By a computational study of a small scenario, we have illustrated a linear
correlation between the two robustness parameters Γ1 and Γ2. Furthermore, numerical
results obtained from a proof-of-concept implementation for five scenarios in total have
revealed a potential to save cost via the deployment of less BSs, by means of multi-band
robustness in comparison with the Γ-robust solution. However, we have also seen that this
gain strongly depends on the test scenario and the Γ-robust solution.

13.2. A Lagrangian Relaxation Approach for a
Subproblem of the RWNPP

In Chapter 12, we have developed an improved DP for the multi-band RKP which out-
performs cplex solving the compact ILP in case of two deviation bands. We study the
performance of this DP applied to a wireless network planning problem, the traffic node
assignment problem (TNAP), in this chapter. The TNAP is a subproblem of the WNPP
introduced in Section 4.1 and aims at assigning TNs to already deployed BSs. We choose
the simplified TNAP for the application of the DP for the multi-band RKP as this problem
comprehends only one additional type of constraint to the multi-band RKP. We relax these
constraints and determine an upper bound by means of Lagrangian relaxation. Similar to a
column generation approach, also Lagrangian relaxation can give a better bound than the
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LP solution; cf. Table 13.6. In fact, we obtain (close to) optimal solutions.

13.2.1. The Two-Band Robust Traffic Node Assignment Problem

The two-band robust TNAP (two-band RTNAP) determines an assignment of TNs to al-
ready deployed BSs while maximising the total nominal throughput. To describe this
problem formally, we use the same notation as for the two-band RWNPP; cf. Table 4.1
and Section 13.1.1. For a fixed subset S′ ⊆ S of deployed BSs and S′t B St ∩ S

′ for
all t ∈ T , we propose the following compact formulation of the two-band RTNAP.

max
∑
s∈S′

∑
t∈Ts

w̄tzst (13.2a)

s.t.
∑
s∈S′t

zst ≤ 1 ∀ t ∈ T (13.2b)

∑
t∈Ts

w̄t

est
zst + Γ1π

1
s + Γ2π

2
s +

∑
t∈Ts

ρst ≤ bs ∀ s ∈ S′ (13.2c)

π1
s + ρst ≥

ŵ1
t

est
zst ∀ s ∈ S′, t ∈ Ts (13.2d)

π2
s + ρst ≥

ŵ2
t

est
zst ∀ s ∈ S′, t ∈ Ts (13.2e)

zst ∈ {0, 1}, π1
s , π

2
s , ρst ≥ 0 ∀ s ∈ S′, t ∈ Ts. (13.2f)

The objective (13.2a) maximises the total nominal throughput which is the sum of the
satisfied nominal demands w̄t. As the number of served TNs is maximised only indirectly,
we omit the variables ut of the WNPP for simplicity here. Hence, constraints (13.2b)
constitute the equivalent to constraints (13.1b) ensuring that a TN is covered by at most
one BS. Moreover, constraints (13.2c) to (13.2e) depict the compact reformulation of the
two-band robust capacity constraints and are equal to constraints (13.1d) to (13.1f) of the
two-band RWNPP, where the variable xs is dropped.

Without the coverage constraints (13.2b), the MIP (13.2) would just contain several
non-correlated two-band RKPs to which we could apply the DP improved proposed in
Chapter 12 directly. However, to allow for the application of this DP, we first have to
relax the additional constraints. This is done by Lagrangian relaxation, which has been
introduced in Section 1.2.4.

13.2.2. Lagrangian Relaxation for the Two-Band RTNAP

In this section, we apply the Lagrangian relaxation to the two-band RTNAP (13.2) by
relaxing the coverage constraints (13.2b). This relaxation results in a two-band RKP with
a modified objective function. As there exist extreme points of the LP relaxation of the
KP and hence, also of the two-band RKP, which are not integral, there exists the potential
that the Lagrangian relaxation gives a strictly better bound than the LP relaxation; cf.
Proposition 1.7.

210



13.2. A Lagrangian Relaxation Approach for a Subproblem of the RWNPP

We introduce Lagrange multipliers µt ≥ 0 ∀ t ∈ T to penalise a constraint violation.
The Lagrangian relaxation of the two-band RTNAP can then be formalised as follows.

χLR(µ) B max
∑
s∈S′

∑
t∈Ts

w̄tzst +
∑
t∈T

µt

1 −∑
s∈S′t

zst

 (13.3a)

(13.2c), (13.2d), (13.2e), (13.2f) (13.3b)

As stated before, the Lagrangian relaxation is an upper bound for model (13.2). The best
upper bound is defined by the optimal solution of the Lagrangian dual problem

χLD B min
µ≥0

χLR(µ).

To find the optimal solution of this problem, we apply the subgradient algorithm described
in Section 1.2.4.

For given multipliers µt, χLR(µ) corresponds to |S′| two-band RKPs which can be solved
separately by the DP improved developed in Chapter 12. The complete objective is then
obtained by adding the separate optimal values of the DPs per BS and the sum over the
Lagrange multipliers.

A good lower bound For the definition of the step lengths αi at iteration i used in the
subgradient algorithm, a primal lower bound χi, which is the objective value of a feasible
solution of (13.2), is required. A straightforward definition of χi is the following.

χi B
∑
t∈τ

w̄t with τ B

t ∈ T

∣∣∣∣∣∣∣∣
∑
s∈S′t

z̃i
st ≥ 1

 , (13.4)

where z̃i is a combination of optimal solutions of the two-band RKPs. Since we solve the
two-band RKPs for each BS separately, it is most likely that a TN is assigned to more than
one BS occupying more capacity than necessary. Hence, we present a two-step heuristic
to improve the lower bound in the following.

In the first step, we determine TNs which are currently assigned to more than one BS
and define a serving BS, where this decision is based on the potential of the BS to serve
further TNs. If no BS fulfils this decision criterion, we select the BS with the lowest
remaining capacity as the serving BS. By the first step, we have gained capacity at some
BSs. To exploit the capacity completely, we try to assign not yet covered TNs by running
a DP consecutively for every BS with available capacity in the second step of the heuristic.
We now give a detailed description of the two steps.

Step 1 First, we compute the subgradient or slack ξi
t for each TN t at iteration i, where z̃i

st
is the current optimal solution:

ξi
t = 1 −

∑
s∈S′t

z̃i
st.
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If ξi
t ≥ 0, the relaxed constraint (13.2b) is satisfied for TN t. For all remaining TNs,

we define the set of BSs to which the TN is currently assigned Σt B {s ∈ S′t | z̃
i
st = 1}.

Among these BSs, we have to specify the serving BS. To this end, we define the set
of free TNs per BS at iteration i as

τi
s B

{
t ∈ Ts

∣∣∣ z̃i
st = 0

}
∀ s ∈ S′,

which is the set of TNs potentially served by s but not in the current solution. If
there exists a BS σ ∈ Σt with |τi

σ| = 0 for a TN t with ξi
t ≤ −1, then σ is assumed to

be the serving BS. Such a BS has no free TNs left and hence, no potential to serve
further TNs. If no such BS exists, we compute the load `s of each s ∈ Σt as

`s = rhss + Γ1π̃
1,i
s + Γ2π̃

2,i
s ,

where rhss denotes the optimal right hand side value, which is found among the b ≤
B − Γ1π1 − Γ2π2 in the notation of Chapter 12; cf. the maximisation problem (12.8).
Moreover, π̃1,1

s , π̃2,1
s denote the optimal values of the dual variables computed via the

DP improved. Then, we define the serving BS σ ∈ Σt for TN t as the BS with the
lowest remaining capacity, i. e.,

σ = argmin
s∈Σt

{bs − `s} . (13.5)

We summarise the first step of the heuristic by constructing a new solution ẑi, which
is feasible for the two-band RTNAP (13.2).

ẑi
st =

1 if (ξi
t = 0 ∧ z̃i

st = 1) or s is the serving BS defined in (13.5),
0 otherwise.

∀ (s, t) ∈ S′ ∗ T

Step 2 After the serving BSs are fixed for all TNs with a negative slack, we remove
the multiple assignments and thus, gain capacity at some BSs. To exploit the total
capacity, we now attempt to assign each TN t with

∑
s∈S′t ẑi

st = 0 to a BS s with `s <
bs. Since the realisation of the uncertain traffic demands is not known, we cannot
just add TNs to BSs. Instead, we run a DP improved for each of the potential BSs
respecting the fixed assignments and with objective

max
∑

t∈τi
s:

∑
s∈S′t

ẑi
st=0

w̄txt.

As soon as a TN t is assigned to a BS σ in such a post-processing DP, we set ẑi
σt = 1

and remove the TN from τi
s for all s ∈ S′t \ {σ}.
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In total, we set

χi =
∑
t∈T

w̄t

∑
s∈S′t

ẑi
st

 , (13.6)

which is clearly at least as good as the bound defined in (13.4).

Implementation details and parameter settings In the introduction to Lagrangian
relaxation in Section 1.2.4, the initial values of the Lagrange multipliers for the subgradi-
ent algorithm are set to zero. However, we can define better initial multipliers µ0

t following
the approach by Fisher [77] and using the subsequent reformulated objective. The objec-
tive (13.3a) can equivalently be written as

max
∑
s∈S′

∑
t∈Ts

(w̄t − µt) zst +
∑
t∈T

µt. (13.7)

For Lagrange multipliers µ with µt ≥ w̄t ∀ t ∈ T , the optimal solution of (13.3) is z = 0
since w̄t ≥ 0. Hence, setting µ0

t = w̄t minimises the upper bound χLR(µ) for all µ for
which z = 0 is an optimal solution of (13.3). Clearly, this yields better initial values
than µ0

t = 0.
To apply the stop criteria specified for the subgradient algorithm, we have to define the

necessary parameters. We set ε1 = 0.001 ensuring that the algorithm stops as soon as the
optimality gap is below 0.1 %. Furthermore, as we are only interested in integer solutions,
we round the upper bound in the computation of the gap, i. e., bχLR(µi)c. To improve the
optimality gap further, we use the overall best lower bound χ, which is updated only if the
current lower bound χi is higher.

Moreover, we define ε3 = 0.001 for the precision of the step lengths. Instead of using ε2

directly to control the improvement of the upper bound, we exploit the precision set for the
underlying algorithm “MinKnap” in the DP improved; cf. Pisinger [153]. This algorithm
is developed only for integer objective coefficients. Due to the non-integer Lagrange mul-
tipliers, we have to scale all coefficients by a parameter ε2 and decide to set ε2 = 1000.
Hence, if |µi+1

t − µ
i
t| < 1/ε2, the precision used in “MinKnap” is not sufficient and we stop

the subgradient algorithm.
Finally, we set

δi =


2 i = 0
δi−1

2 if δi−1 = δi−2 = δi−3 = δi−4, i ≥ 3
δi−1 otherwise,

i. e., we halve the scaling parameter δi if the upper bound was consecutively not improved
three times.

13.2.3. Numerical Evaluation

In this section, we investigate the quality of the upper bound for the two-band RTNAP
obtained by the Lagrangian relaxation described in the previous section in a proof-of-
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scenario (Γ1,Γ2) reason for selection

s 20 200 (9, 5) non-dom. for uniform and normal
s 30 300 (8, 6) non-dom. for uniform and normal
s 40 400 (1, 9) non-dom. for uniform and normal
s 40 450 (2, 13) lowest time for uniform and dom. for normal
s 50 500 (20, 8) lowest time for normal: (20, 6), take next feasible for uniform

Table 13.3.: Selected (Γ1,Γ2)-pairs and reason for selection per scenario.

concept implementation. To this end, we select one (Γ1,Γ2)-pair per scenario, for which
we have obtained a feasible solution for both demand distributions in Chapter 13.1 and
which yields the lowest objective value. Among several possibilities, we select the pair
with the lowest solving time. More precisely, if one of the pairs depicted in Table 13.2,
is non-dominated for the uniform as well as normal demand distribution, we select this
(Γ1,Γ2)-pair here. This is the case, e. g., for s 20 200 where we select (Γ1,Γ2) = (9, 5). If
such a pair does not exist, we check if a pair with the lowest solving time for the uniform
(normal) distribution is also feasible (but dominated) for the normal (uniform) distribution.
For instance, the pair (2, 13) consumes the lowest time among the non-dominated pairs for
an uniform distribution for s 40 450 and is dominated by (1, 9), which is a non-dominated
pair for a normal distribution. Only for scenario s 50 500 we vary this selection routine as
there does not exist a feasible pair with the lowest time consumption that is also feasible
for the other distribution. Hence, we choose a pair feasible for both distributions and
that is as close as possible to a pair with the lowest solving time. The selected pairs per
scenario and the reason for their selection are displayed in Table 13.3. Based on these
(Γ1,Γ2)-pairs, we use the corresponding optimal solution (x̃, z̃, ũ, π̃1, π̃2) of the compact
formulation (13.1) of the two-band RWNPP to define the set of deployed BSs S′ B {s ∈
S | x̃s = 1}. Additionally, we round all ratios of demand over spectral efficiency up to
obtain only integer values which are required by the DP.

All computations are performed on a Linux machine with 3.40GHz Intel Core i7-3770
processor and a memory limit of 11 GB. The objective value of the Lagrangian dual prob-
lem χLD is obtained by bχLRcwhere χLR is the best upper bound obtained by the Lagrangian
relaxation. Furthermore, we denote by χ the best lower bound of the Lagrangian relaxation
solving process.

We first investigate the effect of the heuristic to obtain an improved lower bound. In
Table 13.4, we display the rounded upper bounds bχLRc and the lower bounds obtained
by either dis- or enabling the heuristic. The lower bound χ obtained when the heuristic is
enabled is always better than the lower bound obtained without the heuristic. For scenarios
s 40 400 and s 40 450, the upper bound bχLRc is slightly worse when the heuristic is
enabled. This is the case as the Lagrangian relaxation stops since the gap limit of 0.1 %
is reached due to the good lower bound. This is also the reason for the high time savings
of around 50 % for these scenarios. The presented results demonstrate that the application
of the proposed heuristic improves the solving process of the Lagrangian relaxation while
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no heuristic with heuristic % time
scenario χLD χ χLD χ decrease

s 20 200 51674 51522 51674 51613 -9.63
s 30 300 80548 80283 80548 80366 -9.27
s 40 400 109295 109173 109304 109200 55.18
s 40 450 120469 120250 120474 120424 47.41
s 50 500 139484 138953 139484 139289 -3.62

Table 13.4.: Upper and lower bounds bχLRc and χ when the heuristic is disabled and en-
abled and the percentage time decrease by the application of the heuristic.

scenario χLD χ gap (%) time (s) # iter. ILP time (s)

s 20 200 51674 51613 0.12 23.8 83 2.4
s 30 300 80548 80366 0.23 77.1 90 24.9
s 40 400 109304 109200 0.10 89.2 38 71.6
s 40 450 120474 120424 0.04 157.9 44 10.5
s 50 500 139484 139289 0.14 630.0 101 3442.3

Table 13.5.: Upper and lower bounds bχLR(µi)c and χ, integrality gap, solving time, and
number of iterations for the Lagrangian relaxation and the solving time of the
ILP (13.2) with precision 0.001 per scenario.

the time consumption is increased just moderately. Thus, we enable the heuristic in the
subsequent investigations.

In Table 13.5, we display the best upper bound χLD, the best lower bound χ, the integral-
ity gap, the time consumption and the number of iterations of the Lagrangian relaxation.
Note, the gap is the percentage value of (χLD − χ)/χLD. As seen before, by the definition
of ε1 scenarios s 40 400 and s 40 450 are solved to optimality with precision 0.001 while
the solutions for s 20 200, s 30 300 and s 50 500 are close to optimal. Moreover, the time
consumption is reasonable with less than 630 s for all investigated scenarios. Comparing
these times to the time consumed when solving the ILP (13.2) with the same precision,
the Lagrangian relaxation is (slightly) slower for scenarios with up to 40 BSs but signifi-
cantly faster for the largest scenario. In summary, the Lagrangian relaxation gives (close
to) optimal upper bounds in an acceptable time for all investigated scenarios.

Finally, we compare the upper bound obtained from the LP relaxation χLP to the best
bound of the Lagrangian relaxation χLD in terms of gap closed. Similarly to former com-
putational studies the percentage gap closed is defined as

gap closed B
χLD − χLP

ILP − χLP
,

with ILP denoting the best known primal bound obtained from solving the ILP (13.2). In
Table 13.6, we present the best known primal bound of the ILP, the LP relaxation χLP, the
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scenario ILP χLP χLD gap closed (%)

s 20 200 51647 52705.67 51674 97.5
s 30 300 80504 82429.67 80548 97.7
s 40 400 109295 112349.86 109304 99.7
s 40 450 120457 123431.62 120474 99.4
s 50 500 139397 143646.40 139484 98.0

Table 13.6.: Best known primal bound of the ILP, LP relaxation value χLP, upper bound of
the Lagrangian relaxation χLD and the percentage gap closed per scenario.

Lagrangian relaxation χLD and the percentage gap closed. Note that all ILP values are op-
timal apart from scenario s 50 500 which is not solved to optimality due to exceeding the
available memory. The upper bound obtained by the Lagrangian relaxation is significantly
better than the bound of the LP relaxation. In fact, by the Lagrangian relaxation we can
close 97.5 to 99.7 % of the optimality gap given by the LP relaxation for all scenarios.
These good results support our choice to relax the coverage constraints (13.2b) and apply
the Lagrangian relaxation approach with a subgradient algorithm.

13.2.4. Conclusion and Outlook

In this chapter, we have proposed a compact formulation of the two-band RTNAP whose
aim is to assign all TNs to already deployed BSs. By means of Lagrangian relaxation, we
have obtained several uncorrelated two-band RKPs which are solved separately by the DP
improved proposed in Chapter 12. Moreover, we have proposed a two-step heuristic to im-
prove the lower bound. Numerical results performed on five scenarios have demonstrated
that the heuristic improves the lower bound such that the optimal tolerance is reached for
two scenarios. Additionally, the Lagrangian relaxation gives (close to) optimal solutions
within an acceptable time, where it is even significantly faster than the compact ILP for
the largest scenario. Finally, the computational results have corroborated the theory that
the Lagrangian dual problem can give a (significantly) better bound than the LP relaxation
as we have obtained a percentage gap closed of at least 97.5 %.

These good results entail the question of the performance of the Lagrangian relaxation
approach when applied to the complete two-band RWNPP. For future investigations, the
conflict graph constraints in the two-band RWNPP can also be relaxed such that the result-
ing subproblem again only consists of separate two-band RKPs. However, the Lagrangian
relaxation would consume significantly more time as more BSs would have to be consid-
ered than in the study presented in this section. Here, we have only considered those BSs
which are deployed in a pre-computed solution. This number is at most 6 while it would
be 50 for the RWNPP.

Moreover, the upper bound computed by Lagrangian relaxation is not optimal for every
investigated scenario. Hence, we now briefly describe a branching routine which remains
as further future work.
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As the upper bound χLR(µi) is calculated via the independent solving of uncorrelated
two-band RKPs, it is likely that TNs are assigned to more than one BS. To find an optimal
solution for the two-band RTNAP, we have to branch on the multiple assigned TNs. For
instance, a TN t is assigned to BS s as well as σ. Then, we create three child nodes
containing the following restrictions.

1. zst = 1 ∧ zσt = 0; TN t is assigned to BS s but not to σ,

2. zst = 0 ∧ zσt = 1; TN t is not assigned to BS σ but to s,

3. zst = 0 ∧ zσt = 0; TN t is neither assigned to BS s nor to σ.

In every child node, the subgradient algorithm is restarted and by means of these branch-
ing decisions, the size of the DPs can be reduced especially when further descending the
branching tree. Moreover, this process can be extended to a full B&B routine by introduc-
ing and updating global bounds. The crucial part of the described B&B routine is, on the
one hand, to decide on which TN should be branched next and on the other hand, to decide
the order in which open branching nodes are processed.
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Recoverable robustness is a quite recent two-stage robustness approach, which was first
introduced in a technical report by Liebchen et al. [124] in 2007 and applied to railway
optimisation problems with formalisation in [125] two years later. In the classical robust
optimisation, a solution is required to be immune against small deviations in the data.
A less strict requirement is the possibility to recover solutions after a change in the data,
which is included in recoverable robustness. Such an adjustment is regulated by predefined
rules.

More precisely, a first-stage solution can be adapted (recovered) in order to make it
feasible in a second stage once a realisation of uncertain data, which is called scenario,
is detected. Such a recovery action is algorithmically limited, i. e., possible modifications
of the solution are predefined, and implies cost which have to be taken into account in
the recoverable robust solution. Typical scenarios are, e. g., discrete [37], interval [37], or
Γ-robust [36], while Büsing [33] studies further scenario sets.

Recoverable robustness is a quite general framework, hence, widely applied and studied
for different problems. We give a brief overview on the literature studying (aspects of)
recoverable robustness for problems related to this thesis without claiming exhaustiveness.

Bouman et al. [30] study the knapsack problem with uncertain capacity and the demand
robust shortest path problem, where the location of the sink and the cost of the edges may
change over time. The authors apply column generation to solve the recoverable robust
versions of these problems. Another decomposition approach, Benders decomposition, is
used by Cacchiani et al. [38] to assess the Price of Recoverability for railway rolling stock
planning. Alvarez-Miranda et al. [7] study a recoverable robust two-level network design
problem with two available technologies, where the network topology is determined in the
first stage. Uncertainty is modelled by means of discrete scenarios. The KP has also been
studied in terms of recoverable robustness. In Büsing et al. [37], the authors investigate
the recoverable RKP with discrete scenarios while they study Γ-scenarios in [36]. More-
over, Kutschka [118] presents a polyhedral study of the recoverable RKP with a discrete
as well as Γ-robust scenario set and determines valid and facet defining inequalities such
as recoverable robust (strengthened/extended) cover inequalities.

In the following section, we briefly present the basic concept of recoverable robustness
based on [118, 125]. Afterwards, we state the recoverable robust counterpart and possibil-
ities to evaluate the robustness.

The Basic Principle The aim is to find a solution to an optimisation problem which
can be made feasible by a limited effort for a limited set of scenarios [125]. Thus, a
recoverable robust problem consists of an (original) optimisation problem, realisations of
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uncertain data (scenarios) and limited recovery possibilities.
Let K define the set of scenarios, where each k ∈ K represents a realisation of the

uncertain data. These realisations are summarised in the recoverable robust uncertainty
set UK . Then, the recoverable robust optimisation problem consists of the following two
stages; cf. [118].

1. A first-stage solution x0 of the original optimisation problem before the realisation
of uncertain data is known.

2. A second-stage solution xk, which modifies the first-stage solution x0 according to a
predefined recovery rule to recover feasibility of x0 according to the realisation k of
uncertain data.

By R(x0, k), we denote the set of feasible recovered solutions of the first-stage solution x0

for scenario k. Hence, xk ∈ R(x0, k).

The Recoverable Robust Counterpart For a standard minimisation LP in row by
row representation

min ctx
s.t. aix ≥ bi ∀ i ∈ {1, . . . ,m} (14.1)

x ∈ Rn
≥0,

we extend the notation for its recoverable robust counterpart as follows. The first stage is
defined as c0 = c, a0

i = ai, and b0
i = b. Moreover, for each scenario k ∈ K, the second stage

is defined as ck ∈ Rn, ak
i ∈ R

n, and bk
i ∈ R

m. The recoverable robust counterpart of (14.1)
can then be formalised as

min (c0)tx0 + max
k∈K

{
(ck)txk

}
(14.2a)

s.t. a0
i x0 ≥ b0

i ∀ i ∈ {1, . . . ,m} (14.2b)

ak
i xk ≥ bk

i ∀ i ∈ {1, . . . ,m}, k ∈ K (14.2c)

xk ∈ R(x0, k) ∀ k ∈ K (14.2d)

x0 ∈ R≥0. (14.2e)

The objective (14.2a) minimises the first-stage cost c0 plus the worst-case second-stage
cost ck. Constraints (14.2b) are the first-stage constraints, while (14.2c) are the second-
stage constraints. Furthermore, the recovery action is implemented by constraints (14.2d)
which also include the non-negativity requirement of the second-stage solution xk. The
worst-case second-stage cost are called the robust recovery cost.

Evaluation of Recovery The price of robustness defined in (8.13) gives the percentage
deterioration of the objective value required to guarantee feasibility by means of the Γ-
robustness approach. For the definition, the robust objective value is compared to the
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nominal problem which considers only nominal values. However, a less conservative view
is to consider the objective value of the nominal problem which respects the worst-case
setting. Then, the price of robustness rather defines the gain of robustness as it states the
percentage cost savings achieved by the robust solution, which is less conservative and
more resource efficient.

Similar to the gain of robustness, we define the gain of recovery (GoR) for a recoverable
robust solution with objective value zR:

GoR B
|zK − zR|
|zK |

, (14.3)

with zK denoting the objective value of the nominal problem where no recovery is allowed
but all scenarios have to be satisfied simultaneously. This optimisation problem is given by
LP (14.2) and setting xk = x0 ∀ k ∈ K. Therefore, GoR gives the percentage improvement
of the objective value by allowing recovery; cf. [36, 118].

223





15. The Recoverable RWNPP

In this chapter, we apply the recoverable robustness approach presented in the previous
chapter to the WNPP defined in Section 4.1. Our aim is to save cost (or energy) by the
deactivation of BSs during low traffic times such as nights. Since the network design is
proposed for the maximum throughput and BSs consume a large amount of their total
power consumption when they are not serving any TN, there exists a large potential to
increase the energy efficiency of the communication network by switching BSs off.

The improvement of the energy efficiency of wireless communication networks has
gained a great deal of attention during the last several years. Investigated levels of the
communication system in terms of energy savings are the BS components, the links and
the network itself; cf. Correia et al. [54]. Self-organising networks (SONs) provide sup-
port for several energy saving approaches currently developed. The switching off re-
quires adaptions and compensating mechanisms for the neighbouring cells as pointed out
by Blume et al. [28], where cooperative communication and power control among BSs
is necessary [94]. A survey on green strategies, the architecture of BSs, operational cost
and energy consumption of BSs in terms of energy efficiency is presented in [133]. Re-
cent works on strategies to turn off BSs during low traffic times have been proposed in,
e. g., [28, 44, 54, 97, 147, 161] and the references therein.

While the most recent works on energy aware radio networks make use of the advanced
(communication) techniques of 4G networks, our approach based on recoverable robust-
ness can be applied to any cellular access network. Moreover, it gives a benchmark of the
achievable savings by means of deactivating BSs.

15.1. Formulation

To limit the number of variables necessary for the recoverable robust formulation, we re-
place the non-coverage variable ut by 1 −

∑
s∈St

z0
st for all t ∈ T , where z0

st denotes the
first stage solution variables. Such a replacement is possible due to the coverage con-
straint (4.1). Hence, the objective (4.3) is reformulated to

min
∑
s∈S

csx0
s + λ

∑
t∈T

1 −∑
s∈St

z0
st

 = λ|T | + min
∑
s∈S

csx0
s − λ

∑
(s,t)∈S∗T

z0
st, (15.1)

with the first stage deployment indicator variables x0
s .

To apply the recoverable robustness approach, we introduce a finite set of discrete sce-
narios K such that for each scenario k ∈ K a TN t requires demand wk

t and we save
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15. The Recoverable RWNPP

cost ck
s > 0 if BS s is not operating for this scenario. Moreover, a TN that is not covered in

scenario k is penalised by λk ≥ 0.
A feasible first stage solution (x0, z0) ∈ {0, 1}|S| × {0, 1}|S∗T | satisfies the coverage con-

straints ∑
s∈St

z0
st ≤ 1 ∀ t ∈ T , (15.2)

the first-stage capacity constraints∑
t∈Ts

w0
t

est
z0

st ≤ bsx0
s ∀ s ∈ S, (15.3)

with first-stage demands w0
t , and the maximal clique inequalities∑

s∈U

x0
s ≤ 1 ∀U ⊂ S, U is a max. clique in G. (15.4)

For each scenario k ∈ K, we define the second-stage variables as follows.

xk
s =

1, BS s is deployed in scenario k
0, otherwise

zk
st =

1, TN t is assigned to BS s in scenario k
0, otherwise

In a feasible second-stage solution (xk, zk), a BS can only be installed if it has already
been deployed in the first-stage solution. This means, we only permit the deactivation of
BSs and not the deployment of new BSs in the recovery action. Furthermore, a TN can be
reassigned in the second stage but only if the serving BS of the first stage is switched off for
the considered scenario. These requirements are formalised in the following constraints.

xk
s ≤ x0

s ∀ s ∈ S, k ∈ K (15.5)

zk
st ≥ z0

st + xk
s − 1 ∀ (s, t) ∈ S ∗ T , k ∈ K (15.6)

Finally, the second-stage equivalents of the coverage constraints (15.2)∑
t∈T

zk
st ≤ 1 ∀ t ∈ T , k ∈ K (15.7)

and the capacity constraints ∑
t∈Ts

wk
t

est
zk

st ≤ bsxk
s ∀ s ∈ S, k ∈ K (15.8)

have to be satisfied by a second-stage solution (xk, zk). Note, since we do not deploy more
BSs in the second stage than in the first stage, there is no need for an equivalent of the
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maximal clique inequalities per scenario.
For each scenario k ∈ K and a given first-stage solution (x0, z0), the set of all feasible

recoveries is defined as

R(x0, z0, k) B
{
(xk, zk) ∈ {0, 1}|S| × {0, 1}|S∗T |

∣∣∣ (15.5) − (15.8) are satisfied
}
, (15.9)

while the robust recovery cost of a first-stage solution (x0, z0) is given by

C(x0, z0) B max
k∈K

min
(xk ,zk)∈R(x0,z0,k)

 ∑
s∈S(x0−xk)

−ck
s + λk|T | −

∑
(s,t)∈S∗T (zk)

λk

 . (15.10)

Here, S(x0 − xk) denotes the set of BS indices associated to x0 − xk, i. e., x0
s = 1 and xk

s = 0
if and only if s ∈ S(x0 − xk), and S∗T (zk) denotes the set of BS-TN pairs associated to zk,
i. e., zk

st = 1⇔ (s, t) ∈ S ∗ T (zk).
Thus, the complete model of the recoverable RWNPP with a discrete uncertainty set can

be stated as follows.

λ|T | + min
∑
s∈S

csx0
s − λ

∑
(s,t)∈S∗T

z0
st − ω (15.11a)

s.t.
∑
s∈St

z0
st ≤ 1 ∀ t ∈ T (15.11b)

∑
t∈Ts

w0
t

est
z0

st ≤ bsx0
s ∀ s ∈ S (15.11c)∑

s∈U

x0
s ≤ 1 ∀U ⊂ S, U is a max. clique in G (15.11d)∑

s∈St

zk
st ≤ 1 ∀ t ∈ T , k ∈ K (15.11e)

xk
s ≤ x0

s ∀ s ∈ S, k ∈ K (15.11f)

zk
st ≥ z0

st + xk
s − 1 ∀ (s, t) ∈ S ∗ T , s ∈ S, k ∈ K (15.11g)∑

t∈Ts

wk
t

est
zk

st ≤ bsxk
s ∀ s ∈ S, k ∈ K (15.11h)∑

s∈S

ck
s(xk

s − x0
s) − λ

k
∑

(s,t)∈S∗T

zk
st + ω ≤ −λk|T | ∀ k ∈ K (15.11i)

x0
s , z0

st, xk
s, zk

st ∈ {0, 1} ∀ s ∈ S, (s, t) ∈ S ∗ T , k ∈ K (15.11j)
ω ∈ R (15.11k)

Variable ω denotes the recovery cost defined in (15.10) while we include the maximisation
by means of constraints (15.11i). Compared to the basic model (4.4) together with the
vub constraints (4.5), the mci (5.9) and the replacement of the non-coverage variables ut

by 1 −
∑

s∈St
zst, the recoverable RWNPP formulation (15.11) has |K| · (|S| + |S ∗ T |) + 1

additional variables and |K| · (|T | + 2|S| + |S ∗ T | + 1) extra constraints.
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15. The Recoverable RWNPP

Gain of Recovery To evaluate the benefit obtained by a recovery action, we use the
measure of the gain of recovery introduced in (14.3). Thus, we now define the standard
robust formulation of the WNPP where no recovery is allowed but all scenarios have to be
fulfilled simultaneously.

λ|T | + min
∑
s∈S

csx0
s − λ

∑
(s,t)∈S∗T

z0
st − ω (15.12a)

s.t. (15.2), (15.3), (15.4) (15.12b)∑
t∈Ts

wk
t

est
z0

st ≤ bsx0
s ∀ s ∈ S, k ∈ K (15.12c)

− λk
∑

(s,t)∈S∗T

z0
st + ω ≤ −λk|T | ∀ k ∈ K (15.12d)

x0
s , z0

st, ∈ {0, 1} ∀ s ∈ S, (s, t) ∈ S ∗ T , k ∈ K (15.12e)
ω ∈ R. (15.12f)

In the notation of the definition of GoR in (14.3), formulation (15.11) yields objective
value zR and (15.12) yields objective value zK .

15.2. Numerical Evaluation

In this section, we evaluate the GoR numerically for five test instances with up to 50
BSs and 500 TNs defined in the computational study of the d-RWNPP in Section 9.1.2
with emin = 0.25. To this end, we define two different scenario sets and appropriate values
of the four parameters, BS cost cs, cost savings ck

s and the scaling or penalty parameters λ
and λk.

Based on Table 9.1 stated for the creation of test instances for the evaluation of the d-
RWNPP in Section 9.1.2, we extend the set of possible traffic profiles by the profile “mix”
which is defined as 2/3 normal + 1/3 high. As an example, the lowest possible value
following the profile “mix” is

2
3

(10 % · 512 + 20 % · 128 + 70 % · 64) +
1
3

(30 % · 512 + 40 % · 128 + 30 % · 64) = 156 kbps.

We define two scenario sets representing one week each as follows. The planning de-
mands w0

t , which denote the daily demand, are computed according to the traffic profile
“high”. Moreover, each night (eight hours) per week is defined as one scenario k with
demand wk

t computed via traffic profile “normal” or “mix” and we denote the respective
scenario set accordingly. Thus, |K| = 7 for scenario set “normal” as well as “mix”.

In previous studies of the WNPP, we have assumed cs = 4∀ s ∈ S and λ = 1; see,
for instance, Section 5.9.1. For the recoverable RWNPP, we need a wider scope for these
parameters to find a good trade-off between minimising the number of deployed BSs and
maximising the number of served TNs. Hence, we set cs = 40 and λ = 10 keeping the
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“normal” ”mix”

instance min. av. max. min. av. max.

s 20 200 0.0% 0.0% 0.0% 0.0% 0.1% 0.3%
s 30 300 0.1% 0.4% 1.6% 0.0% 0.5% 0.8%
s 40 400 0.1% 1.1% 1.9% 0.2% 0.9% 1.0%
s 40 450 0.7% 1.4% 2.0% 0.5% 0.8% 1.3%
s 50 500 0.8% 1.3% 2.8% 0.3% 1.0% 1.8%

Table 15.1.: Minimum, average and maximum optimality gaps of MILP (15.11) after 12 h
for all five test instances with λk ∈ {1, . . . , 10} and the two scenario sets.

same ratio. Approximately 10 % of the total power consumption of a BS is consumed dur-
ing idle periods [54]. Since we intend to switch off or set to idle mode, respectively, BSs
during one third of a day, we set ck

s = (40−40 ·10 %) ·1/3 = 12. This means, we assume 4
(representing 400 W) is consumed by the standby of a BS and the remaining 36 (repre-
senting 3600 W) are equally consumed during eight hours per day. Moreover, reasonable
values for the scaling parameter λk are 1, . . . , λ for all k ∈ K. Based on the chosen values
of the parameters, we can require ω ∈ Z to speed up the solving of the MILPs (15.11)
and (15.12).

All subsequent computations are performed on a Linux machine with 3.40GHz Intel
Core i7-3770 processor and a general CPU time limit of 12 h. Moreover, we use the
standard version of cplex 12.4 [98] to solve the MILPs.

We cannot solve the recoverable RWNPP for all instances to optimality within the TL
of 12 h. In Table 15.1, we state the minimum, average and maximum optimality gaps for
all test instances and both scenario sets. The average is taken over λk ∈ {1, . . . , 10}. All
settings for the smallest test instance s 20 200 and the scenario set “normal” are solved
to optimality while the higher demands during the night in the scenario set “mix” have a
negative effect on the solving of MILP (15.11). However, the maximum optimality gaps
for all test instances are at most 2.8 % and at most 1.4 % on average. Therefore, also
non-optimal solutions are reasonable for the subsequent investigations.

For the value of λk that yields the lowest objective value per test instance and scenario
set, we present the number of deployed BSs and covered TNs during the day and the
number of operating BSs and the minimum, average, and maximum number of deployed
TNs during the night in Table 15.2, where the average is taken over all scenarios (nights).
Apart from test instance s 50 500 which does not serve one particular TN due to the non-
optimality of the solution, all TNs are served during the day. For all test instances and
both scenario sets, the recoverable robust solution economises at least one BS during the
night while at most 2 % of the TNs but in most cases 0 % are lost. In six out of seven (all)
nights, two BSs are economised for test instance s 50 500 (s 40 400) and three BSs are
economised in all nights for s 40 450 in case of the scenario set “normal”. In case of the
scenario set “mix”, two BSs are economised for test instance s 40 450.

Concerning the value of λk that gives the results in Table 15.2, lower objective values
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instance λk # BSs d. # TNs d. # BSs n. min. av. max.

“n
or

m
al

” s 20 200 1 4 200 3 200 200 200
s 30 300 2 5 300 4 300 300 300
s 40 400 4 6 400 4 400 400 400
s 40 450 1 7 450 5 441 441 441
s 50 500 5 7 499 5/6 498 498 500

“m
ix

”

s 20 200 1 4 200 3 197 197 197
s 30 300 2 5 300 4 300 300 300
s 40 400 10 6 400 5 400 400 400
s 40 450 2 7 450 4 450 450 450
s 50 500 3 7 500 6 500 500 500

Table 15.2.: Number of deployed BSs and covered TNs during the day and the number
of BSs and the minimum, average (over scenarios), and maximum number of
covered TNs during the night for λk with the lowest objective value per test
instance and scenario set.

instance “normal” “mix”

s 20 200 7.5% 5.6%
s 30 300 6.0% 6.0%
s 40 400 10.0% 5.0%
s 40 450 9.6% 8.6%
s 50 500 0.7% 4.3%

Table 15.3.: Gain of recovery in % of the recoverable RWNPP (15.11) compared to the
robust problem (15.12) per test instance and scenario set.

are naturally obtained for lower values of λk. However, if too many TNs are not served
during the night as the penalty to leave TNs uncovered is too low, the objective value will
rise. Hence, for larger test instances, the value of λk yielding the lowest objective value
is in general higher than for test instances with a lower number of BSs and TNs. Even
though, this behaviour is not surprising, we cannot predict the best value for the scaling
parameter λk.

Finally, we evaluate the GoR as defined in (14.3) which is achieved by the recoverable
RWNPP (15.11) in comparison to the nominal problem (15.12). The GoR for all five test
instances and both scenario sets is stated in Table 15.3. Formulation (15.12) without re-
covery, which is solved optimally for all instances, serves all TNs and deploys the same
number of BSs as the recoverable robust solution during the day. As we have seen before,
we economise at least one BS during the night by the recovery action. This economisation
yields a GoR of at least 0.7 % and up to 10.0 %. Additionally, we would like to point out
that these numbers are only lower bounds for the GoR since the recoverable robust solu-
tions are not (all) optimal and hence, there exists the potential for further improvements.
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15.3. Conclusion and Outlook

In this chapter, we have proposed a compact formulation with a discrete uncertainty set
for the recoverable RWNPP to model the deactivation of BSs during low traffic times
such as night. A computational study performed on five test instances with 20 to 50 BSs
and 200 to 500 TNs and for two scenario sets has revealed the potential of the recoverable
robustness approach. For a good choice of the scaling parameter λk, which represents the
penalty for not serving TNs during one night, we can economise at least one and up to
three BSs for all test instances. However, a good value of λk is hard to predict and hence,
has been found by solving the recoverable RWNPP for different values and comparing the
objective values. The achieved savings measured by the gain of recovery range from 0.7 %
to 10.0 %. Certainly, this gain depends on the selected values for the parameters cs, ck

s, λ
and λk.

As the compact formulation for the larger test instances is not solved during twelve
hours, most investigated recoverable robust solutions are not optimal. Thus, the improve-
ment of the solving of the recoverable RWNPP, e. g., by means of valid inequalities such
as recoverable robust cover inequalities, remains as future work.

Furthermore, the adaption of the recovery action to model diverse aspects of the WNPP
and the incorporation of further uncertainty sets such as interval or Γ-robust scenario sets
remain as aspects of future research.
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Remarks and Conclusions

Interpreting Computational Studies

We have performed computational studies to evaluate the effectiveness of valid inequali-
ties, for instance, in Section 7.4 for a chance-constrained model and in Section 9.1.3 for a
Γ-robust optimisation model. Based on recent studies in the field of unexpected behaviour
in the performance of MIP solvers, we critically discuss the interpretation of such types of
computational studies in this section.

Performance variability In 2008, Danna [60] was the first to point out large differences
in solving times and number of B&B nodes for solving the same instance with the identical
cplex version but on different machines (Linux, AIX) in a presentation. The author named
such unexpected changes in performance in the MIP context performance variability (PV).
Apart from diverse machines, Danna [60] generated PV also by permuting rows and/or
columns of the original model and by changing the random seed leading to the common
opinion that PV is intrinsic to MIP; see also [73, 126].

A further way to cause PV was discussed in a presentation by Fischetti and Monaci
[71] in 2012. They added a redundant constraint which entailed a non-negligible speed-
up in eight of nine cases. The technical explanation is on the one hand, that the addition
of constraints changes the order of the variables in which they are loaded by the solver
causing an implicit permutation of columns. On the other hand, the authors have selected
heavily biased test beds for which the default solver does not perform well. As pointed out
by Lodi and Tramontani [126], the adding of a redundant constraint just adds noise and
hence, it is of great importance to distinguish between the impact of a scientific idea and
the noise it adds to the solving process.

The first work discussing a source of PV was presented by Koch et al. [113] in 2011
when introducing the latest release of the benchmark library for MIPs, MIPLIB 2010. The
authors identified imperfect tie-breaking as a reason for PV. Decisions such as the selec-
tion of branching candidates, which are taken by MIP solvers, are based on scores defined
for certain selection criteria. If there is a tie among the best scored candidates and the
tie-breaking is imperfect, selection is made arbitrarily. Then the ordering of the candidates
and rounding errors gain importance. Methods to solve MIPs such as B&C are prone to
PV since the entire subsequent solution process is affected once the path in a B&B tree
diverges. Also Lodi and Tramontani [126] list floating point operations, which differ in
different computing environments, as a possible source for PV. In this context, the au-
thors further name the heuristic nature of MIP solver decisions, which can be caused if the
perfect score is not known or too hard to compute, as another source of PV. Moreover, a
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computational study in [113] reveals that also the number of threads influences the perfor-
mance. A variability score introduced in this work to measure PV goes up and down quite
arbitrary for an increasing number of threads. Additionally, numerical investigations of
model permutations unveil that “the probability of improving performance by permuting
the instances is about as high as the probability to deteriorate performance, but the average
improvement is smaller than the average deterioration” [113].

Fischetti et al. [76] investigate and exploit the variability caused by the simplex algo-
rithm which solves LPs. The LP relaxation of a MIP is solved at the root node of a B&B
tree and forms the foundation for the subsequent computations. However, due to dual
degeneracy of formulations, there usually exists more than one optimal basis which is re-
turned by the simplex algorithm. So far, the returned basis is selected arbitrarily among
the optimal while alternative bases may have significant and rather unpredictable impact
on the solving of the MIP. Thus, the selection of the first basis is crucial.

Exploiting PV Apart from the problems caused by PV and specified above, it is also
possible to exploit the variability to improve the performance. Two recent approaches are
the following. Fischetti et al. [76] have developed a sampling scheme which is based on
different optimal bases generated by the simplex algorithm. Thus, for a number of optimal
bases, the default cutting plane loop and the default primal heuristics of the MIP solver are
executed (in parallel). In a second step, the generated cutting planes and feasible solutions
of the different samples are used as input for the final run. By a large number of samples,
the sensitivity of the solving process to initial conditions can be reduced. Furthermore, also
the random seed parameter of cplex version 12.5.0 and higher can be applied to generate
different root node solutions to be exploited in a sample algorithm.

Another algorithm that makes use of PV is a so-called bet-and-run and has been recently
proposed by Fischetti and Monaci [73]; see also [126] for a summary. The main idea of this
method is to make a number of short runs for randomised initial conditions and then bet
on the most promising run. Only this run is then completed. Bet-and-run adds just a small
overhead to any sequential tree search method and numerical results performed on a proof-
of-concept implementation have demonstrated its potential to improve the performance
for medium to hard instances. The quality of the bet-and-run depends on the following
two aspects. First, a cost- or resource-efficient way to generate diversified runs without
deteriorating the average performance has to be determined. Second, rules how to choose
the best run have to be defined. Fischetti and Monaci [73] specify a number of indicators
such as number of open nodes or best bounds with a predefined priority.

Revisiting our computational results For all theoretical achieved results in this the-
sis, we have performed a computational study to investigate their performance. Especially
the studies investigating the gain of valid inequalities in Sections 7.4 and 9.1.3 can be
affected by PV.

In Chapter 7, we have applied chance constraints to the FBWN problem and have de-
veloped valid inequalities. In the computational study performed on a grid network in
Section 7.4.1, the cuts perform better than the shifted cuts for some settings but only if the
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internal cplex cuts are enabled. PV is a plausible explanation for this unexpected behaviour
since the adding of internal cuts affects the complete B&B tree.

Similarly, the computational study in Section 9.1.3, which investigates the performance
of three cutting plane approaches and their combinations for the d-RWNPP, has to be
treated with caution. The results have indicated that the vub constraints, which are im-
plicitly included in the capacity constraints, are one of the most effective types of cutting
planes among the analysed. However, as discussed in [71, 126], the addition of (redundant)
constraints adds noise and hence, impacts the MIP solver. Thus, we cannot be totally sure
that the cutting planes improve the performance themselves and not just the added noise
by chance. To limit this effect, we have followed the measure of selecting an unbiased test
bed as recommended in [113, 126] by performing the study in Section 9.1.3 on several test
scenarios of various dimensions. A large number of instances is advantageous, especially
if the expected performance difference is small.

Based on these remarks, the practical improvements achieved by the addition of valid
inequalities should not be overestimated. There can be no assurance that the results are
similar for other solvers or even for future versions of the used solver cplex. Nevertheless,
it is still common practice to perform such computational studies and all presented compu-
tational studies of this thesis should rather be seen as a proof of concept implementation.

Moreover, some classes of valid inequalities will become less important for the practical
performance of MIPs since solvers become more and more advanced, inter alia, by provid-
ing a growing variety of valid inequality classes. As a consequence, users can deteriorate
instead of improve the solving process by intervening. However, new problems with a so
far unknown structure require new types of valid inequalities which have to be developed
before they can be incorporated in the solvers. Therefore, valid, especially facet-defining,
inequalities are of interest from a theoretical point of view as well as from a practical
perspective if the structure of the corresponding problem is not well-studied.

Conclusions

In this thesis, we have studied diverse robust optimisation approaches as well as one vari-
ant of stochastic optimisation to model data uncertainty in the framework of different
types of wireless communication networks. The investigated mathematical concepts com-
prise chance constraints representing a stochastic methodology, the nowadays prevalent
Γ-robustness, its recent generalisation multi-band robustness, and the two-staged recover-
able robustness.

For a complete description of cellular or mobile communication networks, we have
additionally studied various approaches to model interference in a digression. To this
end, we have on the one hand adapted three known approaches and on the other hand
developed four novel. Three approaches model interference exactly, while the others are
approximate. In theory, the exact methods model SINR requirements best. For practical
purposes, we have studied approximate versions of the exact formulations, which are in
contrast to the exact counterpart computationally tractable, and have first determined good
parameter settings by means of a computational study. Afterwards, we have compared
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the formulations via a SINR-corrected objective value, which incorporates the number of
deployed BSs, covered TNs, and violated SINR constraints. Overall, the TN coverage
requirement formulation has yielded the best value but the conflict graph formulation is
most suitable for the subsequent investigations in this thesis due to its good results and
low complexity. One major disadvantage of all approximate formulations is the violation
of capacity constraints which reveals future research prospects to obtain solutions feasible
for SINR and also for the capacity constraints.

To model uncertain radio configurations and to obtain reliable fixed broadband wire-
less networks, we have formalised capacity requirements under uncertainty by separated
as well as joint chance constraints. For the latter approach, we have proposed ILP for-
mulations, cutset inequalities, and a primal heuristic applicable to a budget-constrained
model. Computational studies performed on generated grid network instances as well as
realistic network topologies have revealed a positive effect of the valid inequalities and of
the primal heuristic in terms of solving time or optimality gap. A comparison of the relia-
bility obtained for different budget values and two alternative formulations without outage
probability constraints has demonstrated a significant gain in reliability by our approach.

As one of the most well-established robust optimisation methodologies, we have stud-
ied the Γ-robustness intensively according to various aspects for the WNPP. On the one
hand, we have incorporated uncertain demands via two alternative modelling approaches,
a compact formulation and a B&P framework, and on the other hand, we have integrated
fluctuating channel conditions by means of uncertain spectral efficiencies.
For the compact ILP with uncertain demands, we have presented three types of valid in-
equalities and a heuristic separation algorithm where a computational study has revealed
their potential to improve the complete solving process due to the enhancement of the dual
bound. Additionally, we have investigated the price of robustness and the level of protec-
tion for this formulation. The percentage deterioration of the objective value is acceptable,
at most 50 % for all scenarios for which we have been able to compute a reasonable primal
bound, while Γ-robust solutions with a protection level of 100 % economise one BS com-
pared to conventional solutions for all but one test scenario. The latter result particularly
demonstrates the potential of Γ-robust optimisation applied to wireless network planning
problems.
Since we could not solve the compact ILP with uncertain demands to optimality for every
studied test scenario and the obtained LP solutions are quite poor, we have developed a
B&P approach as an alternative formulation, which has proven to be efficient for various
wireless network problems. To accelerate the solving process, we have additionally pro-
posed various settings where the suboptimal solving of the pricing problems has performed
best at the root node and the primal heuristic setting has performed best regarding the com-
plete solving process. Moreover, we have compared the performance of the B&P approach
directly to the ILP formulation in a further computational study, which has demonstrated
the expected improvement of the LP solution. However, even the best setting of the B&P
algorithm cannot compete with the (improved) compact formulation when considering the
complete solving process.

The incorporation of uncertain spectral efficiencies in the WNPP by means of Γ-robust-
ness models interference approximately. The crucial aspect of the compact reformulation
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is the definition of the deviation intervals. Based on a computational study, we have de-
termined the best setting among the various presented possibilities which is the shifting
of the SNR value (once for the nominal value, twice for the lowest value). We have then
studied the resulting formulation in terms of validity for interference modelling. It has
turned out that we cannot predict the number of violated SINR conditions or the number
of actually served TNs when varying the value of Γ and additionally, the TN coverage
requirement has given better results. Hence, we do not judge the Γ-robustness suitable to
model interference in the WNPP.

A generalisation of Γ-robust optimisation is multi-band robustness where the deviation
interval can be partitioned into multiple bands and the total number of realisations in each
band is bounded by one parameter per band. We have incorporated this robust optimisation
methodology in the WNPP problem and have proposed a compact formulation in case of
two bands. We have illustrated a linear correlation between the two robustness parameters
by means of a computational study performed on a small scenario. Furthermore, we have
investigated the gain achieved by multi-band robustness in comparison to the Γ-robust
WNPP. The numerical results have revealed a potential to save cost via the economisation
of one BS, where this potential strongly depends on the test scenario and the Γ-robust
solution.

Besides this practical application, we have studied multi-band robustness also theoret-
ically for the RKP. To this end, we have developed two alternative DPs for the K-band
RKP. The first DP has a complexity linear in the number of items n; O(nBK+1). As the ca-
pacity B is usually higher than the number of items, we have devised the second DP with
a complexity linear in the capacity; O(K!nK+1B). Additionally, we have concluded from
this DP that a binary combinatorial optimisation problem with uncertain objective can be
solved by solving O(K!nK) similar problems with certain objective, which generalises a
known result for Γ-robust optimisation problems. Moreover, we have improved the DP
with complexity linear in the capacity in practice and have depicted the effectiveness of
the improvements in a computational study performed for two bands on randomly gener-
ated instances of various sizes. The improved DP also outperforms the compact ILP of
the multi-band RKP in terms of solving time. This last achievement has accounted for the
application of the improved DP to the TNAP, a subproblem of the WNPP. For this purpose,
we have proposed a Lagrangian relaxation for this problem, which consists of several un-
correlated two-band RKPs and gives a better bound than the LP relaxation. The two-band
RKPs are solved separately by the improved DP. Numerical results have shown that the
Lagrangian relaxation gives a (close-to) optimal upper bound in a reasonable time for all
investigated scenarios.

Finally, we have investigated the two-stage concept of recoverable robustness in terms of
the WNPP. To this end, we have proposed a compact formulation incorporating a discrete
uncertainty set. We have studied the recoverable robust solutions for test instances of
various dimensions and different values for the scaling parameter which penalises the non-
coverage of a TN during one night. The solutions with the best objective values economise
at least one BS during the night while at most 2 % of the TNs are lost for all investigated
test instances. Comparing these results to a robust solution without recovery, the gain of
recovery ranges between 0.7 and 10.0 %. Thus, the recoverable robust optimisation applied
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to the WNPP can give a good benchmark of savings that can be achieved by deactivating
BSs during low traffic times.

All in all, we have studied various stochastic and robust optimisation methodologies
in the context of wireless communication networks and have presented their potentials.
The chance-constrained approach has proven to be appropriate to obtain a reliable fixed
broadband wireless network. For cellular wireless communication networks, the question
remains which robustness approach should be applied. The apparent answer is, it depends.
While Γ-robustness is well suited if historical data is known and can reduce cost in compar-
ison to conventional planning, it estimates deviations just roughly. Multi-band robustness
can overcome this limitation but also increases the complexity of the formulation polyno-
mially. If a reformulation of the planning problem containing only separate multi-band
RKPs is possible, there exists an efficient solving method. Furthermore, the recoverable
robustness offers more flexibility and a diversified adaptability especially if the modelling
of different time segments is required. Based on the potentials and limitations revealed in
our work, the concept to be applied should be chosen according to the problem and the
desired optimisation purposes.

Future research topics This thesis provides several aspects for future research. First of
all, the proposed formulations for interference modelling should be improved for practical
applicability. If the solving of (one of) the exact models is sufficiently fast, it is possible
to combine a robustness concept with interference modelling obtaining a more accurate
formalisation of wireless communication networks.

Furthermore, the B&P approach, which could not compete with the improved compact
formulation for the Γ-robust WNPP, might be beneficial if adopted to a multi-band or
recoverable robust model. In particular, for the multi-band RWNPP the solving of the
pricing problems can benefit from the improved DP for the multi-band RKP.

In the context of multi-band robust wireless communication networks, the development
of a branching routine for the Lagrangian relaxation applied to the TNAP remains as fu-
ture work. Additionally, the extension of the Lagrangian relaxation for the TNAP to the
complete WNPP is an aspect for future investigations.

For the recoverable robust WNPP, the solving of the compact formulation with discrete
uncertainty sets has to be improved to obtain optimal solutions. Moreover, further un-
certainty sets such as Γ-robust and different recovery actions, i. e., conditions subject to
which TNs are allowed to be reassigned in the recovery step, should be investigated and
developed to model diverse aspects of the WNPP.

Finally, from a practical point of view, future wireless communication networks such as
those of the currently developed fifth generation will apply novel techniques and thus, will
pose new challenges for the existing optimisation models.
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[37] C. Büsing, A.M.C.A. Koster, and M. Kutschka. Recoverable Robust Knapsacks:
the Discrete Scenario Case. Optimization Letters, 5(3):379–392, 2011. (Cited on
page 221.)

241

http://arxiv.org/abs/1301.2734
http://arxiv.org/abs/1301.2734


Bibliography

[38] V. Cacchiani, A. Caprara, L. Galli, L. Kroon, and G. Maróti. Recoverable Robust-
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