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All of old. Nothing else ever.
Ever tried. Ever failed. No matter.
Try again. Fail again. Fail better.
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1 Introduction

1.1 Motivation

The constantly growing traffic demand, caused by the shift from voice to multimedia
applications, is a major challenge faced by the wireless communications industry.
Unfortunately, the frequency spectrum is already a very scarce resource. Indeed,
virtually all frequency bands of interest for wireless communications are already
under license, see [1] for Germany and [2] for the United States. This is also
reflected by the enormous prices that the German mobile operators paid to acquire
new licenses: around 50 billion e for 145 MHz of bandwidth in 2001 [3, p. 51,
Sec. 2.1.3] and more recently 5.1 billion e for 270 MHz of bandwidth in 2015 [4].

However, it was found that many of the current licensees do not fully utilize their
reserved spectral resources. That is, over several dimensions including frequency,
time and geographical location a significant portion of the spectrum is vacant,
see [5, 6]. To more efficiently use these idle resources, it was suggested to break
with the static spectrum management policy. Such efforts may be subsumed under
the term dynamic spectrum access [7], which represents an application of the more
general cognitive radio paradigm [8–10].

A particularly appealing approach to implementing dynamic spectrum access is op-
portunistic spectrum access. In this context, a transceiver is called a primary user
(PU) or secondary user (SU) depending on whether he partakes in licensed or un-
licensed communication, respectively. There are three distinct parts to this access
paradigm: spectrum opportunity detection, spectrum opportunity exploitation and
regulatory policy [7]. The latter defines the rules by which SUs may opportunis-
tically exploit idle frequency bands after having detected them. The objective is
to grant the secondary system to make more efficient use of idle spectral resources
while protecting the primary system from harmful interference.

Evidently, the process of reliably detecting spectrum opportunities in low signal-
to-noise ratio (SNR) environments — which is also called spectrum sensing — is
challenging from a technical perspective. Consequently, many spectrum sensing
algorithms have been discussed in the literature [11, 12]. These mainly differ with
respect to their system models and their assumptions about the PU signal. As
an example for a practical problem, consider the hidden PU problem illustrated
in Figure 1.1, which is an instance of the hidden terminal problem. To ensure
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1 Introduction

detection of very weak signals and to tackle the hidden PU problem, cooperation
among SUs was promptly suggested [13–16].

A B C

Figure 1.1: The hidden PU problem. PU A is transmitting to PU B and SU C is
monitoring the channel. Since C is outside of the transmission range of
A, C decides the channel is free and begins transmission. PU B now
experiences harmful interference since B is in C’s communication range.

A very promising class of spectrum sensing algorithms is (cooperative) eigenvalue-
based spectrum sensing (also called eigenvalue-based detection) [17–24], where the
detectors utilize functions of the eigenvalues of the sample covariance matrix. These
algorithms rely on the assumption that the noise process of the receiver may be
modeled as white and uncorrelated across receivers. Hence, the received signal
should only be correlated among time or receivers if a PU signal is present. This
class of algorithms makes very little assumptions about the PU signal and the
system, while exhibiting good detection performance.

This thesis is dedicated to advancing (cooperative) eigenvalue-based detection in
three areas. Firstly, this work aims at combining the strengths of traditional
eigenvalue-based detection with the quickest detection paradigm, the latter of which
intends to minimize detection delay. Secondly, an analysis of the robustness of
eigenvalue-based detection algorithms in the presence of model uncertainties is car-
ried out and resulting performance limits are studied. Finally, this thesis contributes
to the theoretical analysis of eigenvalue-based detectors.

1.2 Outline

In the following, an overview of the contents of this thesis is given. In Chapter 2
the general notation and special functions used throughout the thesis are defined.

A brief introduction to the fundamental concepts used in this work is provided
in Chapter 3. Firstly, the general spectrum sensing problem, relevant basic con-
cepts of detection theory and the most important classes of detectors are discussed.
Secondly, the concept of eigenvalue-based spectrum sensing and its main detec-
tors are described, which are the focus of this thesis. This work makes advances in
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1.2 Outline

eigenvalue-based spectrum sensing by applying results from different areas of math-
ematics such as random matrix theory and order statistics. Furthermore, quickest
detection, a detection paradigm used to minimize detection delays, is studied in
conjunction with eigenvalue-based detectors. Moreover, this work tries to establish
whether the so-called SNR wall phenomenon can be observed in eigenvalue-based
detection. All of these concepts are briefly presented in separate sections.

Chapter 4 establishes three important system models which are used in eigenvalue-
based spectrum sensing.

Quickest detection is a paradigm which aims at minimizing the delay in detecting
changes. Large detection delays are harmful to both the primary and the secondary
system in opportunistic spectrum access. In Chapter 5, it is therefore studied
whether concepts from quickest detection may be combined with the strengths of
eigenvalue-based spectrum sensing.

In the presence of model uncertainties, detectors experience an SNR threshold below
which detection is impossible irrespective of the number of samples — the so-called
SNR wall. In the context of eigenvalue-based spectrum sensing, two questions arise.
Firstly, can it be shown that well-known detectors suffer from an SNR wall under
practical model imperfections? Secondly, can the location of the SNR threshold be
characterized with respect to fundamental system parameters? Chapter 6 answers
these questions by investigating the effect of two practical model uncertainties:
imperfect noise power calibration, and colored and correlated noise.

Chapter 7 performs a theoretical analysis of the maximum-minus-minimum eigen-
value (MMME) detector in a dual user scenario. Considering that similar the-
oretical results were obtained for the well-known maximum-minimum eigenvalue
(MME) detector in Chapter 5, their performances in the presence of noise power
uncertainty are compared on the basis of analytical findings.

Finally, Chapter 8 concludes the thesis by summarizing the major results and dis-
cussing future research directions.

Parts of this thesis have been published in [25–30].
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2 Notation

In this chapter, the general notation of this thesis is introduced. Furthermore, some
special functions and probability distributions are defined, which are referenced to
throughout this work.

Sets The set of natural numbers is denoted by N = {1, 2, . . . } and the set of
integers is denoted by Z = {. . . ,−2,−1, 0, 1, 2, . . . }. Furthermore, the sets of real
and complex numbers are identified by R and C, respectively. The cardinality of a
set A is written as

|A| . (2.1)

Scalars Scalars are printed in italics with normal font-weight, e.g., a and v. Note
that system parameters are typically identified by uppercase symbols, e.g., N . The
absolute value, the argument and the complex conjugate of the scalar v are denoted
by

|v| , arg(v) and v∗ , (2.2)

respectively.

We write

v ' a (2.3)

to express that a is an approximation of a lower bound on v. That is, it is technically
not a bound. However, the approximation is intended to study the behavior of a
lower bound which is hard to compute exactly, see Sections 6.1.1 and 6.1.2.

Vectors Vectors are identified by lowercase symbols printed in boldface, e.g., v.
All vectors are assumed to be column vectors, unless explicitly stated otherwise.
The i-th entry of the vector v is addressed by

vi or [v]i . (2.4)
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2 Notation

The transpose, the element-wise complex conjugate and the conjugate transpose
(Hermitian transpose) of the vector v are denoted by

vT,v∗, and vH , (2.5)

respectively. The element-wise absolute value of the vector v is written as

|v| . (2.6)

Relational operators like >, ≤, =, etc. are understood to operate element-wise on
vectors. The same goes for minimum and maximum operators, e.g., min(a,b) and
max(a,b).

Norms Let v ∈ CN . The `1-norm of the vector v is defined as

‖v‖1 =
N∑
i=1
|vi| . (2.7)

The Euclidean norm or `2-norm of the vector v is defined as

‖v‖2 =

√√√√ N∑
i=1
|vi|2 . (2.8)

Matrices Matrices are written as uppercase symbols printed in boldface, e.g., A
and V. The entry of the matrix A located in the i-th row and the j-th column is
identified as

aij . (2.9)

The i-th column of the matrix A is addressed as

ai . (2.10)

We write

A = [o(i, j)]1≤i,j≤N or [A]1≤i,j≤N = o(i, j) , (2.11)

to define a N ×N matrix A entry-wise with the help of a function o(i, j), where i
and j identify row and column, respectively.

The transpose, the element-wise complex conjugate and the conjugate transpose
(Hermitian transpose) of the matrix A are denoted by

AT,A∗, and AH , (2.12)

respectively. Rank, trace, determinant and inverse of the matrix A are written as

rank(A), tr(A), |A| and A−1 , (2.13)

respectively. The vector of increasingly ordered eigenvalues of the matrix A is
denoted by

eig (A) . (2.14)
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Special Vectors and Matrices Vectors of dimension N containing only zeros and
ones are denoted by

0N and 1N , (2.15)

respectively. Similarly, matrices of dimension K × N exclusively containing zeros
and ones are written as

0K×N and 1K×N , (2.16)

respectively. The identity matrix of dimension N is identified by

IN . (2.17)

Complex Numbers The imaginary unit is defined as

ı =
√
−1 . (2.18)

The real and imaginary part of a complex-valued scalar v are identified by

Re(v) and Im(v) , (2.19)

respectively. These operators are analogously defined for vectors and matrices,
where they operate element-wise.

Special Functions The floor and ceiling functions of a scalar v are denoted by

bvc and dve , (2.20)

respectively.

The positive part is defined as:

[v]+ = max(v, 0) , (2.21)

which is analogously defined for vector or matrix argument, where it operates
element-wise.

Let A,B be arbitrary sets. Then, the indicator function for v ∈ A with B ⊂ A is
defined as:

IB(v) =
{

1, if v ∈ B
0, if v /∈ B .

(2.22)

The factorial of v ∈ N is defined as

v! =
v∏
i=1

i (2.23)
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2 Notation

and 0! = 1 by convention.

The Gamma function [31, p. 255 ff., Sec. 6.1] is written as Γ(v) for v ∈ C. If v ∈ N
it can be expressed with the factorial

Γ(v + 1) = v! (2.24)

and it is defined by the following improper integral otherwise (if Re(v) > 0):

Γ(v) =
∞∫
0

uv−1e−u du . (2.25)

The Pochhammer symbol (as used in the theory of special functions, also called the
rising factorial) for v, a ∈ N is defined as:

{v}a = (v + a− 1)!
(v − 1)! = Γ(v + a)

Γ(v) , (2.26)

where {a}0 = 1 by convention.

The a-th order modified Bessel function of the first kind for a ∈ N and v ∈ C is
defined as [31, p. 376, Eq. (9.6.19)]:

Ia(v) = 1
π

π∫
0

ev cos(u) cos(au) du . (2.27)

The a-th order modified Bessel function of the second kind is defined for a, v ∈ C
whereRe(a) > −1

2 and |arg(v)| < 1
2π as [31, p. 376, Eq. (9.6.23)]:

Ka (v) =
√
π(1

2v)a

Γ(a+ 1
2)

∞∫
1

e−vu(v2 − 1)a−
1
2 du . (2.28)

The generalized hypergeometric function (or series) is defined as [32, p. 1010,
Eq. (9.14.1.)]:

pFq(a1, . . . , ap; b1, . . . , bq; v) =
∞∑
i=0

{a1}i {a2}i · · · {ap}i
{b1}i {b2}i · · · {bq}i

vi

i! . (2.29)

Tricomi’s confluent hypergeometric function (also called Kummer’s function of the
second kind), which is a solution to Kummer’s differential equation, is defined for
Re(a) > 0 as [31, p. 505, Eq. (13.2.5)]:

U (a, b, v) = 1
Γ(a)

∞∫
0

e−vuu(a−1)(u+ 1)(b−a−1) du . (2.30)
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Statistical Notation The probability of an event v is denoted by

P(v) . (2.31)

Conditional random variables are written as

v | u , (2.32)

which means the random variable v is conditioned on the event u.

Unless explicitly noted otherwise, a probability density function (PDF) is written
as f and a cumulative distribution function (CDF) is identified by F . If a subscript
is present, it identifies the random variable / vector with which f or F is associated.
Exceptions are the PDF and CDF of the test statistic under investigation, which
are sometimes denoted by f0 and f1 under hypothesis H0 and H1, respectively (see
also Section 3.1).

The mean (or mathematical expectation) of a random variable v is denoted by

E[v] . (2.33)

The variance of a random variable v is defined as

Var[v] = E [(v − E[v]) (v − E[v])∗] . (2.34)

The covariance and the correlation coefficient between two random variables v and
u are defined as

Cov[v, u] = E[(v − E[v]) (u− E[u])∗] (2.35)

and

Corr[v, u] = Cov[v, u]√
Var[v] Var[u]

, (2.36)

respectively. The median of a random variable v is written as

median[v] . (2.37)

Let v be a random variable with corresponding PDF fv and let o a function. In
some situations, we like to emphasize according to which probability measure the
mean or the median must be interpreted. For the mean we write

Ev[o(v)] or Efv [o(v)] (2.38)

and for the median, we write analogously

median
v

[o(v)] or median
fv

[o(v)] . (2.39)
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2 Notation

A special case is the mean of a test statistic T , where we use the shorthand notations

EH0 [T ] = E[T | H0] and EH1 [T ] = E[T | H1] (2.40)

to clarify under which hypothesis (H0 or H1) the mean is to be calculated, see also
Section 3.1.

The i-th order statistic of a random sample U1, U2, . . . , UK is denoted by

U(i) , (2.41)

for i = 1, . . . ,K. Please refer to Section 3.6 for a formal definition.

Estimation An estimate of the scalar a, the vector a and the matrix A are iden-
tified by

â, â and Â , (2.42)

respectively.

Probability Distributions The PDFs and CDFs given below can be found in [33,
p. 98 ff., Sec. 3.3], [34, p. 459, Eq. (14.2)] and [35, Eq. (19)].

The univariate rectangular (or continuous uniform) distribution with support [a, b]
(a < b) is denoted by R(a, b). Its PDF is

f(v) = 1
b− a

I[a,b](v) (2.43)

and its CDF follows as

F (v) =


0, if v < a

v, if a ≤ v ≤ b
1, if v > b.

(2.44)

We call R(0, 1) the standard rectangular distribution.

The univariate Beta distribution with parameters a > 0 and b > 0 is denoted by
Beta(a, b). Its PDF is given by

f(v) = Γ(a) Γ(b)
Γ(a+ b) v

a−1 (1− v)a−1 , 0 < v < 1 . (2.45)

The mean and variance of a Beta(a, b) distributed random variable V are

E[V ] = a

a+ b
(2.46)
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and

Var[V ] = ab

(a+ b)2 (a+ b+ 1) , (2.47)

respectively.

The univariate Gaussian (or normal) distribution with mean µ and variance σ2 is
denoted by N (µ, σ2). Its PDF is denoted by

φ(v) = 1√
2πσ2

e−
(v−µ)2

2σ2 , v ∈ R (2.48)

and its CDF is denoted by

Φ(v) =
v∫

−∞

φ(u) du , (2.49)

for which no closed form exists. We call N (0, 1) the standard Gaussian distribution.

The N dimensional multivariate Gaussian (or normal) distribution with mean vec-
tor µ and covariance matrix Σ is denoted by N (µ,Σ). Its PDF is denoted by

φ(v) = 1√
(2π)N |Σ|

exp
(
−1

2 (v− µ)T Σ−1 (v− µ)
)
, v ∈ RN . (2.50)

Similarly, N (0N , IN ) is called a standard (N dimensional multivariate) Gaussian
distribution.

TheN dimensional multivariate complex circularly symmetric Gaussian (or normal)
distribution with mean vector µ and covariance matrix Σ is denoted by CN (µ,Σ).
Note, that here µ ∈ CN and Σ ∈ CN×N . Its PDF is given by

f(v) = 1√
πN |Σ|

exp (−(v− µ)H Σ−1 (v− µ)) , v ∈ CN . (2.51)

We call CN (0N , IN ) a standard (N dimensional multivariate) circularly symmetric
Gaussian distribution.

The matrix valued complex non-central correlated Wishart distribution of dimen-
sion K with N degrees of freedom, common covariance matrix B and non-centrality
matrix Ω is denoted by CWK(N,B,Ω). See Section 3.4 for a formal definition. For
the special case of complex central Wishart distributions (i.e., Ω = 0K×K), we omit
the last parameter and write CWK(N,B).
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3 Background

This chapter contains a short introduction to the fundamental concepts, which are
important to this thesis. First, a general overview of spectrum sensing is given and
some important detectors are introduced in Section 3.1. Second, eigenvalue-based
spectrum sensing, which is the core focus of this thesis is introduced in Section 3.2
and relevant detectors are subsequently presented.

In Chapter 5, quickest detection algorithms on the basis of eigenvalue-based spec-
trum sensing are introduced. Hence, the necessary background of quickest detection
is given in Section 3.3.

Particularly Chapters 5 and 7 rely on results from random matrix theory. Important
results that are used in the course of this thesis are revisited in Section 3.4.

Performance limits of certain detectors are analyzed in Chapter 6 and it is shown
that they suffer from the so-called SNR wall phenomenon, which is outlined in
Section 3.5. During said investigation concepts from order statistics are needed.
Hence, Section 3.6 provides some relevant results from the theory of order statistics.

3.1 Spectrum Sensing

The term spectrum sensing describes the task of reliably finding spectrum oppor-
tunities (also called spectrum holes), i.e., bands that are temporarily unused by the
licensed primary system. If a specific frequency band is considered, said task can
be cast as a simple hypothesis testing problem:

H0 : y(t) = w(t)
H1 : y(t) = x(t) + w(t) .

(3.1)

There, for a given discrete time index t ∈ N, the received signal y(t) contains
samples of only the receiver noise w(t) or an additive combination of a signal com-
ponent x(t) and receiver noise. Here, x(t), w(t) and thereby also y(t) are described
as random processes. Most commonly, w(t) is modeled as additive white Gaussian
noise (AWGN). Note, that in this formulation x(t) stands for the filtered PU signal
including effects of the wireless propagation channel and filtering by the receiver.
It is evident that trying to infer reliable information from a single sample y(t) is

13



3 Background

inadvisable due to the randomness involved. Hence, the methods used in spectrum
sensing are deeply rooted in detection and estimation theory, see [36,37].

In general, detectors may be classified into two categories: state and change detec-
tors [36,38]. While the former intend to decide between the two possible hypotheses,
the latter aim at detecting a hypothesis change. For the moment, we focus on state
detection and treat a particular way of change detection later in Section 3.3.

State detectors may further be divided into block (or fixed sample size) and sequen-
tial detectors according to their objective. Block detectors aim at maximizing the
(correct) detection performance under a given false alarm constraint for a fixed sam-
ple size. In contrast, a sequential detector performs consecutive decision attempts,
see Figure 3.1. If one of the two thresholds (h0 or h1) is crossed, it decides for the
corresponding hypothesis. Otherwise, it takes another sample and reattempts to
reach a decision since the previous one was undecidable, compare also Figure 3.2.
Thereby, the detector dynamically adapts its sample size to the detection difficulty.

t

decision

t = 1 t = 2 t = 3 ...

decision attempt 1

decision attempt 2

decision attempt 3

block detector

sequential detector

Figure 3.1: Visual comparison of block (fixed sample size) detection and sequential
detection paradigms.

Although all the mentioned detection paradigms were applied to the spectrum
sensing problem in the literature [11,12], block detection is the most widely deployed
variant so far. Thus, we introduce relevant results from these efforts in more detail
in the following.

In general, a block detector collects samples y = (y(1), y(2), . . . , y(N)) where the
number of samples N (also called sample size) is determined beforehand. Then, it
calculates a test statistic T (y), which is a function of the samples, i.e., T : CN → R.
The value of T (y) is subsequently compared to a threshold h to form a decision:

T (y)
H1
≷
H0

h . (3.2)
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Figure 3.2: Example of the output of a sequential probability ratio test ζS(t),
cf. [38]. The samples are taken according the H1 hypothesis distri-
bution N (0.4, 1) and the H0 distribution is N (0, 1). The upper and
lower thresholds h1 and h0 are also indicated. The former of which is
exceeded at t = 40 and hence the algorithm decides for H1 then.

In words, if T (y) is greater or equal to h the detector decides for hypothesis H1,
otherwise it decides for hypothesis H0.

For the theoretical analysis of a detector, the input samples are modeled as random
processes and consequently the test statistic T is described as a random variable.
Let f0 and f1 denote the PDFs of the test statistic under H0 and H1, respectively.
Similarly, let F0 and F1 be the corresponding CDFs. Note, that this treatment
assumes the hypothesis does not change within the observation interval.

Evidently, a detector does not always make the correct decision. There are two
kinds of errors that may occur, which are described by the two events T ≥ h | H0
and T < h | H1. The first type of error occurs when the test statistic exceeds the
threshold even though H0 is true. That is, the detector falsely decides for H1, which
is called a false alarm. The second type of error occurs when the test statistic stays
below the threshold although H1 is true. This means the detector falsely decides
for H0, which is called missed detection.

The performance of a detector may be assessed by the probability of false alarm
PFA and the probability of missed detection PMD (or equivalently the probability of
detection PD), see also Figure 3.3. Formally, they are defined as:

PFA(h) = P(T ≥ h | H0) =
∞∫
h

f0(v) dv = 1− F0(h) , (3.3)

PMD(h) = P(T < h | H1) =
h∫

−∞

f1(v) dv = F1(h) , (3.4)

PD(h) = P(T ≥ h | H1) = 1− P(T < h | H1) = 1− PMD(h) . (3.5)

15



3 Background
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Figure 3.3: Visualization of the performance measures of a block detector, i.e., PFA
and PMD for a given threshold h.

As can be seen from (3.3) to (3.5), the performance measures are functions of the
threshold h. Fixing the system model, the sample size N and the threshold h results
in constant pairs (PFA(h), PMD(h)) (or equivalently (PFA(h), PD(h))). To visualize
these operating points at the detector’s disposal the so-called receiver operator
characteristic (ROC) is utilized, see Figure 3.4. It is created by plotting pairs
(PFA(h), PD(h)) for a range of thresholds (some authors prefer (PFA(h), PMD(h))).
The ROC is also used to compare the performance of different detectors and can be
estimated from Monte Carlo simulations if theoretical expressions for (3.3) to (3.5)
are not available.
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P
D

Detector A
Detector B
Coin flip

Figure 3.4: Example of a ROC of two detectors. Evidently, detector A outperforms
detector B, since it offers higher PD for the same PFA. The ROC of a
coin flip is depicted as well.

As mentioned above, typically the objective of a block detector is to minimize PMD
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3.1 Spectrum Sensing

(or equivalently maximize PD) for a predetermined PFA = c > 0. If the joint PDFs
of the samples under both hypotheses f(y|H0) and f(y|H1) are exactly known, the
optimal test in that sense is given by [39]:

f(y|H1)(y)
f(y|H0)(y)

H1
≷
H0

h(c) . (3.6)

A detector derived this way is also called Neyman-Pearson optimal, see [36, p. 65,
Th. 3.1].

Obviously, exact knowledge about the samples’ PDFs under both hypotheses is a
very strong assumption that is rarely encountered in practice. Particularly in spec-
trum sensing, the statistical model under the H1 hypothesis is problematic, since it
strongly depends on the wireless propagation channel and the signal characteristics
of the PU signal. A relevant practical case is when the PDFs under both hypotheses
are known up to missing parameter vectors θ0 and θ1, respectively. In this case, the
missing parameters may be estimated using maximum likelihood estimation (MLE)
beforehand [37, p. 157 ff., Ch. 7] to obtain the so-called generalized likelihood ratio
test (GLRT) [36, p. 200 ff., Sec. 6.4.2]:

max
θ̂1

f(y|H1,θ1)
(
y | θ̂1

)
max
θ̂0

f(y|H0,θ0)
(
y | θ̂0

) H1
≷
H0

h . (3.7)

Although this test does not possess the optimality of (3.6), it works well in practice.

Detectors for spectrum sensing are faced with highly challenging demands [7,11,12,
40]. The main reasons are the volatile nature of wireless propagation channels, the
multitude of modulation types deployed, the hidden PU problem (see Figure 1.1)
and the high level of reliability that is desired to protect the primary system from
interference. Hence, the detectors are expected to perform in the very low SNR
regime. Typical values for the worst case SNR under which a detector is expected
to function include SNRs of −20 dB to −22 dB or even less [17, 41, 42]. Dynamic
spectrum access in the cognitive radio paradigm with spectrum sensing was first
standardized in the IEEE 802.22 standard [43, 44], which aims at exploiting spec-
trum opportunities in TV broadcasting bands.

The detectors studied in the spectrum sensing literature may be categorized by the
degree of knowledge about the PU signal required. One extreme is if no information
about the PU signal is available, i.e., the detector is blind. An example of this class
is energy detection (ED) and it is described in Section 3.1.1. The other extreme is
that (parts of) the exact PU signal is known, which leads to detection using matched
filters as discussed in Section 3.1.3. In the following, three well-known detectors
are introduced shortly in Sections 3.1.1 to 3.1.3. Section 3.2 is dedicated to the
introduction of eigenvalue-based detection, which is the focus of this thesis.
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3 Background

3.1.1 Energy Detection

In ED, the normalized energy of the received signal is the test statistic:

TED = ‖y‖
2
2

σ2
w

, (3.8)

where σ2
w is the variance of the receiver noise. This detector can be derived as

the Neyman-Pearson optimal detector if yT | H0 ∼ N (0N , σ2
wIN ) and yT | H1 ∼

N (0N , (σ2
s + σ2

w)IN ). The performance of this detector was studied theoretically
in [45]. As mentioned above, this detector can be considered blind with respect to
the PU signal as it only measures energy. Nevertheless, it requires precise knowledge
of the receiver noise variance σ2

w.

Under ideal conditions and if the PDFs are perfectly known, it is closely related
to the optimal detector for zero mean digital constellations [46]. A similar result
was found numerically for OFDM signals [47]. ED is also attractive due to its
implementational simplicity and low computational complexity.

However, its performance rapidly deteriorates if the estimation of the receiver noise
variance (or receiver noise power) is imprecise. As a result, the detector suffers from
a fundamental performance limit, which prevents its operation below a certain SNR
threshold that may not be overcome by increasing the number of samples. This
effect is introduced in Section 3.5. Since it is difficult to reliably estimate the
receiver noise power for spectrum sensing applications (see also Section 6.1), it is
doubtful that ED can successfully operate in the desired very low SNR regime,
cf. [48].

3.1.2 Cyclostationary (Feature) Detection

Cyclostationarity is a property of a stochastic process, which describes whether its
statistical characteristics vary periodically with time [49]. Most man-made signals
exhibit some kind of inherent periodicity caused by sampling, modulation, coding
or pilot sequences. A prime example in modern communications is the cyclic prefix
used in orthogonal frequency-division multiplexing (OFDM), which consists of a
copy of the last portion of the current OFDM symbol.

A real zero-mean discrete time stochastic process y(t) is said to be second-order
almost-cyclostationary in the wide sense if its time-varying autocorrelation function

ry(t, τ) = E[y(t)y(t+ τ)] (3.9)

can be expressed as a Fourier series, where the Fourier coefficients are given by the
cyclic autocorrelation function at cycle frequency ν ∈ [0, 1) [49, 50]:

Ry(ν, τ) = lim
t→∞

1
N

N−1∑
j=0

ry(t+ 1, τ) e−ı2πνj . (3.10)
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3.1 Spectrum Sensing

Note, that ı stands for the imaginary unit. Thus, the process y(t) is almost-
cyclostationary in the wide sense, if Ry(ν, τ) > 0 for at least one ν 6= 0. This con-
cept can also be generalized to complex-valued stochastic processes, see [49, p. 649,
Sec. 3.5].

In contrast, noise is typically modeled by weak (or even strong) sense stationary
random processes. Such a random process w(t) exhibits a time-constant autocor-
relation function, i.e.,

rw(t, τ) = E[w(t)w(t+ τ)] = rw(τ) . (3.11)

Hence, w(t) is not cyclostationary, since Rw(ν, τ) = 0 for ν 6= 0.

Based on these assumptions, detecting the presence of communication signals may
be accomplished by detecting the presence of cyclostationarity in the received signal,
see [50,51] and [49, p. 665 f., Sec. 11]. In spectrum sensing, cyclostationary detection
was considered early on [13,52]. In [53] a collaborative detector exploiting multiple
cyclic frequencies was introduced. Cyclostationary spectrum sensing has also been
considered in conjunction with quickest detection (see Section 3.3) in [54]. Consult
[11,12] for a more complete literature overview.

Typically, cyclostationary detectors require knowledge of the PU signals’ cyclic fre-
quencies. However, for sampled linearly modulated signals with rectangular pulse
shape, a detector based on compressive cyclostationary sensing was recently devel-
oped that allows blind operation with respect to the cyclic frequencies [55].

Similarly to ED, it was found that cyclostationary detection also suffers from a
phenomenon called SNR wall, which prohibits detection below a certain SNR limit
in the presence of model uncertainties [41], see also Section 3.5.

3.1.3 Matched Filter Detection

If the receiver possesses exact knowledge of the signal, the so-called matched filter
is the optimal detector, cf. [36, p. 94 ff, Ch. 4]. Let x ∈ CN be the known signal
and consider standard circularly symmetric Gaussian noise. That is, the received
signal can be modeled as yT | H0 ∼ CN (0N , σ2

wIN ) and yT | H1 ∼ CN (x, σ2
wIN ).

Inserting the corresponding PDFs into (3.6), taking the logarithm and rearranging
constant terms into the detection threshold yields the matched filter for this case:

TMF = Re(xHy) . (3.12)

Matched filter detection is also discussed in spectrum sensing, where it is sometimes
called coherent detection or waveform-based sensing, see [11,13,40,56]. Not always
is it assumed that the whole signal is exactly known. Instead, deterministic signal
patterns like preambles and pilot patterns are considered.
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Although matched filter detection seems highly desirable from a theoretical point
of view, its practical applicability in spectrum sensing is very limited due to the
excessive knowledge required. In addition to (parts of) the PU signal, also the
channel coefficients and the noise characteristics must be known. Evidently, the
test statistic is also very sensitive to synchronization problems [57]. As a result, the
SU would have to perform a correct demodulation with known parameters including
bandwidth, modulation type and operation frequency [11]. Since cognitive radios
are envisioned to perform dynamic spectrum access in a multitude of bands, the
complexity of implementation becomes prohibitive [13].

Moreover, since the channel coherence time is limited in practice, matched filter
detection is prone to the SNR wall problem in the presence of model uncertainties,
see Section 3.5.

3.2 Eigenvalue-Based Spectrum Sensing

Eigenvalue-based spectrum sensing, which is the focus of this thesis, utilizes func-
tions of the eigenvalues of the sample covariance matrix as test statistics. Since
in most communication models the receiver noise process is modeled to be white
(typically AWGN), it is uncorrelated over time. Also, it is customary to assume
the noise processes of different receivers as uncorrelated. Hence, the main idea
behind eigenvalue-based spectrum sensing is to exploit correlation in the received
signal if a PU is present. Correlation can be observed either among different SUs
or over time. With the help of the (sample) covariance matrix, correlation can be
quantified over one of these dimensions or a combination of both.

The eigenvalue-based spectrum sensing systems considered in this thesis are co-
operative. Hence, if K SUs are cooperating and one potentially present PU is
considered, the hypothesis test can be restated as:

H0 : y(t) = w(t)
H1 : y(t) = x(t) + w(t) .

(3.13)

The vectors w(t) ∈ CK and x(t) ∈ CK describe the additive receiver noise and
the filtered PU signal (including wireless propagation effects and receiver filtering),
respectively. Hence, each row of the vector y(t) contains the received samples of a
particular SU at a given time t ∈ N and it is assumed that the detector has access
to all of these samples.

To capture all mentioned the possibilities of exploiting correlation, we introduce
the processing vector z(t) ∈ CK̃ , where K̃ = KQ. Here, Q ∈ N is a parameter that
controls if and how time correlation is considered. There are three possible modes
of operation:

1. Receiver correlation: K ≥ 2, Q = 1 and z(t) = y(t).
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3.2 Eigenvalue-Based Spectrum Sensing

2. Time correlation: K = 1, Q ≥ 2 and z(t) =
(
y(t), y(t−1), . . . , y(t−Q+1)

)T
.

3. Receiver and time correlation: K ≥ 2, Q ≥ 2 and
z(t) =

(
y1(t), . . . , y1(t−Q+ 1), . . . , yK(t), . . . , yK(t−Q+ 1)

)T
.

Note, that the definition of z(t) from the joint receiver and time correlation case
contains the two other cases. This is taken advantage of in Chapter 4, where the
system models used in this thesis is formally introduced.

Consider the statistical point of view, where w(t), x(t) and thereby y(t) are de-
scribed using random processes. Then, the statistical covariance matrix with re-
spect to the processing vector z is

R = [Cov[zi, zj ]]1≤i,j≤K̃ = E[(z− E[z])(zH − E[zH])]
E[z]=0K̃= E[zzH] . (3.14)

The last equality holds true, since in wireless communications the statistical pro-
cesses involved are virtually always assumed to be zero-mean. If we refer to the
statistical covariance matrix under a specific hypothesis, we write R0 = R | H0
and R1 = R | H1, respectively.

Remembering that the noise process is assumed to be white, we see that R0 = σ2
wIK̃

in all three modes of operation. If both receiver and time correlation is considered,
R1 is composed of entries from the autocorrelation functions

ryi(t, τ) = E[yi(t)y∗i (t+ τ)] (3.15)

and the cross-correlation functions

ryiyj (t, τ) = E[yi(t)y∗j (t+ τ)] , (3.16)

for 1 ≤ i, j ≤ K. Hence, if y(t) | H1 is not a white random process, i.e., if the
wireless propagation channel of some receivers are correlated or the signal itself is
correlated over time (due to oversampling for example), R1 6= σ2

wIK̃ .

Let x̃(t) and w̃(t) be vectors that are reordered versions of x(t) and w(t), such that
it holds z(t) | H0 = w̃(t) and z(t) | H1 = x̃(t) + w̃(t). Then, it is easy to see that
R1 is the sum of the statistical covariance matrices of x̃ and w̃:

R1 = E[zzH] = E[(x̃ + w̃)(x̃ + w̃)H]
= E[x̃x̃H] + E[x̃]︸︷︷︸

=0K̃

E[w̃H] + E[w̃]︸ ︷︷ ︸
=0K̃

E[x̃H] + E[w̃w̃H]

= Rx̃ + Rw̃ . (3.17)

The vector of ordered eigenvalues of R is denoted by

λ = eig (R) =
(
λ1, . . . , λK̃

)T
, (3.18)
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where λ1 ≤ λ2 ≤ · · · ≤ λK̃ . Evidently, since λ = σ2
w1K̃ under H0 and λ 6= σ2

w1K̃
under H1, the eigenvalues may also be used to distinguish the two hypotheses.
Note, however, that some detectors operate directly on the covariance matrix [58]
or the autocorrelation function itself [12]. They are not considered in this work.

From a practical perspective, the covariance matrix must be estimated from the
samples. Here, we treat z(t) as a measured realization of the underlying random
process. The estimator for the covariance matrix for the zero-mean case, called
sample covariance matrix, can be given as

R̂ = 1
N −Q+ 1

N∑
i=Q

z(i)z(i)H . (3.19)

The estimate R̂ converges to the statistical covariance matrix R for N →∞.

In analogy to the statistical matrices, we use the shorthand notation R̂0 = R̂ | H0
and R̂1 = R̂ | H1. Furthermore, we denote the vector of the ordered eigenvalues of
R̂ as

λ̂ = eig
(
R̂
)

=
(
λ̂1, λ̂2, . . . , λ̂K̃

)T
. (3.20)

Both R and R̂ are Hermitian and positive semi-definite. Hence, their eigenvalues
are real and non-negative, i.e., λ ≥ 0 and λ̂ ≥ 0, see [59, p. 227 f., Sec. 4.1].

Under the assumption that the noise process is white, some eigenvalue-based detec-
tors do not require knowledge of the noise variance σ2

w to set a detection threshold.
This can be seen by comparing the eigenvalues of R̂ with the eigenvalues of the
sample covariance matrix obtained from the normalized vector z(t)

σw
. The latter can

be viewed as a system model, where the noise process is assumed to have σ2
w = 1.

Since it holds that

eig
(
R̂
)

= σ2
w eig

( 1
σ2
w

R̂
)
, (3.21)

the eigenvalues of the normalized model are scaled with respect to the ones from
the non-normalized model. Hence, we see from (3.22), (3.24) and (3.25) that this
scaling factor cancels out in the ratio for the detectors from Sections 3.2.1 to 3.2.3
and that it is not necessary to know the value of σ2

w to set the corresponding
thresholds. In contrast, from (3.27) and (3.28) we see that scaling affects the
test statistics and hence σ2

w must be known to set the threshold for the detectors
from Sections 3.2.4 and 3.2.5. However, it is shown in Section 6.1 that also the
detectors from Sections 3.2.1 to 3.2.3 are vulnerable to model uncertainties including
imperfect noise power calibration, and colored and correlated noise.

In the following, some important eigenvalue-based detectors are introduced, which
are used later in this thesis.
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3.2 Eigenvalue-Based Spectrum Sensing

3.2.1 MME

The first work to utilize eigenvalues of the sample covariance matrix for detection
in the spectrum sensing context was the maximum-minimum eigenvalue (MME)
detector introduced in [17], see also [19]. It was presented using a very general
system model with multiple PUs and SUs, oversampling and multipath propagation
channels (for the case of one PU, the system model is very similar to modelMMP
from Section 4.1). The model considers receiver and time correlation for the sample
covariance matrix. As a test statistic the ratio of the largest and the smallest
eigenvalue of R̂ is used:

TMME = max(λ̂)
min(λ̂)

= λ̂K̃
λ̂1

. (3.22)

Note, that since λ̂K̃ ≥ λ̂1 it holds that TMME ≥ 1. The test statistic TMME is also
the so-called standard condition number (SCN) of the sample covariance matrix.

In [17, 19] an approximate method of setting the detection threshold was sug-
gested, which utilizes results from (asymptotic) random matrix theory (see also Sec-
tion 3.4). More accurate methods of finding the threshold were derived in [60–62].
Alternative methods using standard Gaussian CDFs as approximations were sug-
gested in [63, 64]. Under a cooperative system model without exploiting time cor-
relation (i.e., modelMFF from Section 4.2 with Q = 1 and M = 1) the probability
of missed detection PMD was asymptotically found in [65].

3.2.2 GLRT / BCED

The following detector was first reported in [18], where it was called blindly combined
energy detection (BCED). It was later also referred to as GLRT, since it can be
derived as the GLRT for system modelMFF from Section 4.2 when s(t) is assumed
to be Gaussian (with Q = 1 and M = 1, i.e., without exploiting time correlation
and performing no oversampling), cf. [20–22]. It is given by the ratio of the largest
eigenvalue and the trace of the sample covariance matrix:

TBCED = max(λ̂)
tr(R̂)

= λ̂K̃
K̃∑
i=1

λ̂i

. (3.23)

In this work, we refer to the detector as GLRT in the following and use it in an
alternative, equivalent form. It can be found by applying a monotonous nonlinear
transformation to gain the test statistic [21]:

TGLRT = λ̂K̃
K̃−1∑
i=1

λ̂i

. (3.24)
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The threshold can be approximately determined using results from (asymptotic)
random matrix theory, see [20, 21, 66, 67]. Likewise, an approximation of PD under
MFF from Section 4.2 (with Q = 1 and M = 1) can be given using the standard
Gaussian CDF [21,67] or by using results from (asymptotic) random matrix theory
[66].

3.2.3 QST

The quadratic sphericity test (QST) was derived in [23] to be optimal in the
correlation-matching sense for detecting a wide sense stationary primary signal
subject to a time-varying frequency selective fading channel by a single SU, which
is exploiting correlation over time. It is given by the ratio of the Euclidean norm
(`2-norm) and the `1-norm of the eigenvalues of the sample covariance matrix:

TQST =

√
K̃∑
i=1

λ̂2
i

K̃∑
i=1

λ̂i

= ‖λ̂‖2
‖λ̂‖1

=

√
tr(R̂R̂)
tr(R̂)

. (3.25)

Note, that
∣∣∣λ̂i∣∣∣ = λ̂i, since λ̂i ≥ 0. From Hölder’s inequality [31, p. 11, Eq. 3.2.9]

it can be deduced that
∥∥∥λ̂∥∥∥

2
≤
∥∥∥λ̂∥∥∥

1
≤
√
K̃
∥∥∥λ̂∥∥∥

2
. Hence, the support of the test

statistic of the QST is bounded:

1√
K̃
≤ TQST ≤ 1 . (3.26)

To the best of our knowledge, no theoretical analysis of this detector exists so far.
Thus, there is no analytical way of determining the detection threshold.

Although this detector was originally intended for a single SU system, it also shows
very promising performance in cooperative settings [24].

3.2.4 MMME

Themaximum-minus-minimum eigenvalue (MMME) detector was presented in [24].
Like the MME, it utilizes only the largest and the smallest eigenvalue in its test
statistic:

TMMME = max(λ̂)−min(λ̂) = λ̂K̃ − λ̂1 . (3.27)

By avoiding the normalization from the ratio, it shows higher detection performance
compared to the MME, see [24]. However, knowledge of the noise variance σ2

w is
required to set a threshold.
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In Chapter 7 the exact PDFs of the test statistic TMMME under both hypotheses
are derived for a dual SU system under modelMDM from Section 4.2.1 (with Q = 1
and M = 1). These results can be used to accurately set the threshold and predict
the resulting detection performance (PD) for a given SNR.

3.2.5 RLRT

Roy’s largest root test (RLRT) simply employs the largest eigenvalue as a test
statistic [68]:

TRLRT = max(λ̂) = λ̂K̃ . (3.28)

Essentially, it was reintroduced to spectrum sensing in the derivation of the GLRT
from (3.24) in [18]. Asymptotically, the RLRT can be considered to be the Neyman-
Pearson optimal test for system model MFF from Section 4.2 (with Q = 1 and
M = 1), if the noise variance σ2

w is known [67]. Hence, the GLRT from (3.24) can
be viewed as a normalized version of the RLRT. There, the unknown noise variance
is replaced by an estimation.

Under the system model mentioned above, the RLRT shows superior detection
performance to ED, see [67]. Approximations for PFA and PD under said system
model are also given there.

3.3 Quickest Detection

Quickest detection (QD) is a form of sequential change detection, that differs fun-
damentally from block detection and sequential hypothesis testing. In fact, these
three detection paradigms have different detection objectives. In QD, it is assumed
that the current hypothesis is known and that the detection algorithm tries to de-
tect a change of the hypothesis with minimum delay [38,69], see Figure 3.5. This is
done by sequentially taking samples and updating / reevaluating the decision func-
tion. Note, however, that QD does not aim for deciding between the hypotheses
H0 and H1, in contrast to sequential hypothesis testing and block detection. In the
following, we formalize the detection task, define notation and introduce the rele-
vant performance measures. Moreover, the well-known cumulative sum (CUSUM)
algorithm and a relevant generalization of the same are introduced.

Consider, without loss of generality (w.l.o.g.), the situation depicted in Figure 3.5,
where the hypothesis changes from H0 to H1 at the (unknown) change time tc.
To describe the sampling process we introduce a sequence of random variables Zt
(t ∈ N), which is independently and identically distributed (i.i.d.) with PDF fθ0

with parameter θ0 for t < tc and according to the PDF fθ1 with parameter θ1
for t ≥ tc. The detection algorithm operates sequentially on samples z(t), which
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tH0

H1

tc ta

Figure 3.5: Quickest detection scenario. At tc a change from Hypothesis H0 to
Hypothesis H1 occurs. The detection algorithm raises an alarm at ta.
The detection delay is defined as τd = ta − tc + 1, compare also (3.30)
and (3.32).

are realizations of the corresponding random variables Zt, in order to detect the
hypothesis change.

The performance measures of QD procedures are the mean time to false alarm τ̄fa
and the mean time to detection τ̄d (also called conditional mean delay), which are
defined as

τ̄fa = Efθ0
[ta] (3.29)

and

τ̄d = Efθ1

[
ta − tc + 1 | ta ≥ tc, Z(tc−1)

1

]
, (3.30)

respectively [38, p. 151 f., Eqs. (4.4.1), (4.4.2)]. There, the trajectory of the obser-
vations before tc, that is for 1 ≤ t ≤ (tc − 1), is denoted by

Z(tc−1)
1 =

[
Z1, Z2, . . . , Z(tc−1)

]
. (3.31)

Note, that tc and ta are random variables. For the theoretical analysis, also the
worst mean delay τ̄?d is important, which is defined as [38, p. 152, Eq. (4.4.3)], [70]:

τ̄?d = sup
tc≥1

ess sup Efθ1

[
ta − tc + 1 | ta ≥ tc,Z(tc−1)

1

]
. (3.32)

Observe, that the random variable ta depends on the detection algorithm G, which
operates on the samples z(t) and performs detection attempts for every time index
t. Hence, the performance measures defined in (3.29), (3.30) and (3.32) evidently
depend on G as well and we denote these by τ̄fa(G), τ̄d(G) and τ̄?d(G) to emphasize
this dependence. Now, we can state the detection objective of an optimal QD
algorithm for c > 1, cf. [38, p. 165 f., Sec. 5.2.1], [69, p. 130 ff., Sec. 6.2], [70]:

minimize
G

τ̄?d(G)

subject to τ̄fa(G) ≥ c .
(3.33)
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3.3 Quickest Detection

That is, an optimal QD algorithm minimizes the worst mean delay under a prede-
termined lower bound on the mean time to false alarm.

If both parameters θ0 and θ1 are known, i.e., if both PDFs fθ0 and fθ1 are known
exactly, the optimal QD algorithm is the CUSUM. It was proposed in [71] and
calculates a cumulative sum of the samples’ log-likelihood ratio (LLR). Let the
LLR of a single sample v be denoted by

l(v) = log
(
fθ1(v)
fθ0(v)

)
. (3.34)

The CUSUM algorithm can be defined in different, equivalent forms. The following
one lends itself to a recursive formulation, cf. [38, 70–72]:

ζC(t) =
t∑

j=1
log

(
fθ1(z(j))
fθ0(z(j))

)
− min

0≤m≤t

m∑
i=1

log
(
fθ1(z(i))
fθ0(z(i))

)

= max
0≤m≤t

t∑
i=m+1

l(z(i)) = max

0, max
0≤m≤(t−1)

t∑
i=m+1

l(z(i))


= max

0, max
0≤m≤(t−1)

t−1∑
i=m+1

l(z(i)) + l(z(t))


= [ζC(t− 1) + l(z(t))]+ . (3.35)

For this, we define ζC(0) = 0 and use the convention that a sum evaluates to zero
if its lower boundary is greater than the upper one.

Intuitively, after the change time, i.e., for t ≥ tc, the probability that l(z(t)) > 0 is
larger than the probability that l(z(t)) < 0. Hence, we expect ζC(t) to grow over
time. In other words, the CUSUM algorithm from (3.35) tries to collect evidence
for a consistent positive drift of the LLR, compare also Figure 3.6. Once the value
ζC(t) exceeds a predefined threshold, an alarm is raised.

Conversely, before the change time (t < tc) we expect the LLR to be negative most
of the time. As a result, ζC(t) should be (close to) zero in this case. Evidently,
the detection threshold is a trade off between the mean time to false alarm τ̄fa and
the mean time to detection τ̄d. It is common practice to periodically restart the
CUSUM some time before τ̄fa, since it is expected that the algorithm raises a false
alarm eventually, if left running indefinitely. Note also, that accumulating negative
values in ζC(t) would lead to greater detection delays.

Optimality of the CUSUM in the sense of (3.33) was first established in [70] for
the asymptotic case that the mean time to false alarm goes to infinity (c → ∞ in
(3.33)). Non-asymptotic optimality was later proven in [73]. An alternative proof
was given in [74]. Theoretical analysis of the CUSUM (e.g., [70,75,76]) and related
algorithms rely heavily on results from sequential analysis [77]. This is due to the
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Figure 3.6: Example of the output of the CUSUM ζC(t). The samples were N (0, 1)
and N (1.5, 1) distributed before and after the change time tc = 21
(dashed line), respectively. Note, that by chance ζC(20) > 0, which
would reduce the detection delay in this run.

fact that the CUSUM can be interpreted as a sequential probability ratio test [78]
(with lower threshold zero and upper threshold set to the desired value discussed
above), which is simply restarted if the test falls below the lower threshold [71],
compare also Figure 3.2.

As mentioned above, the CUSUM may only be applied if the PDFs of the samples
are known under both hypotheses. Especially in spectrum sensing, this is impossi-
ble in general, since the PDF under H1 depends on unknown parameters like the
SNR and the channels’ characteristics. Consider the case where the PDF of the
samples is known exactly under H0 and known up to the parameter θ1 under H1.
We emphasize the dependency of the latter PDF on the parameter θ1 by designat-
ing it as fθ1(z(t); θ1) in the following. Similarly, we write l(z(t); θ1) for the LLR
there. Under these circumstances, a MLE [37, p. 157 ff., Ch. 7] of the parameter
θ1 may be incorporated into the CUSUM algorithm to obtain the so-called gener-
alized likelihood ratio (GLR) algorithm as suggested in [70], see also [38, p. 52 ff.,
Sec. 2.4.3]:

ζG(t) = max
0≤m≤t

sup
θ̂1

log

 t∏
i=m+1

fθ1(z(i); θ̂1)
fθ0(z(i))

 = max
0≤m≤t

sup
θ̂1

t∑
i=m+1

log
(
fθ1(z(i); θ̂1)
fθ0(z(i))

)

= max
0≤m≤t

sup
θ̂1

t∑
i=m+1

l(t; θ̂1) . (3.36)

Note, that the internal variable m essentially estimates the change time. The
GLR from (3.36) can be considered a sequential variant of the well-known GLRT,
which is widely used in classical hypothesis testing, cf. [36, p. 200 ff., Sec. 6.4.2].
Note, however, that it cannot formulated recursively. Hence, its computational
complexity is significantly higher compared to the CUSUM.
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3.4 Random Matrix Theory

3.4 Random Matrix Theory

Random matrix theory (RMT) studies the distributions of matrix valued random
variables and their properties. The development of theoretical results was driven
by a variety of practical problems arising in statistics [79], physics [80] and (com-
munications) engineering [81]. In this work, we utilize so-called Wishart matrices,
which arise when studying the matrix product UUH, where the entries of U are
i.i.d. and Gaussian. They were first studied in the paper [82] in 1928 — that can
also be considered as the beginning of the field of RMT — and they are named in
honor after the author of said paper.

We first introduce the Wishart distribution in its most general form and discuss im-
portant special cases later. Let V = UUH, where each column of U is i.i.d. accord-
ing to a complex circularly symmetric Gaussian distribution, i.e., ui ∼ CN (ai,B)
with mean vectors ai ∈ CK for i = 1, . . . , N and common covariance matrix B.
We collect the mean vectors as columns of the mean matrix A. Then, V is com-
plex non-central Wishart distributed with dimension K and N degrees of free-
dom with non-centrality matrix Ω = E[U]E[U]H = AAH, which we denote by
V ∼ CWK(N,B,Ω). Its PDF was derived in [83] as

fV(V) = e−tr(B−1AAH)
0F̃1(N ; B−1AAHB−1V) e−tr(B−1V)

Γ̃K(N) |B|N
∣∣∣VN−K

∣∣∣ , (3.37)

where

Γ̃a(b) = π
1
2a(a−1)

a∏
i=1

Γ(b− i+ 1) , (3.38)

and pF̃q(a1, . . . , ap; b1, . . . , bq; C) is a generalized multivariate hypergeometric series
for a hermitian matrix argument C, see [83, Eqs. (83)-(85) and (87)].

There are three properties that we use to describe the type of Wishart distribution
at hand. First, a Wishart distribution can be real or complex, depending on whether
the columns ui are real or complex Gaussian distributed. Second, we distinguish
central and non-central Wishart distributions, which correspond to the cases when
the mean matrix is A = 0K×N and A 6= 0K×N , respectively. Finally, we call a
Wishart distribution uncorrelated if B = IK and correlated otherwise.

In [82] the PDF of real correlated central Wishart matrices was developed. The
extension to the corresponding non-central case was discussed in [84] and the PDF
was given for the cases that Ω is of rank two in [85] and of rank three in [86]. The
components with which the PDF for the general rank case can be formulated was
developed in [87–90]. The PDF of the complex correlated Wishart distributions
was derived in [91] for the central case and in [83] for the non-central case as given
in (3.37) above. The Wishart distribution can be shown to be a natural exponential
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family [92], which is a class of probability distributions with certaint properties that
is of high importance in statistics and estimation / detection theory [93].

Of main interest in this work, however, are the joint distributions of the ordered
eigenvalues of Wishart matrices. The PDF of the joint ordered eigenvalues of real
central uncorrelated Wishart matrices was independently found by [94–97], while
the generalization to the corresponding correlated case was derived in [98]. In [83,
Eq. (102)], where also (3.37) was developed, the joint PDF of the ordered eigenvalues
of complex correlated non-central Wishart matrices was deduced. There, a gener-
alized hypergeometric series was utilized, which has the product of two hermitian
matrices as argument. Said function depends on the so-called zonal polynomials
of its matrix arguments, see [83, eqs. (83)-(85) and (88)] and [99, p. 85 ff., ch. 5].
Later, it was shown that when the eigenvalues of both matrices in the argument
of the hypergeometric series are distinct, a more convenient equivalent formula-
tion utilizing a determinant of a matrix built from scalar hypergeometric series of
products of their eigenvalues can be derived [100, Lemma 3]. Here, we use a repre-
sentation of the PDF in a special form involving the product of the determinants
of two special matrices, which was initially given in [101]. This formulation allows
description of the joint ordered eigenvalue PDFs of several types of Wishart matri-
ces in a similar form [102]. For the special cases of complex uncorrelated central,
complex correlated central and complex uncorrelated non-central Wishart matrices
the joint PDF of the ordered eigenvalues λ = eig (V) can be given with β = eig (B)
and ω = eig (Ω) as [102, Eq. (1) and Tab. I]:

fλ(λ) = cCW |Ξ(λ)| |Θ(λ,β,ω)|
K∏
i=1

ξ(λi) , (3.39)

when β and ω are all distinct and non-zero. The special matrices Ξ(λ),Θ(λ,β,ω),
the function ξ(λi) and the normalizing constant cCW are defined in Table 3.1
and (3.40) to (3.46). Note, that also very important contributions concerning the
marginal PDFs were made in [102] and some important theorems for dealing with
these functions were given there.

type cCW Ξ(λ) Θ(λ,β,ω) ξ(λi)

uncorrelated central cUC V1(λ) V1(λ) λN−Ki e−λi

uncorrelated non-central cUN V1(λ) F(λ;ω) λN−Ki e−λi

correlated central cCC V1(λ) E(λ,β) λN−Ki

Table 3.1: Table with different forms for the joint eigenvalue PDF.
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3.5 SNR Walls in Signal Detection

The normalizing constants of the PDFs follow as

cUC =

 K∏
i=1

(N − i)!
K∏
j=1

(K − j)!

−1

, (3.40)

cUN =

K∏
i=1

e−ωi

[(N −K)!]K |V1(λ)| , (3.41)

cCC = cUC

K∏
i=1

(i− 1)! |B|
−N

|V2(β)| . (3.42)

Above, we have used further special matrices that are defined in the following: the
Vandermonde matrix

[V1(λ)]1≤i,j≤K = λi−1
K−j+1 , (3.43)

another closely related matrix

[V2(β)]1≤i,j≤K = −β1−i
K−j+1 , (3.44)

a matrix containing scalar hypergeometric functions [32, Eq. (9.14.1)] as entries

[F(λ;ω)]1≤i,j≤K = 0F1(N −K + 1;λK−i+1 ωK−j+1) (3.45)

and a matrix containing exponential functions as entries

[E(λ,β)]1≤i,j≤K = e
−
λK−j+1
βK−i+1 . (3.46)

In addition to the non-asymptotic case discussed above, many asymptotic results
exist in RMT. This is also due to the fact that many problems in RMT are very
involved or even intractable to solve exactly. A good overview of asymptotic and
non-asymptotic results relevant to spectrum sensing can be found in [103].

3.5 SNR Walls in Signal Detection

Signal detectors are typically designed and analyzed under simplified and idealized
system models. In the practical application, however, the detector is deployed
in a real world setting and is expected to perform robustly. In any theoretical
model, some modeling uncertainties remain and model parameters, which must be
estimated in practical scenarios, are only known up to a finite precision. It turns
out, that such model uncertainties lead to a threshold of the SNR, below which
the detector fails to robustly detect signals, even if the number of samples (i.e.,
the observation time) goes to infinity. The largest SNR for which this phenomenon
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3 Background

can be encountered under the model uncertainties in question is called the SNR
wall [48].

For a formal definition of the SNR wall we follow [48]. The system model must
explicitly account for model uncertainties. Each model component (say signal,
channel and noise) is considered to take on probability distributions / statistical
processes belonging to a set instead of having a fixed statistical description. This
set is chosen to reflect the relevant model uncertainties of that component. Hence,
the noise process may follow any process W ∈ W in the noise uncertainty set
W. Analogously, the same description is defined for the PU signal S ∈ S and the
wireless channel H ∈ H.

As an example, assumptions about the power, spectral coloring or stationarity of
the receivers’ noise may be imperfect. For the communication channel the type of
fading and the coherence time may be unknown and for the PU signal the waveform
or modulation type might be uncertain. Also, practical receivers are never perfect,
such that effects like non-ideal filtering, I/Q imbalance or quantization may be
worth investigating, cf. [41, 48].

Let T denote the test statistic of the detector under investigation, which is calcu-
lated from a block of N samples and let h be the detection threshold. The prob-
abilities of missed detection and false alarm given the tuple (W,S,H) are defined
as

PFA(W ) = P(T ≥ h | H0,W ) , (3.47)
PMD(W,S,H) = P(T < h | H1,W, S,H) . (3.48)

That is, PFA(W ) and PMD(W,S,H) depend on the instances W,S,H in contrast to
the definitions from (3.3) to (3.5).

A detector is said to achieve an operating point (P ?FA, P
?
MD) robustly, if this point is

an upper bound of the performance measures for all possible instances of the tuple
(W,S,H):

sup
W∈W

PFA(W ) ≤ P ?FA , (3.49)

sup
W∈W,S∈S
H∈H

PMD(W,S,H) ≤ P ?MD . (3.50)

We call a detector non-robust, if (P ?FA, P
?
MD) with P ?FA, P

?
MD ∈ (0, 0.5) cannot be

robustly achieved, even if N becomes arbitrarily large. Based on this, the SNR wall
αwall is defined as the largest SNR value, for which the detector is non-robust:

αwall = sup{αc | detector is non-robust ∀α < αc} . (3.51)

An equivalent definition for non-robustness can be given as follows. A detector is
non-robust if and only if the set of medians of the test statistic T overlaps for all
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3.5 SNR Walls in Signal Detection

N > 0, i.e.,{
median

W
[T | H0]

∣∣∣W ∈W
}
∩
{

median
W,S,H

[T | H1]
∣∣∣W ∈W, S ∈ S, H ∈ H

}
6= ∅ .

(3.52)

In [48], the equivalent definition for non-robustness from (3.52) was given using the
mean instead of the median. However, in this case the equivalence only holds if the
probability distributions of the test statistic are symmetric under both hypotheses.

To the best of our knowledge, the first use of the term SNR wall appeared in [46],
where fundamental requirements of spectrum sensing systems for weak signals were
explored. However, the existence of the phenomenon was shown much earlier for ED
in [104]. Since ED relies on the energy of the received signal (see Section 3.1.1), the
receiver noise power must be known in order to determine the detection threshold,
cf. [45]. Consider, that the receiver noise power is not exactly known and its
uncertainty can be summarized by a single value ρ > 1 (called noise uncertainty
factor). If the noise power is known to lie in the interval [ρ−1σ2

w, ρσ
2
w] about the

nominal value σ2
w, the threshold must be set with respect to the worst case to

guarantee a false alarm rate less or equal to the desired value, see [48, Eq. (4)]. As a
result, the detector becomes non-robust if the signal power does not exceed the noise
uncertainty range (ρ− ρ−1)σ2

w. Consequently, the SNR wall of ED is [41,48,104]

αED
wall = ρ2 − 1

ρ
. (3.53)

Note, that in [104] originally two factors were used to describe the uncertainty
interval. The presence of the SNR wall of ED was experimentally verified in a
wireless cognitive radio testbed [57,105].

The noise uncertainty factor is typically supplied in decibels (dB) in the literature,
i.e.,

ρdB = 10 log10(ρ) . (3.54)

In the literature values in the range 0.5 dB ≤ ρdB ≤ 2 dB are typically discussed,
cf. [17, 18,41,48].

In [46] it was shown, that if the noise uncertainty is high enough and the receiver
uses quantization, detection can become impossible irrespective of the detector.
The existence of SNR walls for detectors relying on higher moments of the received
signals was investigated in [106]. There, also the effect of a limited dynamic range of
the receiver was studied. Aspects of coordination between competing opportunistic
spectrum access users / systems and resulting SNR walls from the lack thereof were
explored in [40].

Cyclostationary feature detection (see Section 3.1.2) under noise uncertainty was
investigated in [41]. There it was found that the same SNR wall as ED is present.
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Depending on the system model, the cyclostationary feature detector may exploit
the channel coherence to improve detection performance. However, the SNR wall
is merely improved by a factor of the limited channel coherence time. Another
strategy, which combines coherent detection of a deterministic component of the
primary signal with a matched filter and subsequent ED, was also studied there.
Said detector also improves the SNR wall of ED only by a factor of the channel
coherence time. Some more advanced noise calibration techniques that also take
uncertainty about the spectral coloring of the noise into account were investigated
in [48]. Also, the tradeoff between communication capacity and robustness was
explored there.

The results discussed above lead to the conjecture that all implementable wireless
detection schemes suffer from SNR walls caused by model uncertainties [41].

The potential benefits of known noise power for cooperative eigenvalue-based spec-
trum sensing were investigated in [67] and an analytical expression of the perfor-
mance gap between RLRT (see (3.28)) and the GLRT (see (3.24)) was derived. A
comparison of the effects of noise uncertainty between ED and RLRT indicated that
the latter detector seems to suffer less from noise uncertainty [107]. Furthermore,
it was shown in [65, Eq. (30)] that a minimum SNR for detection is required for
detectors, which rely on the largest eigenvalue for detection:

α >
1√
KN

. (3.55)

Below this threshold, the asymptotic distribution of the largest eigenvalue becomes
the same under both hypotheses. Note, that this threshold can be further refined
by using the results from [108, Eq. (25)] as suggested by [67]. Evidently, the SNR
limit from (3.55) is not an SNR wall since it depends on the number of samples.

Apart from our results discussed in Chapter 6, we are not aware of other work prov-
ing the existence of SNR walls in (cooperative) eigenvalue-based spectrum sensing.

3.6 Order Statistics

The field of order statistics deals with the mathematical description of ordered ran-
dom variables and their statistical properties, see [33,109,110] for example. It can
be applied when a random sample of a certain size is taken, which is subsequently
sorted and where the statistics of the sorted sample are of interest. It is typically
assumed that each unordered observation may be modeled as an i.i.d. random vari-
able with known probability distribution. Said case is relevant in this work and is
formally introduced in this section.

Let U1, U2, . . . , UK be an unordered random sample of size K, where the random
variables Ui are i.i.d. with PDF fU and CDF FU for i = 1, . . . ,K. Then, we denote
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3.6 Order Statistics

the ordered random sample as U(1) ≤ U(2) ≤ · · · ≤ U(K) and U(i) is called the i-th
order statistic of the sample.

In general, the CDF FU(i) and the PDF fU(i) of the i-th order statistic U(i) are [33,
p. 229, Th. 5.4.4]:

FU(i)(u) =
K∑
j=i

(
K

j

)
[FU (u)]j [1− FU (u)]K−j (3.56)

and

fU(i)(u) = K!
(i− 1)! (K − i)! fU (u) [FU (u)]i−1 [1− FU (u)]K−i , (3.57)

respectively.

For this work, the joint PDF f(U(i),U(j)) of two order statistics U(i) and U(j), where
1 ≤ i < j ≤ K, is of interest. It can be found as [33, p. 230, Th. 5.4.6]:

f(U(i),U(j))(u, v) = K! fU (u) fU (v) [FU (u)]i−1 [FU (v)− FU (u)]j−i−1 [1− FU (v)]K−j

(i− 1)! (j − i− 1)! (K − j)! ,

(3.58)

for −∞ < u < v <∞. Similarly, the joint PDF of a subset of order statistics [109,
p. 12, Eq. (2.2.2)] and of all order statistics [33, p. 230, Th. 5.4.6] can be given.

A closer look on (3.56) to (3.58) reveals that for a lot of underlying population
distributions (fU / FU ) it becomes intractable to derive the exact distributions or
moments of the order statistics. Hence, approximations play a major role in order
statistics, e.g., [109, p. 56 ff., Ch. 4].

3.6.1 Order Statistics of a Rectangular Sample

Closed form results for the order statistics may be obtained for samples from ele-
mentary distributions like the standard rectangular distribution. In Section 6.1.1,
order statistics of a standard rectangular distributed sample are utilized. Hence,
we shortly review some important results here. For this, let U(i) be the i-th order
statistic from an i.i.d. standard rectangular sample of size K. Thus, each un-
ordered sample Ui ∼ R(0, 1) for i = 1, . . . ,K and its PDF and CDF are given in
(2.43) and (2.44), respectively.

Inserting these into the general form (3.57) and using (2.24) yields (see [109, p. 14,
Ex. 2.3.] or [33, p. 230, Ex. 5.4.5]):

f(U(i))(u) = Γ(K + 1)
Γ(i) Γ(K − i+ 1)u

i−1 (1 + u)(K−i+1)−1 I[0,1](u) . (3.59)
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By comparing (3.59) with (2.45) we find that the i-th order statistic of an i.i.d. stan-
dard rectangular sample of size K is Beta(i,K − i+ 1) distributed.

Likewise, the corresponding joint PDF of the smallest and the largest order statistic
can be derived by inserting fU and FU into the general form (3.58) to obtain:

f(U(1),U(K))(u, v) = K(K − 1) (v − u)(K−2) , (3.60)

which is valid for 0 ≤ u < v ≤ 1 and zero otherwise.

3.6.2 Order Statistics of a Gaussian Sample

An important case are the order statistics from an i.i.d. Gaussian sample. Unfor-
tunately, the CDF of a Gaussian random variable cannot be given in a closed form.
Hence, also the distributions of Gaussian order statistics are problematic and must
be approximated in general. However, due to the symmetry of the Gaussian PDF
around its mean, some helpful relations for the moments can be derived [110, p. 95
ff., Ch. 9]. We review two relations here, which is later used in Section 6.1.2. For
this, let U(i) denote the i-th order statistic of an i.i.d. Gaussian sample of size K
for i = 1, . . . ,K, where the unordered sample Ui is N (µ, σ2) distributed.

Then, the following relation holds [110, p. 96, Eq. (9.2)]:

E[U(i)] = 2µ− E[U(K−i+1)] . (3.61)

Also, if the size of the sample K is odd, i.e., if K = 2j + 1 for j ∈ N, it holds
that [110, p. 96, Eq. (9.5)]:

E[U(i+1)] = µ . (3.62)
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4 System Models for Cooperative
Eigenvalue-Based Spectrum Sensing

This chapter introduces the system models, which are used in this work. The
three models vary in complexity with respect to the considered wireless propagation
channel and are referred to as modelMMP,MFF andMDM respectively. First, we
introduce common aspects of both models in a general model description. Second,
the more sophisticated modelMMP that assumes a multipath propagation channel
is presented in Section 4.1. Thereafter, model MFF, which is a special case of
MMP, is presented in Section 4.2. Model MDM, which is again a special case of
model MFF is shortly discussed in Section 4.2.1. The latter two models exhibit
convenient mathematical properties that are helpful for the theoretical analysis of
(cooperative) detectors.

In this work, we consider collaborative spectrum sensing systems, which consist of
K cooperating SUs. All SUs tune to a specific frequency band and collect complex
baseband samples. The received samples are shared with a fusion center that aims
at deciding whether a PU is present. We make a simplifying assumption that only
one PU is potentially present. Note, however, that this assumption is similarly
present in related literature, e.g., [21, 65,107,111,112].

P

1

2
3

4

5

6

7

F

Figure 4.1: Example of a cooperative spectrum sensing system with fusion center
F, seven cooperating SUs and one PU P. Note, that the SUs 1 to 4 are
in transmission range of P, while the SUs 5 to 7 are not.
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4 System Models for Cooperative Eigenvalue-Based Spectrum Sensing

By stacking the received complex baseband samples of the SUs into a time depen-
dent column vector y(t) (of dimension K) in discrete time t ∈ Z, we can formalize
the basic hypothesis testing problem as:

H0 : y(t) = w(t)
H1 : y(t) = x(t) + w(t) .

(4.1)

Here, w(t) describes the additive receiver noise and x(t) stands for the signal sent
by the PU including channel effects as well as filtering at the receiver. In other
words, if hypothesis H0 is true only noise is received, whereas if H1 is true the
distorted PU signal with additive noise is received.

Note, that we assume the receivers to start sampling at time index t = 1. Defining
t ∈ Z is a technicality to ensure a well defined model, when considering multipath
propagation channels.

Unless explicitly stated otherwise, w(t) is modeled as white Gaussian noise, which is
i.i.d. for each time-index t, following a K-dimensional zero mean complex circularly
symmetric Gaussian distribution with covariance matrix σ2

wIK . That is w(t) ∼
CN (0K , σ2

wIK).

The sequence of symbols sent by the PU (excluding any channel / filtering effects)
is denoted by s(t). Unless stated otherwise, we assume that s(t) is a zero-mean
random variable of unknown distribution with variance σ2

s that is i.i.d. for each
discrete time-index t.

Note, we assume the PU symbol sequence s(t1) and the receiver noise w(t2) to be
independent for every given time indices t1 and t2.

In eigenvalue-based spectrum sensing, PU signals are detected on the basis of the
sample covariance matrix, which exposes correlation. Here, typically correlation
among multiple receivers or correlation over time is exploited. Note, that these
two types of correlations may also be combined. Hence, our system model incor-
porates both time and receiver correlation, where the exact mode of operation can
be specified by the model parameter Q ∈ N.

To account for correlation over time, let z(t) be the processing vector used in cal-
culating the sample covariance matrix, defined as

z(t) =
(
y1(t), y1(t− 1), . . . , y1(t−Q+ 1), . . . , yK(t), . . . , yK(t−Q+ 1)

)T
. (4.2)

The parameter Q controls how many consecutive time points are included in es-
timating the sample covariance matrix and was referred to as smoothing factor
in [19]. Choosing Q ≥ 2 enables estimating the covariance among time differences,
while Q = 1 must be chosen to estimate the covariance between multiple SUs only.
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We combine (N −Q+ 1) sample vectors into the (KQ)× (N −Q+ 1) processing
matrix Z:

Z =
(
z(Q), z(Q+ 1), . . . , z(N)

)

=



y1(Q) y1(Q+ 1) . . . y1(N)
y1(Q− 1) y1(Q) . . . y1(N − 1)

...
... . . . ...

y1(1) y1(2) . . . y1(N −Q+ 1)
...

... . . . ...
yK(Q) yK(Q+ 1) . . . yK(N)

...
... . . . ...

yK(1) yK(2) . . . yK(N −Q+ 1)


. (4.3)

Arranging the sample vectors in this way, results in ensuring that N unique samples
from each SU are collected in the matrix Z, irrespective of the choice of Q. To ease
readability, we define K̃ = KQ.

Based on these definitions the K̃ × K̃ sample covariance matrix can be calculated
as

R̂ = 1
N −Q+ 1

N∑
i=Q

z(i)z(i)H = 1
N −Q+ 1 ZZH . (4.4)

For the theoretical analysis, it is convenient to formulate the system model in matrix
form. Let

W̃ =
(
w̃(Q), w̃(Q+ 1), . . . , w̃(N)

)
, (4.5)

with

w̃(t) =
(
w1(t), . . . , w1(t−Q+ 1), . . . , wK(t), . . . , wK(t−Q+ 1)

)T
(4.6)

and let X̃, x̃(t) be defined analogously. Then, the system model can still be formu-
lated additively for all choices of Q, i.e., under H0 it holds that Z = W̃ and under
H1 it holds that Z = X̃ + W̃. If no time correlation is considered, i.e., if Q = 1,
the model simplifies to Z = Y = W under H0 and Z = Y = X + W under H1.
Here, W =

(
w(1), . . . ,w(N)

)
, and X as well as Y are defined analogously.

In eigenvalue-based spectrum sensing, the test statistic is a function of the eigen-
values of the sample covariance matrix. Hence, we denote the vector containing the
ordered eigenvalues of R̂ by

λ̂ =
(
λ̂1, λ̂2, . . . , λ̂K̃

)T
, (4.7)

where the eigenvalues are sorted ascending, that is λ̂1 ≤ · · · ≤ λ̂K̃ .
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4 System Models for Cooperative Eigenvalue-Based Spectrum Sensing

4.1 Multipath Propagation Channel Model (MMP)

The following model, referred to as modelMMP, considers a multipath propagation
environment. Let hi(t) denote the channel impulse response from the PU to the
i-th SU (where i = 1, . . . ,K), which is assumed to describe both the effects of the
wireless channel and the receiver filter.

Then, the received noiseless signal xi(t) at SU i is given by:

xi(t) =
th∑
j=1

hi(j) s
(⌈

t− j + 1
M

⌉)
, (4.8)

which is the convolution of the oversampled PU symbol sequence s(t) and the
channel impulse response. For simplicity we assume that the sample rate is a
multiple of the symbol rate, which is expressed by the oversampling factor M ∈ N.
There, th is the length of the channel impulse response, i.e., hi(t) = 0 for t ≤ 0
and t > th. For this model it is assumed that the channel impulse response stays
constant during the observation time.

This system model is similar to the one used in [17–19] . Here, however, only one
PU is considered and oversampling is treated implicitly by our model.

4.2 Flat Fading and Memoryless Channel Model (MFF)

The modelMFF, which is introduced in this section, is a special case of the more
general modelMMP. It does not account for multipath propagation effects and can
be described as a flat fading and memoryless channel model. Instead, the effects
of the wireless channel and the receiver filter are described by a complex channel
coefficient vector h. Here, h is assumed to be fixed but unknown and constant
during the observation time.

The received noiseless signal of the SUs is given by:

x(t) = h s
(⌈

t

M

⌉)
. (4.9)

Hence, we see that modelMFF is a special case of modelMMP with channel length
th = 1.

To abstract from the concrete realization of the channel coefficient vector h, we
define the average receiver SNR, which is constant for the observation time due to
the stationarity of the involved random processes:

α =
E
[
‖h s(t)‖22

]
E
[
‖w(t)‖22

] = σ2
s ‖h‖

2
2

Kσ2
w

. (4.10)
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4.2 Flat Fading and Memoryless Channel Model (MFF)

This system model is widely used for the analysis of cooperative eigenvalue-based
spectrum sensing systems, e.g., [21, 65, 67, 107], with slight variations of the PU
signal assumptions.

Under H0 the statistical covariance matrix can be readily found as R0 = Rw̃ =
σ2
wIK̃ . However, under H1 the form of R1 depends heavily on the chosen param-

eters. In later sections, the special case when no time correlation is respected and
no oversampling is performed is of interest, i.e., when Q = 1 and M = 1. In this
case, it is easy to show that Rx = σ2

shhH and consequently R1 = σ2
shhH + σ2

wIK .
Since Rx is of rank one and Rw is a scaled identity matrix, their eigenvalues can
be readily found as

eig (Rx) =
(
0, . . . , 0, σ2

s ‖h‖
2
2

)T
(4.11)

and

eig (Rw) = σ2
w1K , (4.12)

respectively. Moreover, since Rw is a scaled identity matrix it holds (see also
(3.17)):

eig (R1) = eig (Rx) + eig (Rw) . (4.13)

Hence, under this model and when Q = M = 1 the vector of eigenvalues λ of R
follows as:

λ =


(
σ2
w, . . . , σ

2
w

)T
= σ2

w1K , under H0(
σ2
w, . . . , σ

2
w, σ

2
s ‖h‖

2
2 + σ2

w

)T
, under H1 .

(4.14)

4.2.1 Flat Fading and Memoryless Channel Model for Digitally
Modulated Signals (MDM)

So far, it was assumed that s(t) is a zero-mean random variable of unknown dis-
tribution with variance σ2

s that is i.i.d. for each discrete time-index t. For model
MDM, however, we assume s(t) to be a discrete zero-mean random variable with
variance σ2

s and unknown probability mass function (PMF), which is also i.i.d. for
each discrete time-index t. Hence, this model is a special case with which digi-
tally modulated signals in the baseband can be described (i.e., linearly modulated
passband signals). This includes widely used modulation techniques such as phase-
shift keying (PSK) and quadrature amplitude modulation (QAM) for example,
cf. [113,114].
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5 Quickest Eigenvalue-Based Spectrum
Sensing

Quickest detection (see Section 3.3) has been applied to the spectrum sensing prob-
lem and was termed quickest spectrum sensing in the literature. It was first in-
vestigated for Gaussian signal and noise in [72] and for sinusoidal signals with
Gaussian noise in [115]. Investigating quickest detection procedures on the basis
of cyclostationary features was done in [54]. Collaboration between multiple SUs
for quickest spectrum sensing was considered in [111, 116]. Also, an extension of
quickest spectrum sensing for multi-antenna receivers was proposed in [117].

To the best of our knowledge, quickest spectrum sensing using eigenvalues of the
sample covariance matrix has not been investigated under a centralized and col-
laborative system model like the ones from Chapter 4. Recently, a decentralized
quickest detection approach using eigenvalues of the sample covariance matrix was
proposed [118], where no fusion center is present. Instead, the SUs share the com-
putational load and exchange messages to estimate the sample covariance matrix.
However, the system model of said work is entirely different to the centralized
collaborative spectrum sensing paradigm considered here.

In this chapter, we first discuss the characteristics and requirements of the two types
of possible change detection problems in spectrum sensing in Section 5.1. Further-
more, we introduce the concept of centralized collaborative quickest eigenvalue-
based spectrum sensing and the necessary changes to the system model in Sec-
tion 5.2. Then, we develop two exact algorithms in a simplified dual SU scenario
for both known and unknown SNR in Section 5.3. There, we obtain some valuable
results for the general K SU case and compare the detection performance to regular
eigenvalue-based block detection for the dual SU case.

Parts of this chapter have been published in [25,27].

5.1 Change Detection Problems in Spectrum Sensing

In this section, we discuss the two types of possible hypothesis changes in a spectrum
sensing setting and assess the consequences of the detection delay for both cases.

In order to focus the analysis on the spectrum sensing algorithms and their associ-
ated delays, we assume the SUs to have a dual radio architecture [11, Sec. III.A.].
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5 Quickest Eigenvalue-Based Spectrum Sensing

That is, they have two separate radio transceiver modules: one for sensing and one
for communicating data. This way, we may ignore spectrum access strategies and
networking issues for this analysis.

There are two possible types of hypothesis changes. Either a previously occupied
frequency band becomes free again (H1 to H0) or a PU appears that starts trans-
mitting on the band, which was free before (H0 to H1). In the former situation a
spectrum opportunity emerges, while in the latter it vanishes. In Figure 5.1 both
situations are visualized and relevant time points including associated delays are
described, which are important in the analysis of change detection algorithms. The

H0

H1

tc ta t̃c t̃a
t

Figure 5.1: Change detection problems in spectrum sensing. At tc a change from
Hypothesis H0 (unoccupied channel) to Hypothesis H1 (occupied chan-
nel) occurs. The detection algorithm raises an alarm at ta and the
detection delay is defined as τd = ta − tc + 1. The reverse situation
that an occupied channel becomes free happens at t̃c with analogously
defined alarm time t̃a and detection delay τ̃d. The duration shaded in
gray indicates interference for the primary system, while the duration
in white symbolizes wasted transmission potential for the secondary
system.

delay introduced by the detection algorithm has different practical implications for
both the primary and the secondary system depending on the type of hypothesis
change.

Let us consider the H1 to H0 change, i.e., an occupied band becoming free again.
Here, the detection delay leads to an access delay of the secondary system, thereby
shortening the available transmission window for the SUs. While being an inef-
ficiency in the secondary system, the delay has no direct negative effect on the
primary system. If a false alarm is raised, meaning that the channel is falsely de-
clared to be free, however, interference for the primary system is inevitable since
the SUs start communicating on the band. Ongoing transmissions of the licensed
primary system may be corrupted in this case. Thus, this change is critical with
respect to detection accuracy.

If we examine the change from H0 to H1, a PU starts transmitting on the band,
changing its occupancy status from free to occupied. In this case, the detection

44



5.2 System Model for Quickest Eigenvalue-Based Spectrum Sensing

delay will cause interference for the primary system, since the SUs do not imme-
diately terminate their communication on that band. Thus, the detection delay
causes a direct negative effect on the (licensed) primary system.

Hence, we argue quickest detection techniques offer the most potential for improve-
ment in the H0 to H1 case. Especially PUs that are in the immediate vicinity of
several SUs will benefit directly from decreased delays. There, a strong PU signal
is received, such that the detection task is comparatively easy and the quickest
detection algorithm has the chance to detect the change significantly faster than a
block detector.

5.2 System Model for Quickest Eigenvalue-Based
Spectrum Sensing

This section introduces a system model to enable centralized, collaborative QD
based on the eigenvalues of the sample covariance matrix for spectrum sensing.
In contrast to block detection — where the goal is to reliably detect the current
hypothesis — in QD it is assumed the current hypothesis is known and that a
change to the other hypothesis shall be detected with minimal delay. Hence, in
QD detection attempts are performed for every sample. An alarm is declared if the
threshold is exceeded and the sampling / detection process is continued otherwise,
see Section 3.3.

To use a function of the eigenvalues of the sample covariance matrix as a test
statistic in QD, a time-dependent version of the model must be conceived. We
introduce a block index k ∈ N and define λ̂(k) as the vector of ordered eigenvalues
of the sample covariance matrix calculated from the k-th consecutive block of N
non-overlapping samples:

R̂(k) = Z(k) Z(k)H, (5.1)

where

Z(k) = (z(Q+ (k − 1)N), z(Q+ 1 + (k − 1)N), · · · , z(kN)) . (5.2)

Here, z(t) is the processing vector as defined in (4.2).

Hence, also the test statistic becomes time-dependent: T (k). Consider the MME
(cf. (3.22)) for example, which is used in the remainder of this chapter:

TMME(k) = λ̂K̃(k)
λ̂1(k)

. (5.3)

Thus, the idea is to split up the big block of samples used in eigenvalue-based block
detection into smaller ones, in order to perform sequential detection attempts in
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5 Quickest Eigenvalue-Based Spectrum Sensing

the spirit of QD, see also Figure 5.2. Note, that the block size of each smaller
block, denoted by N , is a trade off between the estimation accuracy of the sample
covariance matrix on the one hand and the detection delay on the other hand.

t

T

k = 1 k = 2 k = 3 k = 4 ...

T (1) T (2) T (3) T (4)

block detector

QD

Figure 5.2: In the top part, a classical block detector with a fixed sample size is
shown. In contrast, in the bottom part the block structure of our quick-
est eigenvalue-based spectrum sensing methodology is depicted, which
uses only a fraction of the block detectors’ samples for each detection
attempt.

Since in QD it is typically assumed that the input samples of the algorithm, i.e.,
TMME(k) in our case, are i.i.d. according to the distribution corresponding to the
hypothesis at that particular time instance k, we need to make an additional as-
sumption. That is, no hypothesis change may happen within a block. This can be
mathematically expressed as tc ∈ {(k − 1)N + 1 | k ∈ N}. Note, however, that an
analogous assumption is present in the analysis of block detection algorithms.

5.3 Exact Algorithms for a Dual User Scenario

Commonly used algorithms in QD utilize the LLR for detection, see Section 3.3.
Consequently, to determine the LLR, knowledge of the PDFs of the test statistics
under both hypotheses are required. In this section, the MME is considered as a
test statistic and using a very simple system model, i.e., model MDM with two
cooperating SUs and Q = M = 1 (cf. Section 4.2.1), the exact PDFs of the test
statistic can be found under both hypotheses. This enables us to give exact QD
algorithms for this scenario.

First, the distributions of the sample covariance matrix are identified in Section 5.3.1
for a general number of cooperating SUs K. Then, for K = 2, the PDF of the test
statistic are given under H0 from the literature in Section 5.3.2 and under H1 it
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5.3 Exact Algorithms for a Dual User Scenario

is derived by generalizing a result from the literature in Section 5.3.3. Since eval-
uation of the PDFs can be demanding for large numbers of samples N , we derive
alternative expressions that can be conveniently evaluated using double precision
floating point arithmetic in Section 5.3.4. Based on these results exact quickest
eigenvalue-based spectrum sensing algorithms are given for detecting changes from
H0 to H1 and from H1 to H0 in Sections 5.3.5 and 5.3.6, respectively. The results
obtained in this section are then evaluated numerically in Section 5.3.7.

5.3.1 Distributions of the Sample Covariance Matrix and its
Eigenvalues

This section identifies the distributions of the sample covariance matrix under both
hypotheses for a general number of cooperating SUs K and a general finite number
of samples N for model MDM without exploiting time correlation and without
oversampling, i.e., Q = 1 and M = 1 (see Section 4.2.1).

Since scaling of the sample covariance matrix results in the same scaling of all its
eigenvalues, the ratio of TMME is unaffected, cf. Section 3.2. Thus, we omit the
normalization factor N−1 and use the non-normalized sample covariance matrix
R̂ = YYH in the following. Similarly, the test statistic TMME is only dependent
on the average SNR α, but independent of the actual noise power under both
hypotheses. Hence, our system model uses the SNR as a parameter directly and
we assume w.l.o.g. σ2

w = 1.

Distribution under Hypothesis H0

Under hypothesis H0, the non-normalized sample covariance matrix is simply R̂0 =
WWH. Since every entry of W is i.i.d., following a standard complex circularly
symmetric Gaussian distribution, the statistic covariance matrix of a column is the
identity matrix (IK). This random matrix is called a complex uncorrelated central
Wishart matrix of dimension K with N degrees of freedom [83], which we denote
by R̂0 ∼ CWK(N, IK) (see also Section 3.4). The PDF of R̂0 and the joint PDF
of its ordered eigenvalues can be found with the help of Table 3.1 and (3.39).

Distribution under Hypothesis H1

Under hypothesis H1 the non-normalized sample covariance matrix R̂1 = (X +
W)(X+W)H. To derive a distribution, we would have to assume knowledge of the
distribution of the PU signal s(t). Instead, we first assume that s(t) is constant
and known. Later, we discuss the situation when s(t) is random.

Let s = (s(1), . . . , s(N)), i.e., the row vector of N PU symbols. For the following,
we assume that both s and h are fixed and known in order to derive conditional
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5 Quickest Eigenvalue-Based Spectrum Sensing

probability distributions. Since we consider no oversampling (M = 1) here, the
signal matrix is

X = hs . (5.4)

Hence, for known s and h the sample covariance matrix under H1 can be written
as (

R̂1 | s,h
)

= (X + W)(X + W)H = W̌W̌H
, (5.5)

where each column is i.i.d. according to a complex circularly symmetric Gaussian,
i.e., w̌i ∼ CN (xi, IK) for i = 1, . . . , N . Thus,

(
R̂1 | s,h

)
follows a complex

uncorrelated non-central Wishart distribution of dimension K with N degrees of
freedom and non-centrality matrix Ω = E

[
W̌
]

E
[
W̌H

]
, which we denote by

(
R̂1 |

s,h
)
∼ CWK(N, IK ,Ω), see [83] and Section 3.4. Here, the non-centrality matrix

can be simplified as follows

Ω = E
[
W̌
]

E
[
W̌H

]
= XXH =

N∑
i=1

xi(xi)H =
N∑
i=1
|s(i)|2 hhH

= ‖s‖22 hhH . (5.6)

This model for constant s and h is very similar to the one presented in [119],
which was used to propose a detector based on the largest eigenvalue of the sample
covariance matrix.

Since Ω from (5.6) is evidently a rank one matrix, its ordered eigenvalue vector can
be readily given as

ω = eig (Ω) =
(
0, . . . , 0, ‖s‖22 ‖h‖

2
2

)T
. (5.7)

The PDF of a general non-central Wishart distribution was given in [83], see (3.37).
Here, however, the non-centrality matrix is rank one and the common covariance
matrix of the noise vectors is an identity matrix. Hence, this is a special case of
an uncorrelated Wishart distribution and the PDF may be simplified considerably.
First, we note that the argument of the generalized multivariate hypergeometric
series in (3.37) is a matrix of rank one, since it holds with (5.6) that

ΩA = ‖s‖22 hhHA (5.8)

Note, that it holds for the product of two matrices V and U that [120, p. 97]

rank(VU) ≤ min(rank(V), rank(U)) . (5.9)

Hence, the eigenvalues of ΩA are easily determined as

eig (ΩA) = eig
(
‖s‖22 hhHA

)
= (0, . . . , 0,hHAh)T

. (5.10)
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The hypergeometric series 0F̃1(N ; ·) of hermitian matrix argument in (3.37) is de-
fined using so-called (complex) zonal polynomials, which are functions of the eigen-
values of the matrix argument, see [83, Eqs. (85),(35) and (19)] and [99, p. 83 ff.,
Ch. 5]. If only one eigenvalue is non-zero, however, all contributions to the multi-
variate series, except terms exclusively involving powers of the non-zero eigenvalue,
become zero. One can see this by utilizing the equivalence between zonal polyno-
mials and the so-called Schur polynomials and invoking [99, p. 93, Eq. (4)]. Hence,
here, the multivariate hypergeometric series is equivalent to the hypergeometric
series of scalar argument, i.e.,

0F̃1(N ; ‖s‖22 hhHA) = 0F1(N ; hHAh) . (5.11)

Noting that

tr(Ω) = tr
(
‖s‖22 hhH

)
= ‖s‖22 ‖h‖

2
2 (5.12)

and utilizing (5.11) we can simplify (3.37) to obtain the PDF of the sample covari-
ance matrix under H1 given s and h as

f(R̂1|s,h)(R̂ | s,h) = e−‖s‖
2
2‖h‖

2
2 0F1(N ; ‖s‖22 hHR̂h) e

−tr(R̂)

Γ̃K(N)

∣∣∣R̂∣∣∣N−K . (5.13)

There, Γ̃K(N) is defined by (3.38).

Next, we turn to the distribution of the joint ordered eigenvalues of (R̂1 | s,h). In
general, it can be found by consulting Table 3.1 and (3.39). However, if the non-
centrality matrix of the Wishart distribution does not exhibit full rank (or if some
eigenvalues coincide), the formulation (3.39) becomes undefined. Instead one has
to evaluate the appropriate limit of the PDF, see [121, Lemma 2] and [122, Lemma
3]. A version of PDF of the joint ordered eigenvalues for the case that the non-
centrality matrix is of arbitrary rank can be found in [102, eqs. (5) and (6)], which
was derived in a slightly different form in [123, Lemma 1, eqs. (46)-(48)] with the
technique mentioned above.

We prefer the version from [102, Eqs. (5) and (6)], since it is in form of the product of
two determinants like (3.39). However, the normalizing constant of the PDF is not
given there. It can be derived by rearranging the version from [123, Eqs. (46)-(48)]
and noting their normalizing constant must be multiplied by the factor

[(N −K)!]K
K∏

i=rank(Ω)+1
(N − i)!

(5.14)

to yield the normalizing constant of [102, Eq. (5)].
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Inserting rank(Ω) = 1 as well as the results from (5.7) and (5.12) into [102, Eq. (5)]
and simplifying yields the PDF of the joint ordered eigenvalues of the sample co-
variance matrix under H1 given s and h:

f(λ̂|s,h)(λ̂ | s,h) = čUN
∣∣∣V̌1(λ̂)

∣∣∣ ∣∣∣F̌(λ̂; ‖s‖22 ‖h‖
2
2)
∣∣∣ K∏
i=1

λ̂N−Ki e−λ̂i , (5.15)

where V̌1(λ̂) =
[
λ̂K−jK−i+1

]
1≤i,j≤K

,

čUN = e−‖s‖
2
2‖h‖

2
2[

‖s‖22 ‖h‖
2
2

](K−1) K∏
i=1

(K − 1− i)!
K∏
i=1

(N − i)!
, (5.16)

and

[
F̌(λ̂; a)

]
1≤i,j≤K

=

 0F1(N−K+1;a λ̂K−i+1)
(N−K)! , for i = 1, . . . ,K and j = 1

λ̂K−jK−i+1, for i = 1, . . . ,K and j = 2, . . . ,K .

(5.17)

We observe in (5.13) that the density f(R̂1|h,s) is a function of ‖s‖22 and h, while
f(λ̂|h,s) from (5.15) is a function of the term ‖s‖22 ‖h‖

2
2. Hence, in the following we

denote them by f(R̂1|‖s‖2
2,h) and f(λ̂|‖s‖2

2,‖h‖
2
2), respectively.

Evidently, it is not realistic that the spectrum sensing system has knowledge of
the exact PU signal sequence. Typically, we would instead model the PU signal
stochastically. However, it is similarly unrealistic to assume any knowledge about
these distributions is available. Nevertheless, we examine this case and gain valuable
insights, which lead to a suitable approximation. For this, let us again assume that
the PU signal sequence s is random, as is the case in modelMDM from Section 4.2.1.
There, we assume a digital modulation, such that s(t) takes on complex symbols
from a symbol alphabet M. Since s(t) is i.i.d. for every time instance t, the PMF
may be described as P(s(t) = vi) for vi ∈M and i = 1, . . . , |M|. As the conditional
probability densities f(R̂1|‖s‖2

2,h) and f(λ̂|‖s‖2
2,‖h‖

2
2) are functions of ‖s‖22, we require

the PMF of ‖s‖22. It depends on the PMF of |s(t)|2, which can be given as

P
(
|s(t)|2 = uj

)
=

∑
i:|vi|2=uj

P(s(t) = vi) . (5.18)

The order of the individual symbols in the sequence s is obviously irrelevant for
P(‖s‖22 = vi), where i = 1, . . . , |P| and P is the countable set of possible norms
of the sequence. To find the PMF P(‖s‖22 = vi) one has to find all possible ways
to partition vi into a sum of the number of occurrences of possible |s(t)|2. Then,
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P(‖s‖22 = vi) follows as the sum over the probability of encountering these parti-
tions. Each partition follows a multinomial distribution with event probabilities
P(|s(t)|2 = uj), compare [124, p. 137, Ch. 2, Def. 7].

Then, the PDF of the sample covariance matrix under H1 given h can be found as

f(R̂1|h)(R̂) =
∑
v∈P

P
(
‖s‖22 = v

)
f(R̂1|‖s‖2

2,h)
(
R̂ | ‖s‖22 = v,h

)
= E‖s‖2

2

[
f(R̂1|‖s‖2

2,h)
(
R̂ | ‖s‖22 ,h

)]
. (5.19)

Analogously, the PDF of the ordered eigenvalues of the sample covariance matrix
under H1 is

f(λ̂|‖h‖2
2)(λ̂) =

∑
v∈P

P
(
‖s‖22 = v

)
f(λ̂|‖s‖2

2,‖h‖
2
2)
(
λ̂, ‖s‖22 = v, ‖h‖22

)
= E‖s‖2

2

[
f(λ̂|‖s‖2

2,‖h‖
2
2)
(
λ̂ | ‖s‖22 , ‖h‖

2
2

)]
. (5.20)

Obviously, for large numbers of samples N the number of elements |P| in the set
possible norms of the sequence s becomes huge. Hence, even if the PMF of ‖s‖22 was
known, explicit calculation of fR̂1

and fλ̂ becomes intractable. However, we may
use the (strong) law of large numbers [33, p. 235, Th. 5.5.9] to obtain a reasonable
approximation. Since s(t) is i.i.d. over for each t, the same holds also for |s(t)|2.
It is also directly evident that E

[
|s(t)|2

]
< ∞, since the PU sends with a limited

transmission power. Thus, for large N the probability to observe a sequence, where
‖s‖22 deviates a large amount from E

[
‖s‖22

]
is very small and we may approximate

the two PDFs from (5.19) and (5.20) as

f(R̂1|h)(R̂) ≈ f(R̂1|‖s‖2
2,h)

(
R̂ | E

[
‖s‖22

]
,h
)

(5.21)

and

f(λ̂|‖h‖2
2)(λ̂) ≈ f(λ̂|‖s‖2

2,‖h‖
2
2)
(
λ̂ | E

[
‖s‖22

]
, ‖h‖22

)
, (5.22)

respectively.

The latter PDF may be further simplified by noting that

E
[
‖s‖22

]
= E

[
N∑
i=1
|s(i)|2

]
= N E[|s(t)|2] = Nσ2

s . (5.23)

Using the definition of the average SNR from (4.10) and (5.23), we may substitute
the term

E
[
‖s‖22

]
‖h‖22 = αKN (5.24)

51



5 Quickest Eigenvalue-Based Spectrum Sensing

in (5.22) to obtain a formulation that is solely dependent on system parameters
and the average SNR. Thus, to analyze test statistics that are not functions of the
sample covariance matrix itself but only of its eigenvalues, we may approximate
the distribution of

(
R̂1 | h

)
using a CWK(N, IK , α1K×K) distribution, cf. (5.6),

(5.7) and (5.12). Note, that the approximation is exact for PSK modulations, since
|P| = 1 and P(‖s‖22 = Nσ2

s) = 1.

As a result, knowledge of the channel realization becomes superfluous for the ap-
proximated joint ordered eigenvalue PDF from (5.22) and instead it becomes a
function of the average SNR instead. This result is useful for the theoretical anal-
ysis of eigenvalue-based spectrum sensing algorithms.

5.3.2 Test Statistic PDF under Hypothesis H0

The CDF of the SCN of several types of Wishart matrices was studied in [125]
and a convenient representation was given, where only a single integration is left
to perform. For the overwhelming majority of cases this integral cannot be solved
and must be evaluated numerically. However, especially for the uncorrelated non-
central Wishart case, the functions involved are increasingly difficult to evaluate
numerically for large numbers of samples N .

For a precise first comparison of quickest eigenvalue-based spectrum sensing and
classical eigenvalue-based spectrum sensing, exact PDFs of the test statistics are
desired to rule out numerical uncertainties of the results. By confining the number
of SUs to K = 2, the sample covariance matrices are distributed according to
R̂0 ∼ CW2(N, I2) and R̂1 ∼ CW2(N, I2, αN 12×2), respectively. It turns out, that
for this simplification the PDFs of the test statistic can be found exactly under
both hypotheses. Hence, we have investigated this scenario in more detail, so that
for the following K = 2 is assumed. Note also, that since we are only considering
the MME as test statistic in this chapter, we denote it by T instead of TMME to
increase readability.

The PDF of the test statistic for K = 2 under H0 was also given in [125], however,
a more concise formulation without finite sums can be found in [62]:

f0(T ) = Γ(2N)
Γ(N)Γ(N − 1)

(
1− 1

T

)2 ( 1
T

)N (
1 + 1

T

)−2N

= (N − 1)Γ(2N)
[Γ(N)]2

(T − 1)2 T (N−2)

(T + 1)2N , (5.25)

which is valid for T ≥ 1 and zero otherwise.
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5.3.3 Derivation of the Test Statistic PDF under Hypothesis H1

To develop the PDF of the test statistic for K = 2 under hypothesis H1, we
generalize a result given in [126]. For K = N = 2 a version of the PDF was
given there, which was studied in a multiple-input and multiple-output (MIMO)
beamforming context. We generalize this result to the case of K = 2 and arbitrary
N .

Let ω = (ω1, ω2)T denote the vector of ordered eigenvalues of the non-centrality
matrix Ω. Then, we can find the joint PDF of the ordered eigenvalues of R̂1 with
Table 3.1 and (3.39):

fλ̂(λ̂) = cUN
∣∣∣V1(λ̂)

∣∣∣ ∣∣∣F(λ̂;ω)
∣∣∣ 2∏
i=1

ξ(λ̂i)

= e−(ω1+ω2)

[(N − 2)!]2 (ω2 − ω1)e
−(λ̂1+λ̂2) (λ̂2 − λ̂1) (λ̂1λ̂2)(N−2)

∣∣∣F(λ̂;ω)
∣∣∣ , (5.26)

where
∣∣∣V1(λ̂)

∣∣∣ is the determinant of a Vandermonde matrix built from λ̂,
∣∣∣F(λ̂;ω)

∣∣∣
is the determinant of a 2 × 2 matrix, where the entry of the i-th row and j-
th column can be expressed with standard generalized hypergeometric functions
0F1(N − 1; λ̂(3−j)ω(3−i)) (see (2.29)), ξ(λ̂i) = λ̂

(N−2)
i e−λ̂i and

cUN = e−(ω1+ω2)

[(N − 2)!]2 (ω2 − ω1) . (5.27)

The test statistic of the MME is the ratio of the largest and the smallest eigenvalue.
Obviously, forK = 2 is holds that λ̂2 = T λ̂1, cf. (3.22). Hence, we derive the desired
PDF of the test statistic by applying the following transformation:

f1(T ) =
∞∫
0

λ̂1 fλ̂(T λ̂1, λ̂1) dλ̂1

= cUN

∞∫
0

e−λ̂1(T+1)λ̂2
1(T − 1)(T λ̂2

1)(N−2)
∣∣∣F((T λ̂1, λ̂1)T;ω)

∣∣∣ dλ̂1 . (5.28)

Here, the determinant in (5.28) can be explicitly calculated to obtain∣∣∣F((T λ̂1, λ̂1)T;ω)
∣∣∣ = 0F1(N − 1;T λ̂1ω2) 0F1(N − 1; λ̂1ω1)

− 0F1(N − 1;T λ̂1ω1) 0F1(N − 1; λ̂1ω2) . (5.29)
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Inserting the result from (5.29) into (5.28) yields:

f1(T ) = cUN(T − 1)T (K−2)
∞∫
0

e−λ̂1(T+1)λ̂
(2K−2)
1

0F1(N − 1;T λ̂1ω2) 0F1(N − 1; λ̂1ω1)
− 0F1(N − 1;T λ̂1ω1) 0F1(N − 1; λ̂1ω2) dλ̂1 . (5.30)

Since the integral in (5.30) does not seem to posses a closed-form antiderivative,
we aim at deriving a series expansion which can be well approximated. This was
similarly done in [126] to obtain the version of the PDF for K = N = 2. The
hypergeometric function 0F1(a+1; v) can also be written in terms of the a-th order
modified Bessel function of the first kind Ia(v) [31, p. 377, Eq. (9.6.47)]:

0F1(a+ 1; v) = a! v−(a2 ) Ia(2
√
v) . (5.31)

Inserting (5.29) into (5.28), using (5.31) and simplifying gives:

f1(T ) = cUN [(N − 2)!]2(T − 1)T (N−2)(Tω1ω2)−(N−2
2 )

∞∫
0

λ̂N1 e
−λ̂1(T+1)

[
I(N−2)(2

√
T λ̂1ω2) I(N−2)(2

√
T λ̂1ω1) (5.32)

− I(N−2)(2
√
T λ̂1ω1) I(N−2)(2

√
T λ̂2ω1)

]
dλ̂1 .

Lacking an analytical solution of the integral in (5.32), we use the series expan-
sion of the a-th order modified Bessel function of the first kind Ia(·) [31, p. 375,
Eq. (9.6.10)]:

Ia(v) =
∞∑
i=0

1
i! Γ(i+ a+ 1)

(
v

2

)(2i+a)
. (5.33)

Substituting the Bessel functions by their series expansion from (5.33) in (5.32),
using that ( ∞∑

i=0
ai

) ∞∑
j=0

bj

 =
∞∑
i=0

∞∑
j=0

aibj (5.34)

and simplifying we arrive at:

f1(T ) = cUN [(N − 2)!]2(T − 1)T (N−2)
∞∑
i=0

∞∑
j=0

(
ωj1 (Tω2)i − (Tω1)i ωj2

)
i! j! Γ(i+N − 1) Γ(j +N − 1)

∞∫
0

λ̂
(i+j+2N−2)
1 e−λ̂1(T+1) dλ̂1 . (5.35)
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The remaining definite integral can be found explicitly [32, p. 340, Eq. (3.351.3)],
where we have additionally used the relation from (2.24), as:

∞∫
0

vb e−av dv = b!
a(b+1) = Γ(b+ 1)

a(b+1) . (5.36)

Utilizing this result and relation (2.24) again, we obtain f1(T ) for ω1 6= ω2:

f1(T ) = e−(ω1+ω2) (T − 1)T (N−2)

(ω2 − ω1) (5.37)

∞∑
i=0

∞∑
j=0

Γ(i+ j + 2N − 1)T i
(
ωj1ω

i
2 − ωi1ω

j
2

)
Γ(i+ 1) Γ(j + 1) Γ(i+N − 1) Γ(j +N − 1)(T + 1)(i+j+2N−1) ,

which is valid for T ≥ 1 and zero otherwise. Note, that this formulation is more
general than needed, since the eigenvalue vector ω is known under the system model
here.

The non-centrality matrix Ω for our system model has rank one. Hence, its eigenval-
ues were found explicitly in (5.7) as ω2 = 2αN and ω1 = 0 . Inserting these values
into (5.37) and using the convention 00 = 1, we see that (2αN)i0j = 0 ∀ j 6= 0 and
analogously (2αN)j0i = 0 ∀ i 6= 0. Writing both the minuend and the subtrahend
as individual sums and incorporating the symmetry with respect to the summation
variable, we can merge both terms into a single sum. This results in the desired
PDF of the test statistic T under hypothesis H1:

f1(T ) = (T − 1)T (N−2)

e(2αN)

∞∑
i=0

(T i − 1) Γ(i+ 2N − 1) (2αN)(i−1)

Γ(i+ 1) Γ(i+N − 1) Γ(N − 1) (T + 1)(i+2N−1) ,

(5.38)

which is valid for T ≥ 1 and zero otherwise. Note, that this formulation depends
on the SNR α directly.

For vanishing SNR, the PDF f0(T ) must be a special case of f1(T ). Examining
(5.38) in the limit for α → 0, the only non-zero term of the sum is for i = 1 and
thus:

lim
α→0

f1(T ) = (N − 1)Γ(2N)
[Γ(N)]2

(T − 1)2 T (N−2)

(T + 1)2N = f0(T ) . (5.39)

In Figure 5.3 the PDFs f0(T ) and f1(T ) are depicted for two choices of N , the latter
PDF is shown for different values of the SNR α. Note, that for large values of N ,
such as the choices in Figure 5.3, evaluation of the PDFs is difficult. Section 5.3.4
discusses techniques to circumvent numerical problems and derives representations
of both f0(T ) and f1(T ), which were used for numerical evaluation of these functions
in this chapter. Further below, Figure 5.4 shows the left part of Figure 5.3 in more
detail and also depicts empirical PDFs obtained by Monte Carlo simulation as a
verification of the theoretical results.
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Figure 5.3: Plot of f0(T ) and f1(T ) for different values of the SNR αdB in [dB].
Left: N = 10000. Right: N = 20000.

5.3.4 Techniques for Numerical Evaluation of the PDFs for Large N

Particularly for large numbers of samples N , which are necessary in very low SNR
spectrum sensing, numerical evaluation of f0(T ) and f1(T ) is challenging. The
values encountered during calculation quickly exceed the range of the (64 bit) IEEE
754 double precision floating point format (also called binary64) [127], that is most
typically used in numerical computing software like MATLAB [128]. Moreover, since
f1(T ) involves an infinite sum it must be approximated. Using arbitrary-precision
arithmetic as a remedy for these hardships is not an option due to unacceptably
long computation time. We present versions of both PDFs in this section, that we
have evaluated successfully for large K during our investigations.

Evaluation of the H0 PDF for Large N

The goal is to increase the numerical range by performing the numerically criti-
cal calculations in the logarithmic space. There, we make use of the log-gamma
function log(Γ(v)). In MATLAB [128], which we used for numerical evaluation, an
implementation of the log-gamma function is built-in under the function name
gammaln.

By reformulating f0(T ) from (5.25), such that the problematic parts of the com-
putation are executed in the logarithmic space with the help of the log-gamma
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function, the following formulation is gained:

f0(T ) = (N − 1) (T − 1)2 exp
(
(N − 2) log(T )

− 2N log(T + 1) + log(Γ(2N))− 2 log(Γ(N))
)
. (5.40)

With this representation, we were able to evaluate f0(T ) for N > 100000, which is
not possible with a direct implementation of (5.25).

Evaluation of the H1 PDF for Large N

In addition to gamma functions and powers with large exponent, f1(T ) contains
an infinite sum. Hence, it can only be evaluated approximately, which we do by
stopping the computation after a finite number of summands (Is). Similarly to
the approach for f0(T ), we reformulate f1(T ) from (5.38) such that log-gamma
functions can be utilized:

f1(T ) ≈ (T − 1)
Is∑
i=0

exp(ςi + i log(T ))− exp(ςi), (5.41)

where

ςi = log(Γ(i+ 2N − 1))− log(Γ(i+ 1))− (2αN)− log(Γ(N − 1))
+ (N − 2) log(T )− (i+ 2N − 1) log(T + 1) + (i− 1) log(2αN) . (5.42)

A special case of f1(T ) forN = 2 was derived in [126], which also contains an infinite
sum. There, a stopping criterion for choosing an appropriate number of summands
(Is) was suggested, which states that the summation may be stopped when further
summands only add a negligible amount (say ≤ 0.5 %) to the summation. For
the general version with arbitrary N , however, this criterion fails since the main
contribution to the summation is not located in the first summands anymore.

To achieve a reasonable approximation, we used a criterion that checks whether the
integral of the PDF f1(T ) is sufficiently close to one. More precisely, we numerically
integrate f1(T ) with a trapezoidal quadrature rule with a bin width of 0.001 over
the interval [1, 10]. If this numerically evaluated integral deviates less than 10−5

from one, we consider the approximation as reasonable. In Table 5.1, values for Is
are summarized that result in a reasonable approximation, when evaluating f1(T )
according to (5.41). Note, that Table 5.1 was created by successively checking
multiples of the current order of magnitude for Is, i.e., 10, 20, . . . , 90, 100, 200,
. . . , 900, 1000, 2000, . . . , and picking the first value for which the criterion described
above is fulfilled.

In order to verify the theoretical derivations of f0(T ) and f1(T ) as well as their
representations for adequate numerical evaluation from (5.40) and (5.41), we per-
formed a Monte Carlo simulation with 107 instances to obtain empirical estimates
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Is for SNR αdB in [dB]

N αdB = −20 αdB = −15 αdB = −10 αdB = −5 αdB = 0

50 10 20 30 60 200
100 20 30 50 200 300
500 30 60 200 400 2000

1000 50 200 300 800 3000
5000 200 400 2000 4000 20000

10000 300 800 3000 7000 30000
50000 2000 4000 20000 40000 200000

100000 3000 7000 30000 70000 300000

Table 5.1: Upper bound of summation (Is) to achieve a reasonable approximation
of f1 using (5.41) for different values of the number of samples N and
the SNR αdB in [dB].

for the PDFs using MATLAB [128]. There, in each instance a sample covariance ma-
trix with N = 10000 samples was calculated and subsequently the MME detector
was executed. The samples were generated according to the specifications of model
MDM with K = 2 SUs, where the PU used PSK modulation with eight signaling
points. From the resulting values of the test statistic, histograms were created.

Figure 5.4 depicts f0(T ) and f1(T ), where the latter is shown for different values
of the SNR αdB. Additionally, the results from the aforementioned Monte Carlo
simulation are drawn as crosses. Evidently, the theoretical findings are in perfect
agreement with the empirical results.

5.3.5 Exact Algorithms for the Detection of Vanishing Spectrum
Opportunities

In this section, based on the results from Sections 5.3.1 to 5.3.4, we give an exact
eigenvalue-based QD algorithm, which is designed to detect the hypothesis change
from H0 to H1. It can be argued, that this is the more interesting of the two
possible types of changes, since the detection delay directly disrupts the operation
of the primary system, see Section 5.1. Here, both the ideal case when the SNR is
known and the practically relevant case when the SNR is unknown are considered.

Known SNR

First, we investigate the ideal case when the SNR is known at the receiver. Obvi-
ously, this scenario is unrealistic, since knowledge of the SNR automatically implies
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Figure 5.4: Plot of f0(T ) and f1(T ) for different values of the SNR αdB in [dB].
The number of samples is N = 10000. Crosses indicate empirical values
obtained from a Monte Carlo simulation.

that it is known whether a PU is present. Still, this case serves as a performance
upper bound for the case of unknown SNR.

To apply the CUSUM algorithm (see (3.35)) to the detection problem at hand, the
LLR must be determined. For our system model, it can be derived by inserting
(5.25) and (5.37) into its definition from (3.34) and simplifying:

l(k) = log
(

e−2αN

(T (k)− 1)

∞∑
i=0

(T (k)i − 1) (2αN)(i−1) {2N}(i−1)

Γ(i+ 1) (T (k) + 1)(i−1) {N}(i−1)

)
. (5.43)

There, we make use of the Pochhammer symbol, see (2.26). Note, that (5.43) can
be evaluated numerically using the same techniques like the one used for the PDFs
in Section 5.3.4.

Using the LLR from (5.43), the CUSUM algorithm follows as:

ζC(k) = [ζC(k − 1) + l(k)]+ . (5.44)

The application of QD using a block-wise scheme seems straightforward. However,
it must be stressed that the PDFs involved in the LLR (f0(T ) and f1(T )) must
be exactly known, which is difficult in practice. Nevertheless, we may assume that
for more realistic scenarios with K > 2 and large numbers of samples, the PDFs
may be approximated using asymptotic results from RMT. Moreover, it might seem
tempting to use more complicated methods to update the covariance matrix in each
block as well, e.g., by a sliding window approach. However, this is problematic since
for the LLR the samples of the test statistic T (k) are assumed to be i.i.d. before
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and after the change. Otherwise, finding the joint distribution exploited in (5.44)
might be very challenging. Also, if a change happens within a block neither f0(T )
nor f1(T ) are an exact model. Nonetheless, the test statistic will reflect this change,
even if the model is — strictly speaking — undefined for this particular block. We
limit ourselves to study the simplified case here to clarify whether it is justified to
investigate more realistic models in the future.

When applying the CUSUM detector, a detection threshold hC must be determined
beforehand. For this purpose and to assess the detection performance in advance,
theoretical results on the mean time to detection τ̄d and mean time to false alarm
τ̄fa are desired, which are the main performance measures in QD (cf. Section 3.3).
In general, exact calculation of τ̄d and τ̄fa is intractable and as an alternative bounds
were studied in the literature. Particularly upper bounds on τ̄d and lower bounds
on τ̄fa are of interest.

In [38, p. 175, Eq. (5.2.69)] an upper bound on the worst mean delay τ̄?d can be
found:

τ̄d ≤ τ̄?d ≤
(hC + γf1)
Ef1 [l(k)] , (5.45)

where

γf = sup
δ>0

Ef [l(k)− δ | l(k) ≥ δ > 0] (5.46)

is an upper bound on the so-called excess over the boundary. The worst mean delay
τ̄?d itself is defined in (3.32).

We consider two lower bounds on τ̄fa, the second of which is very elementary. First,
we find from [38, p. 176, Eq. (5.2.77)]:

τ̄fa ≥
1

Ef0 [l(k)]

(
e−(ϕf0hC) − 1

ϕf0

+ hC + γf0

)
, (5.47)

where ϕf is the single non-zero root of

Ef [e−ϕf l(k)] = 1 . (5.48)

Hence, for ϕf0 , we must consider:

Ef0 [e−ϕf0 l(k)] =
∫ ∞

1

(
f1(T ;α)
f0(T )

)−ϕf0
f0(T ) dT != 1 . (5.49)

Evidently, ϕf0 = −1 solves (5.49), since only the integral over f1(T ;α) remains.
We can readily simplify (5.47) to gain:

τ̄fa ≥
1

Ef0 [l(k)]
(
1− ehC + hC + γf0

)
. (5.50)
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The second, much simpler bound is [38, p. 177, Eq. (5.2.78)]:

τ̄fa ≥ ehC . (5.51)

Under the system model discussed here, neither Ef0 [l(k)] nor Ef1 [l(k)], γf0 or
γf1 are tractable analytically. However, numerical evaluation is possible, see Sec-
tion 5.3.7.

When evaluating the bounds stated above, it must be remembered that our QD
algorithms work on the timescale of the block index k, compare Section 5.2. Thus,
to translate the bounds to a sample based timescale, they must be multiplied by
the number of samples N used in each block.

A performance evaluation of the CUSUM is done in Section 5.3.7.

Unknown SNR

In spectrum sensing, the SNR is unknown to the SUs since they are aspiring towards
finding out whether a PU is present or not. When the SNR is unknown, the CUSUM
algorithm cannot be used anymore. Instead, a generalization of the CUSUM, the
so-called GLR algorithm, may be applied in this case, see Section 3.3.

Here, the single unknown parameter in the test statistic PDF under H1 is the SNR
α. So far, we have not explicitly incorporated this dependency in our notation.
However, in the following we emphasize this dependency by writing f1(T ;α) instead
of f1(T ) and similarly l(k;α) instead of l(k) for the LLR.

Utilizing the GLR algorithm from (3.36) in this scenario results in the following
formulation, where α̂ is the estimated SNR:

ζG(k) = max
0≤m≤k

sup
α̂

k∑
i=m+1

log
(
f1(T (i); α̂)
f0(T (i))

)
= max

0≤m≤k
sup
α̂

k∑
i=m+1

l(k; α̂) . (5.52)

There, the variable m is an estimate of the change time tc, i.e., the block index after
which the LLR showed a consistent positive trend, see also (3.36). To the best of
our knowledge, the MLE for the SNR cannot given in a closed-form for f1(T ;α),
such that we numerically evaluate the supremum in (5.52).

The GLR algorithm cannot be formulated recursively, since the SNR estimate α̂
must be recalculated for each new sample. Hence, all input samples of the algorithm
must be stored. Therefore the GLR has a higher computational complexity and
high memory requirements, compared to the CUSUM. Generally speaking, one tries
to avoid using the GLR algorithm because of that. In our case, however, an input
sample of the GLR is T (k). It is based on the eigenvalues of the sample covariance
matrix, which was calculated from a block of N samples. If we aim at replacing
an MME block detector by our QD variant, the latter would use a fraction of the

61
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number of samples of the former, say 1
5 to 1

100 . Compared to the complexity of the
eigenvalue calculation and the covariance matrix estimation, the added complexity
of the GLR appears in a different light. Here, the GLR only needs to store T (k) and
not the samples y(t) of the receivers. Also, it estimates the SNR and the variable
m using a number of values, that is much smaller than N .

A detailed performance evaluation of the GLR algorithm, including a comparison
with standard MME block detection is conducted in Section 5.3.7.

5.3.6 Exact Algorithms for the Detection of Emerging Spectrum
Opportunities

This section studies an exact algorithm for the second kind of hypothesis change,
i.e., H1 to H0. In this case, the detection delay manifests as secondary system inef-
ficiency due to wasting transmission time, but the detection accuracy is crucial to
prevent disruption of ongoing primary system communication, see also Section 5.1.

Known SNR

Let us first investigate the ideal case again, where the SNR is known to the SUs.
Here, detecting a change from H1 to H0 corresponds to the inverse situation of
Section 5.3.5. Consequently, the LLR l̃(k) for this scenario follows as:

l̃(k) = log
(
f0(T (k))
f1(T (k))

)
= −l(k) . (5.53)

Note, that it is directly related to the LLR for the H0 to H1 change from (5.43).

Utilizing the result from (5.43), the recursively formulated CUSUM algorithm for
this case directly follows as:

ζ̃C(k) =
[
ζ̃C(k − 1)− l(k)

]+
. (5.54)

Note, that the bounds on τ̄d and τ̄fa from Section 5.3.5 can be readily converted
to the H1 to H0 scenario by substituting l̃(k) for l(k) and by exchanging f0 with
f1 and vice versa in (5.45) and (5.50), respectively. Hence, the upper bound on τ̄?d
follows as:

τ̄d ≤ τ̄?d ≤
(hC + γf0)
−Ef0 [l(k)] , (5.55)

where

γf = sup
δ>0

Ef
[
l̃(k)− δ | l̃(k) ≥ δ > 0

]
(5.56)
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and

τ̄?d = sup
tc≥1

ess sup Ef0

[
ta − tc + 1 | ta ≥ tc, T (tc−1)

1

]
. (5.57)

The lower bound on τ̄fa is:

τ̄fa ≥
−1

Ef1 [l(k)]
(
1− ehC + hC + γf1

)
. (5.58)

The performance of this CUSUM is evaluated in Section 5.3.7.

Unknown SNR

A similar reasoning can be applied to the practical case, when the SNR is unknown.
In the LLR (5.53), numerator and denominator are swapped, when compared to
the LLR for the H0 to H1 scenario. Hence, the MLE for the SNR applies to the
denominator and the GLR must be adapted. As a consequence, the supremum
present in (5.52) must be changed to an infimum. Also, a negative sign can be
factored out, such that the LLR derived in (5.43) can be reused directly. Hence,
the GLR algorithm for the H1 to H0 case follows as:

ζ̃G(k) = max
0≤m≤k

inf
α̂
−

k∑
i=m+1

log
(
f1(T (i); α̂)
f0(T (i))

)
= max

0≤m≤k
inf
α̂
−

k∑
i=m+1

l(k; α̂) . (5.59)

A numerical evaluation of the performance of this GLR algorithm, including a
comparison with classical MME block detection is carried out in Section 5.3.7.

5.3.7 Numerical Evaluation

In this section, we evaluate the algorithms from Sections 5.3.5 and 5.3.6 numerically.
First, we investigate the mean time to detection τ̄d and the mean time to false alarm
τ̄fa of the CUSUM and the GLR obtained from Monte Carlo simulations for the
H0 to H1 hypothesis change. Second, we compare the performance of the GLR
algorithm with a standard MME block detector. Then, the algorithms for the
second type of hypothesis change (H1 to H0) are examined similarly.

To estimate the τ̄d and the τ̄fa, a Monte Carlo simulation with 1000 instances was
performed in MATLAB [128] for both types of hypothesis changes. In each instance
the CUSUM and the GLR are executed for a total run-time of 10000 blocks. There,
for every block a sample covariance matrix is calculated from N samples created
according to modelMDM with K = 2 SUs. The PU utilizes PSK modulation with
eight signaling points. Moreover, both algorithms are executed twice, where the
first run operates on samples created under H0 and the second run on samples
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created under H1. For the detection performance this is a worst case scenario with
tc = 1. If the hypothesis would switch during the simulation, the algorithm might
detect a longer consecutive positive drift, resulting in potentially faster detection.
The supremum in (5.52) and the infimum in (5.59) were numerically determined in
the range [−20.5,−5] dB in 0.1 dB steps for the GLR.

Evaluation of the H0 to H1 Algorithms

The estimated τ̄d and τ̄fa for both the CUSUM and the GLR, which were obtained
from the Monte Carlo simulation are plotted over the threshold in Figures 5.5
and 5.6, respectively. There, we denote the threshold of the CUSUM as hC and
the one of the GLR as hG. Moreover, the corresponding theoretical bounds for
the CUSUM from (5.45), (5.50) and (5.51), which were evaluated numerically, are
plotted there. Note, that Figure 5.6 uses logarithmic scaling for the ordinate.

In Figure 5.5 one can see that the GLR has a lower mean time to detection τ̄d than
the CUSUM when their thresholds are chosen the same. However, in Figure 5.6 we
notice that for the same threshold, the GLR generates false alarms earlier than the
CUSUM on average. Hence, we have visualized an exemplary choice of thresholds
for both algorithms, which results in the same τ̄fa by the gray lines. With the
help of these, it is evident that the GLR exhibits a higher τ̄d than the CUSUM on
average. This is in agreement with our expectation, since the CUSUM has precise
knowledge of the SNR while the GLR has to perform an estimation of it.

The GLR shows a more aggressive behavior compared to the CUSUM, see above.
This is caused by the interplay of two effects, which predominantly occur for smaller
run-times k. Firstly, the SNR estimation is heavily dependent on the concrete
realizations of the first samples of the test statistic. Secondly, the GLR tries to
determine the onset of a positive trend of the LLR when choosing m. Hence, the
GLR will likely find a continuous sequence of the input samples, which fit better
to the H1 model given by the PDF for some choice of m and α̂, than the CUSUM
H1 model with known SNR α. Both of these effects and their interaction can be
seen in Figure 5.7, where the output of the CUSUM and the GLR is shown for
a particular run on the same input samples. There, also the internal variables m
and α̂ of the GLR are depicted. If the SNR estimation of the GLR returns the
actual SNR, i.e., α̂ = α, it behaves identically to the CUSUM, as can be seen by
comparing (5.44) and (5.52). This can also be observed in Figure 5.7, where for
larger k the estimated SNR is close to the actual value.

Comparison of the H0 to H1 Algorithms with Block Detection

Evidently, QD and block detection pursue different objectives. Hence, it is deli-
cate to create a fair comparison between the GLR algorithm and the MME block
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Figure 5.5: τ̄d of the CUSUM and the GLR for H0 to H1 obtained from Monte
Carlo simulations for N = 10000 and SNR αdB = −17 dB, including
the upper bound for the CUSUM from (5.45). The gray vertical lines
and gray horizontal lines visualize a choice of thresholds for which both
algorithms exhibit the same τ̄fa, cf. Figure 5.6.
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Figure 5.6: τ̄fa of the CUSUM and the GLR for H0 to H1 obtained from Monte
Carlo simulations for N = 10000 and SNR αdB = −17 dB, including
the lower bounds for the CUSUM from (5.50) and (5.51). The gray
vertical lines and gray horizontal lines visualize a choice of thresholds
for which both algorithms exhibit the same τ̄fa.
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Figure 5.7: Comparison of one particular run of the CUSUM and the GLR algo-
rithm for H0 to H1 with N = 10000 and SNR αdB = −19 dB. The
internal variables m and α̂dB in [dB] of the GLR algorithm are shown
in the bottom plot on separate ordinates.

detector. Here, we are mainly interested in finding out, whether the QD approach
presented in Section 5.2 is feasible at all. We presume that it can reduce the de-
tection delay in certain situations due to its ability to adapt dynamically to the
difficulty of the detection task.

In the following evaluation, we compare the GLR algorithm against a MME block
detector, which was designed for an exemplary operating point. Note, that using
the results for the test statistic PDFs of the MME from (5.25) and (5.37), we
can choose a threshold and obtain the resulting detection performance for a given
SNR by numerically integrating the PDFs, cf. (3.3) and (3.5). Designing the MME
detector for a block size of 105 samples and choosing the threshold h = 1.0146,
results in PFA = 0.015 and PD = 0.928 for an SNR of αdB = −20 dB. This serves
as the reference point in the following evaluation.

A visualization of the PFA and PD of the GLR algorithm operating with N = 10000,
i.e., a tenth of the block size of the block detector, at different run-times k is
presented in Figure 5.8. There, the threshold hG = 4.47 of the GLR was empirically
chosen to exhibit PFA = 0.015 at k = 10 — the false alarm rate of the block detector
at its run-time. Estimating PD and PFA for the GLR was done by determining the
fraction of the 1000 Monte Carlo instances, which at the given block index k have

66



5.3 Exact Algorithms for a Dual User Scenario

correctly detected the signal under H1 and have raised false alarms under H0,
respectively.
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Figure 5.8: Performance of the GLR algorithm for H0 to H1 from (5.52), evaluated
as PD and PFA over the algorithm run-time for the threshold hG = 4.47.
Different SNRs in [dB] are considered for PD. The gray circular markers
and the thin gray lines indicate the performance of the MME block
detector designed for a block length of 105 samples and PFA = 0.015,
which results in PD = 0.928 at SNR αdB = −20 dB.

One can see, that the GLR is indeed capable of detecting signals faster than the
MME block detector at a lower or comparable false alarm rate, if the SNR is higher
than −18 dB. For very low SNRs, however, the MME block detector seems to
be faster and more reliable. This is due to the design paradigm of the block de-
tector, which aims at robustly achieving a desired detection performance for the
lowest considered SNR. Evidently, if one evaluates the detectors in practical sce-
narios over an interval of SNRs, say for example [0,−20] dB, we see the advantages
of the QD approach. For a wide range of SNRs, the GLR reliably detects with
shorter delays with better or comparable false alarm performance. Hence, it may
diminish the reaction time to free the channel significantly in case a PU desires to
initiate a transmission. The drawback is that the GLR has to sacrifice detection
performance in the very low SNR regime, where the MME block detector performs
more favorably for a range of approximately 2 dB.

Naturally, this is due to the fact that the GLR algorithm does not use the entirety
of samples, but rather smaller blocks to calculate the sample covariance matrices
than the block detector. Thus, the choice of N is a trade-off between detection
delay in the average case versus the low SNR detection performance. In Figure 5.9,
this trade-off is visualized, where the PD and PFA of the GLR are shown for SNR
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αdB = −20 dB and different N . The thresholds hG were chosen empirically, such
that after 105 samples PFA = 0.015. For N = 5000, 10000, 15000 this results in the
thresholds hG = 6.15, 4.47, 4.02, respectively.
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Figure 5.9: Performance of the GLR algorithm for H0 to H1 from (5.52), evaluated
as PD and PFA over the algorithm run-time for different N and SNR
αdB = −20 dB for PD. The gray circular markers and the thin gray
lines indicate the performance of the MME block detector designed
for a block length of 105 samples and PFA = 0.015, which results in
PD = 0.928 at SNR αdB = −20 dB.

The above characteristics lead to the idea of hybrid detection schemes, in which
the GLR is terminated after a certain run-time — for example after 10 blocks in
the above situation and a subsequent execution of a MME block detector with a
block size of 10N to account for signals with less than −18 dB. Note, that the
sample covariance matrix with 10N samples can be easily calculated on the basis
of the sample covariance matrices R̂(k) with k = 1, . . . , 10 that are generated for
the GLR. This might be an interesting approach to investigate in future work.

Evaluation of the H1 to H0 Algorithms

In Figures 5.10 and 5.11 estimations for the τ̄d and the τ̄fa obtained from Monte
Carlo simulation for the CUSUM and the GLR for the H1 to H0 change are shown.
There, also the corresponding upper and lower bounds for the CUSUM from (5.51),
(5.55) and (5.58) are depicted.
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Figure 5.10: τ̄d of the CUSUM and the GLR for H1 to H0 obtained from Monte
Carlo simulations for N = 10000 and SNR αdB = −17 dB, including
the upper bound for the CUSUM from (5.55).
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Figure 5.11: τ̄fa of the CUSUM and the GLR for H1 to H0 obtained from Monte
Carlo simulations for N = 10000 and SNR αdB = −17 dB, including
the lower bounds for the CUSUM from (5.51) and (5.58).
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While the CUSUM performance looks fine, the GLR has significantly larger τ̄d and
τ̄fa than the CUSUM. At first glance, for τ̄fa this seems positive, but for τ̄d this is
worrying. Indeed, the performance of the GLR is unsatisfactory and we see in the
following why the detection problem faced by the GLR in the H1 to H0 scenario is
ill-posed.

To see this, we have plotted the LLR l̃ for the H1 to H0 change over the value of the
test statistic T in Figure 5.12 for different values of the SNR. Note, that this figure
can also be referred to for the H0 to H1 change by remembering that l(k) = −l̃(k).

Consider the situation under H0, where only noise is received. There, the SNR
estimation will most likely return the smallest possible value in the allowed interval,
i.e., −20.5 dB for the parameters used in the simulation. Thus, the LLR curve with
the smallest positive values is evaluated in the GLR. Hence, in contrast to the
H0 to H1 case, here the τ̄d is constant and the τ̄fa is dependent on the SNR! As
a consequence, here the false alarm performance adapts dynamically to the SNR,
while the detection performance is constant.
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Figure 5.12: Plot of the LLR l̃ for H1 to H0 over T for N = 10000 and different
values of the SNR in [dB].

Comparison of the H1 to H0 Algorithms with Block Detection

The effects described above can also be observed in Figure 5.13, where the GLR
is compared to classical MME block detection. Clearly, the QD approach misses
the advantages displayed in the H0 to H1 case, here. We conclude that a direct
inversion of the H0 to H1 detection process does not lead to a reduction of detection
delay in the H1 to H0 case. For this type of hypothesis change, the block detection
paradigm seems better suited and more reliable, as was already conjectured in
Section 5.1.
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Figure 5.13: Performance of the GLR algorithm forH1 toH0 from (5.59), evaluated
as PD and PFA over the algorithm run-time for the threshold hG = 2.39.
Note, that PD is plotted on the left ordinate and PFA is plotted on
the right ordinate for different SNRs αdB in [dB]. The gray circular
markers and the thin gray lines indicate the performance of the MME
block detector also designed to detect the change from H1 to H0 for a
block length of 105 samples and PFA = 0.015 at SNR αdB = −20 dB,
which results in PD = 0.9117.

5.4 Summary

In this chapter, we introduced centralized and collaborative quickest eigenvalue-
based spectrum sensing. The characteristics and requirements of change detection
problems in spectrum sensing were discussed. It was found, that the H0 to H1
hypothesis transition is more likely to benefit from the quickest change detection
framework compared to theH1 toH0 change. Moreover, a modified time-dependent
system model was introduced, which was used to develop algorithms and for com-
parison to eigenvalue-based block detection.

Two pairs of exact algorithms for both types of possible hypothesis changes were
developed in Section 5.3 on the basis of the MME detector. For model MDM,
which considers digitally modulated signals and a flat fading wireless channel, the
PDFs of the sample covariance matrices and its eigenvalues were given under both
hypotheses for known signal and channel. Then, a very practical approximation for
the PDFs under H1 for general digitally modulated signals was derived, which does
not need explicit knowledge of the signal’s realization. Moreover, it was shown that
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the approximated joint ordered eigenvalue PDF does not require knowledge of the
channel realization and is a function of the average SNR.

For the special case of K = 2 cooperating SUs, analytical results for the test
statistic PDFs of the MME may be obtained. The PDF of the test statistic was
taken from the literature under H0. Under H1, a result from literature, which is
valid for K = N = 2, was generalized to arbitrary N to obtain the desired PDF of
the test statistic. Thereby, a more general result was found, that could potentially
be applied to other system models. Numerical evaluation of the test statistic PDFs
is difficult for large N . In Section 5.3.4 formulations of the test statistic PDFs were
derived, which can be conveniently evaluated using double precision floating point
arithmetic for large N .

Based on these results, exact quickest eigenvalue-based spectrum sensing algorithms
were given in Sections 5.3.5 and 5.3.6, which consider the H0 to H1 and the H1
to H0 change, respectively. There, algorithms for both the ideal case of known
SNR and the practical case of unknown SNR were introduced. A numerical evalu-
ation, including a comparison with classical MME block detection, was performed
in Section 5.3.7.

For the H0 to H1 change it was found that for a wide range of SNRs the QD
approach allows reducing the detection delay at similar or better false alarm rate.
In the very low SNR regime, however, the block detector exhibits lower detection
delay with better detection rate. Thus, the parameter N , which describes the
number of samples used in each detection attempt in the GLR, constitutes a trade-
off between average detection delay and the worst case performance.

In contrast to the H0 to H1 change, the QD approach was found to be inferior to
block detection under the H1 to H0 change. However, in Section 5.1, where the two
types of change detection problems were discussed more generally, it was already
conjectured that the H0 to H1 change is the more promising candidate to benefit
from QD.

For practical application of the algorithms, a generalization to allow cooperation of
K SUs under more realistic wireless channels is desired. Moreover, it was argued
that a hybrid detection strategy combining the strengths of QD and block detection
may be worth investigating in future research.
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and Performance Limits

This chapter studies the robustness and the performance limits of cooperative
eigenvalue-based spectrum sensing systems in the presence of model uncertainties.
So far, little is known in this regard. There exists an SNR threshold for detec-
tion (see (3.55)), which depends on both the number of SUs K and the number of
samples N . However, it is still unclear whether an SNR wall phenomenon exists,
cf. Section 3.5, which is an SNR threshold that may not be overcome by increasing
the number of samples.

We consider two model uncertainties a cooperative eigenvalue-based spectrum sens-
ing system faces in practical scenarios. Firstly, we thoroughly investigate the per-
formance degradations caused by an imperfect calibration of the SUs noise powers
in Section 6.1. Secondly, we briefly study the performance limits in the presence of
colored and correlated noise in Section 6.2.

Parts of this chapter have been published in [28–30].

6.1 Imperfect Noise Power Calibration

In this section, we analyze the effect of uncertainties in the noise power calibration
on a cooperative spectrum sensing system and quantify the performance limits
of three well-known detectors: MME, GLRT and QST, which were introduced in
Section 3.2. Parts of this section have been published in [28].

Eigenvalue-based detectors are commonly thought to be immune to the noise un-
certainty problem in the literature, see [17, 18] for example. Indeed, if a single SU
(exploiting time correlation) is concerned, the noise power may be factored out
in both numerator and denominator and thus it cancels out in the ratio for the
detectors (3.22), (3.24) and (3.25), see Section 3.2.

For a cooperative system, knowledge of the noise powers is not needed if and only
if the noise powers of the receivers are exactly the same. Otherwise, a calibration
step must be performed to scale the noise powers of the receivers to a common
level to be able to set the detection threshold. Assuming this calibration step
to be perfect is unrealistic and can be refuted by the same reasoning that states
a noise power uncertainty must be considered in the first place, see Section 3.5.
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Particularly problematic is the fact that the SUs may reside in different geographical
locations with diverse environmental characteristics like temperature, humidity and
electromagnetic interference that influence the noise powers of the receivers.

Measuring the receiver noise power — or the noise distribution / process for that
matter — is a challenging problem in spectrum sensing. Most critical is the fact
that a receiver can never be sure whether the target band is truly free at a given
point in time. This, however, is a necessary prerequisite for accurate measurement
of the receiver noise characteristics. A practical approach is therefore to disconnect
the antenna from the rest of the receiver circuitry to obtain the desired measure-
ments. Obviously, since the receiver circuit is altered by this routine also the noise
power may change slightly. Moreover, it is still not guaranteed that the receiver
only records noise, since parts of the PU signal might still be picked up through
electromagnetic interference in a non-perfectly shielded receiver. Additionally, the
calibration time cannot be chosen arbitrarily long, which constrains the estima-
tion accuracy. Furthermore, calibration must be repeated periodically to adapt to
changes caused by the environment, e.g., through temperature fluctuations.

A simplified version of a suitable calibration process can be described as follows. Let
us assume an estimated version of the statistical covariance matrix of the receiver
noise is available, denoted by Σ̂. If the noise process is mutually independent from
other users (which is a reasonable simplification here), this matrix is diagonal and
can be estimated by performing a noise power measurement at each receiver. Then
the fusion center may scale the noise power of each receiver to the nominal value
σ2
w = 1 by calculating

Ycalib = Σ̂−
1
2 Y . (6.1)

It is evident that estimation errors cause the calibrated noise power to deviate from
the desired nominal value.

To investigate the influence of a mismatch in the noise power calibration of a co-
operative eigenvalue-based spectrum sensing system we assume that model MFF
without exploiting time correlation and without oversampling (Q = M = 1) from
Section 4.2 is exact for the channel and the PU signal. The noise is modeled
having uncertainty with respect to the noise power after calibration of the re-
ceivers. For this, the noise distribution is not fixed but is assumed to belong
to a set, i.e., W ∈ W, where W contains all (K-dimensional) zero mean com-
plex circularly symmetric Gaussian distributions with diagonal covariance matrix
Σ = diag(σ2

w1 , . . . , σ
2
wK

). There, the noise power σ2
wi of a SU i = 1, . . . ,K is not

known exactly or rather deviates from the nominal value. This models the remain-
ing uncertainty about the noise powers after imperfect calibration and its influence
on the detectors is quantified in the remainder of this section. Said calibration mis-
match has an influence on the detectors, as can be readily seen by the statistical
covariance matrix under H0, which is now R0 = Σ compared to a scaled identity
matrix in the ideal case.
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As discussed in Section 3.5, non-robustness of a detector can be investigated using
(3.52). In this chapter, we perform an isolated analysis of uncertainties affecting
the noise. Hence, we define the following shorthand notations relevant for our case:

TH0 :=
{

median
W

[T | H0]
∣∣∣W ∈W

}
, (6.2)

TH1(α) :=
{

median
W,α

[T | H1]
∣∣∣W ∈W, α

}
. (6.3)

Finding the SNR wall can be achieved by finding the largest SNR value α for
which the two sets TH0 and TH1(α) overlap for all N > 0. Deriving a closed-form
expression for TH0 and TH1(α) is very difficult in general. Hence, we only consider
the asymptotic case (N →∞) in the following. As a result, the analysis simplifies
considerably.

For the model considered in this chapter, TH0 and TH1(α) can be described as
intervals of real numbers. Lets assume the median sets TH0 and TH1(α) overlap
for some α > 0. Also, keep in mind the definition of the hypothesis test from
(3.2). Our goal is to find the value of the SNR α where the upper boundary of
TH0 coincides with the lower boundary of TH1(α). Said SNR value defines the
largest SNR for which the detector becomes non-robust in the asymptotic regime,
cf. case b) in Figure 6.1. Consequently, we refer to this value as the SNR wall in
the asymptotic regime. Note, that the interval boundaries of TH0 and TH1(α) used
to find the intersection may be described also define the worst case behavior under
both Hypotheses H0 and H1 for N →∞, respectively.

It must be stressed, that the SNR wall in the asymptotic regime is not necessarily
the true SNR wall according to the definition from (3.51). To establish equivalence,
it has to be shown that there is no larger SNR value α for which the detector is
non-robust for all 0 < N < ∞. However, most typically the separation between
the test statistic PDFs f0 and f1 increases as N increases. Consequently, also
the separation between their respective medians grows when increasing N . Thus,
it is a common technique to investigate detectors in the asymptotic regime, see,
e.g., [41, 48,104].

Deriving a closed-form expression of the lower boundary of the interval TH1(α) can
also be very difficult in general. However, obtaining lower and upper bounds on the
lower boundary of the interval TH1(α) is often viable. Based on such results, lower
and upper bounds on the SNR wall in the asymptotic regime can be constructed.
This technique is depicted in Figure 6.1 by cases a) and c).

In the following sections, we investigate the performance limit of the MME, GLRT
and QST detectors from (3.22), (3.24) and (3.25) under imperfect noise calibration.
Lower and upper bounds on the SNR wall are derived in the asymptotic regime
(N →∞) as discussed above. Three scenarios are analyzed.
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TH0

TH1(αup)
a) SNR wall upper bound

TH1(αwall)
b) SNR wall

TH1(αlow)

TH1(αlow,avg)

c) SNR wall lower bound

d) SNR wall lower bound

Figure 6.1: Visualization of the intersection point between the upper boundary of
the interval TH0 (large dot) and the lower boundary of the interval
TH1(α). Said intersection point defines the SNR wall in the asymptotic
regime as seen in case b). Also depicted are lower and upper bounds
(dashed lines) of the lower interval boundary of TH1(α). If these bounds
are utilized to find intersections with the upper boundary of the inter-
val TH0 , upper and lower bounds on the SNR wall in the asymptotic
regime are obtained. This is shown in cases a) and c), respectively.
Note, that as α decreases the interval TH1(α) moves to the left, i.e.,
it holds αlow ≤ αwall ≤ αup. If the upper bound of the lower interval
boundary of TH1(α) is intersected with an arbitrary point in the inter-
val TH0 (dash-dotted line), another lower bound of the SNR wall in the
asymptotic regime can be found, see case d). This case is used to study
the difference of the performance limits between average and worst case
scenarios.

First, an average case is examined, where a rectangular distribution is assigned to
the noise powers after calibration in Section 6.1.1, such that they are confined to a
fixed interval. Second, another average case is investigated, where a Gaussian dis-
tribution is assumed to describe the noise powers after calibration in Section 6.1.2,
which more closely matches typical assumptions about the distribution of measure-
ment errors. For both Sections 6.1.1 and 6.1.2 lower bounds on the SNR wall in the
asymptotic regime for all three detectors are obtained, corresponding to case d) in
Figure 6.1. A tighter lower bound for the MME and the GLRT by investigating the
worst case scenario of the test statistic under H0 is found in Section 6.1.3, which
matches case c) in Figure 6.1. Finding the worst case for imperfectly calibrated
receivers under H1 seems to be a very involved problem. This is due to the fact
that the noise covariance matrix is not a scaled identity anymore and the additiv-
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ity of the eigenvalues of Rx and Rw from (4.13) is lost. However, by deriving a
lower bound on the test statistic under H1, an upper bound on the SNR wall in
the asymptotic regime is obtained for the MME and the GLRT detector in Sec-
tion 6.1.4, which is visualized by case a) in Figure 6.1. The worst case analysis
for the QST under H0 already leads to the study of complicated non-convex op-
timization problems. Hence, we omitted further investigations of the QST, since
they would not significantly extend the findings already obtained. The results of
this section are numerically evaluated in Section 6.1.5.

6.1.1 Performance Limits for Rectangular Distributed Noise Powers

As introduced in Section 3.5, when studying the performance limits of detectors
under noise uncertainty, the actual noise power is often modeled to be confined to
a fixed interval in the literature [41,48,104]. This aspect is reflected here, where we
assume that the noise power of a SU after calibration may lie in an interval with
noise uncertainty factor ρ > 1 under H0, i.e., σ2

wi ∈ [ρ−1σ2
w, ρσ

2
w]. However, we

additionally assume a rectangular distribution to study an average case scenario.
In contrast, the SUs are thought to be perfectly calibrated under H1. Such a
scenario may be suitable if it is hard to estimate the true distribution, but the
interval boundaries can be specified. In this case it is reasonable to model this
uncertainty with the help of a rectangular distribution.

Under H0, consider the noise distribution W ∈ W as introduced above in Sec-
tion 6.1. Additionally, the noise powers of the SUs σ2

wi , i = 1, . . . ,K are assumed
to be i.i.d. and to follow a rectangular distribution with support [ρ−1σ2

w, ρσ
2
w], i.e.,

σ2
wi ∼ R(ρ−1σ2

w, ρσ
2
w). Note, that for all detectors under consideration here the

common factor σ2
w cancels out in the ratio, see also Section 3.2. Hence, we assume

σ2
w = 1 for the nominal noise power w.l.o.g. in the following to increase readability

of the derivations. Thus, the support of the rectangular distributions is simply
[ρ−1, ρ] in the remainder of this section.

By showing that the sets of means for the test statistic under both hypotheses
overlap in the asymptotic regime (N → ∞), we prove that there is an SNR wall
and obtain a lower bound since the case under investigation does not correspond
to the worst case, see Section 6.1 and case d) in Figure 6.1.

MME Detector

The test statistic of the MME detector from (3.22) is the ratio of the extreme
eigenvalues. In the asymptotic regime (N → ∞) these correspond to the largest
and the smallest noise powers in the K ×K diagonal covariance matrix Σ under
the model considered here. Due to the assumptions this is equivalent to studying
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6 Robust Eigenvalue-Based Detection and Performance Limits

the order statistic of an affinely transformed standard rectangular distribution with
K samples, compare also Section 3.6.

Let U(1) ≤ · · · ≤ U(i) ≤ · · · ≤ U(K) denote the order statistic of an i.i.d. random
sample with K samples from a standard rectangular distribution, see Sections 3.6
and 3.6.1.

Using the affine transformation (ρ−ρ−1)U(i) +ρ−1 for i = 1, . . . ,K, the asymptotic
mean of the MME test statistic under H0 can be found as

EH0 [TMME] = E
[

(ρ− ρ−1)U(K) + ρ−1

(ρ− ρ−1)U(1) + ρ−1

]
= E

[
U(K) + (ρ2 − 1)−1

U(1) + (ρ2 − 1)−1

]
. (6.4)

To increase readability of the derivation, consider the substitution a := (ρ2 − 1)−1.
It is easy to see that linearly transforming the joint PDF of the smallest and the
largest order statistic, i.e., U(1) and U(K), from (3.60) by a in each argument solely
changes its domain to a ≤ u < v ≤ 1+a. Thus, we can calculate the mean of TMME
under H0 by solving the following integral, where the order of integration cannot
be interchanged without also changing the integration limits:

E
[
U(K) + a

U(1) + a

]
=

1+a∫
u=a

1+a∫
v=u

v

u
f(U(1),U(K))(u, v) dv du

= K(K − 1)
1+a∫
u=a

u−1
1+a∫
v=u

v (v − u)(K−2) dv du

= (K − 1)(1 + a)
1+a∫
a

(1 + a− u)(K−1)

u
du+

1+a∫
a

(1 + a− u)(K−1) du

= (K − 1)(1 + a)
1+a∫
a

(1 + a− u)(K−1)

u
du+ 1

K
. (6.5)

The remaining integral in (6.5) can be found by using the binomial theorem, solving
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the resulting integrals and rearranging:
1+a∫
a

(1 + a− u)(K−1)

u
du

=
1+a∫
a

1
u

N−1∑
i=0

(
K − 1
i

)
(1 + a)(K−i−1)(−u)i du

=
K−1∑
i=1

(
K − 1
i

)
(1 + a)(K−i−1)

1+a∫
a

(−u)(i−1) du+ (1 + a)(K−1)
1+a∫
a

1
u

du

=
K−1∑
i=1

(
K − 1
i

)
(1 + a)(K−i−1)(−1)i

(
(1 + a)i

i
− ai

i

)

+ (1 + a)(K−1) log
(1 + a

a

)
. (6.6)

Inserting the result into (6.5), resubstituting a and simplifying we finally gain the
desired result:

EH0 [TMME] = (K − 1) ρ2K

(ρ2 − 1)K

log(ρ2) +
(K−1)∑
i=1

(
K − 1
i

)
(−1)i

i
(1− ρ−2i)

+ 1
K
.

(6.7)

Unfortunately, (6.7) is a rather complicated expression which does not seem to
possess a significantly easier formulation. As an alternative, we derive an approxi-
mation of EH0 [TMME] by utilizing a first order bivariate Taylor expansion.

Consider the more general multivariate function o : RK → R. Then the first order
Taylor approximation of o about the point θ = (θ1, . . . , θK)T is [129]:

o(v) ≈ o(θ) +
K∑
i=1

(vi − θi)
∂ o(v)
∂vi

∣∣∣∣
(v=θ)

. (6.8)

Hence, approximating EH0 [TMME] about the point (EH0 [λK ],EH0 [λ1]) in this way
yields:

EH0 [TMME] = EH0

[
λK
λ1

]
≈ EH0

[EH0 [λK ]
EH0 [λ1] + λK − EH0 [λK ]

EH0 [λ1] − EH0 [λK ](λ1 − EH0 [λ1])
EH0 [λ1]2

]

= EH0 [λK ]
EH0 [λ1] +

=0︷ ︸︸ ︷
EH0 [λK − EH0 [λK ]]

EH0 [λ1] − EH0 [λK ]
=0︷ ︸︸ ︷

EH0 [λ1 − EH0 [λ1]]
EH0 [λ1]2

= EH0 [λK ]
EH0 [λ1] . (6.9)
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Approximating the ratio of two random variables using this approach can be prob-
lematic when the random variable in the denominator has a support including zero.
Here, however, the eigenvalues have support [ρ−1, ρ] with ρ > 1.

Note, that the correlation between numerator and denominator is ignored in the
approximation (6.9), since it only depends on the marginal distributions of λK and
λ1. Under the assumptions taken, they can be expressed again by affine transfor-
mations of the marginal distributions of the i-th order statistic U(i), which are beta
distributed, see (3.59). That is, it holds U(i) ∼ Beta(i,K − i+ 1) with mean

E[U(i)] = i

K + 1 (6.10)

and variance

Var[U(i)] = i(K − i+ 1)
(K + 1)2(K + 2) , (6.11)

see also Section 3.6.

With the help of (6.9) and (6.10) as well as the affine transformation (ρ−ρ−1)U(i)+
ρ−1 for i = 1, . . . ,K it follows that

EH0 [λi] = E
[
(ρ− ρ−1)U(i) + ρ−1

]
= (ρ− ρ−1) i

K + 1 + ρ−1 . (6.12)

Thus, the approximation of EH0 [TMME] follows as:

EH0 [TMME] ≈ EH0 [λK ]
EH0 [λ1] =

(ρ− ρ−1) K
K+1 + ρ−1

(ρ− ρ−1) 1
K+1 + ρ−1

= Kρ2 + 1
K + ρ

. (6.13)

Since the correlation between λ1 and λK is ignored, it is of interest to calculate the
correlation between them. With (6.10) and (6.11) as well as the joint distribution
of (U(1), U(K)) it is readily shown that the correlation coefficient between λ1 and
λK is

Corr[λ1, λK ] = Corr[U(1), U(K)]

=
E[U(1)U(K)]− E[U(1)]E[U(K)]√

Var[U(1)]Var[U(K)]
= 1
K
. (6.14)
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There, we have used that

E[U(1)U(K)] = K(K − 1)
1∫

u=0

1∫
v=u

u v (v − u)(K−2) dv du

= K

1∫
0

u (1− u)K−1 du−
1∫

0

u (1− u)K du

= 1
K + 1 −

1
K + 1 + 1

K + 2 = 1
K + 2 . (6.15)

Thus, we expect the approximation from (6.13) to get tighter for a larger number
of cooperating users, since the correlation between λ1 and λK gets smaller when K
increases.

As already mentioned, under H1 we assume the SUs to be perfectly calibrated, that
is σ2

wi = σ2
w = 1 for i = 1, . . . ,K. With the asymptotic eigenvalues from (4.14) and

using (4.10) we obtain

EH1 [TMME] = σ2
s ‖h‖

2
2 + 1 = Kα+ 1 . (6.16)

In order to find the SNR wall, we seek the value of the SNR at which the means
under both hypotheses start to overlap, see also Section 3.5. More precisely, we
need to find the SNR for which it holds that

EH0 [TMME] != EH1 [TMME] (6.17)

Since we have not considered the worst case under both hypotheses here, this value
is a lower bound on the actual SNR wall. Inserting (6.16) into (6.17) and solving
for α we obtain a lower bound on the SNR wall:

αMME
wall ≥

EH0 [TMME]− 1
K

. (6.18)

By numerically evaluating (6.7) and inserting the value into (6.18), a lower bound
for the SNR wall can be calculated. A simple closed-form approximation for this
lower bound can be found by inserting the approximation from (6.13) into (6.18)
and simplifying:

αMME
wall '

ρ2 − 1
K

(
K − 1
K + ρ2

)
. (6.19)

We perform a detailed numerical evaluation of these results in Section 6.1.5 and
show, among other things, that the approximation (6.19) is very tight for relevant
values of the parameters in spectrum sensing.

81



6 Robust Eigenvalue-Based Detection and Performance Limits

GLRT Detector

The GLRT detector relies on the ratio of the largest eigenvalue and the sum of the
remaining smaller eigenvalues, see (3.24). As we have seen in the preceding analysis
of the MME detector, respecting the correlation between the eigenvalues resulted in
a cumbersome expression. Here, we would need to solve K ordered integrals to find
the exact mean value. Hence, we expect an even less tractable derivation than the
one for (6.7), so we directly turn to approximations for the GLRT. In Section 6.1.5
we later see that this approach is justified by the tightness of the approximations.

Note, that for K = 2 the GLRT degenerates to the MME. Hence, for the following
derivations we assume K ≥ 3.

Analogous to the approximation derived for the MME detector, we use the first
order multivariate Taylor approximation from (6.8) and develop EH0 [TGLRT] about
the point θ = (EH0 [λ1], . . . ,EH0 [λK ])T:

EH0 [TGLRT] = EH0

[
λK∑K−1
i=1 λi

]

≈ EH0 [λK ]∑K−1
i=1 EH0 [λi]

+
K∑
i=1

EH0 [λi − EH0 [λi]]︸ ︷︷ ︸
=0

∂ TGLRT(λ)
∂λi

= EH0 [λK ]∑K−1
i=1 EH0 [λi]

. (6.20)

Again, we make use of the mean of the eigenvalues EH0 [λi] for i = 1, . . . ,K, which
were already given in (6.12). The denominator of (6.20) can be simplified as follows:

K−1∑
i=1

EH0 [λi] =
K−1∑
i=1

(ρ− ρ−1) i

K + 1 + ρ−1

= ρ− ρ−1

K + 1

K−1∑
i=1

i+ (K − 1) ρ−1

= ρ− ρ−1

K + 1
(K − 1)K

2 + (K − 1) ρ−1

= (K − 1)
(1

2(ρ− ρ−1) K

K + 1 + ρ−1
)
. (6.21)

Inserting this result into (6.20) we obtain the desired approximation of EH0 [TGLRT]:

EH0 [TGLRT] ≈ EH0 [λK ]∑K−1
i=1 EH0 [λi]

= 1
K − 1

(ρ− ρ−1) K
K+1 + ρ−1

1
2(ρ− ρ−1) K

K+1 + ρ−1 . (6.22)
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Under H1, where the receivers are assumed to be perfectly calibrated, the mean of
the test statistic can easily be found as

EH1 [TGLRT] = Kα+ 1
(K − 1) , (6.23)

by utilizing (4.10) and (4.14).

Analogous to the derivation for the MME detector, finding the SNR for which
EH0 [TGLRT] and EH1 [TGLRT] overlap results in a lower bound on the SNR wall of
the GLRT:

αGLRT
wall ≥ (K − 1) EH0 [TGLRT]− 1

K
. (6.24)

Inserting (6.22) into (6.24) yields an approximation for the lower bound in this
rectangular scenario:

αGLRT
wall '

(ρ− ρ−1) K
K+1 + ρ−1

K(1
2(ρ− ρ−1) K

K+1 + ρ−1)
− 1
K
. (6.25)

Although the above result manifests itself in closed-form, it is still rather compli-
cated and cumbersome to interpret. However, we can find an approximation that
is much simpler, while still being accurate enough for the range of parameters en-
countered in this spectrum sensing context. The approximation can be derived in
two different ways, that lead to the same result.

First, consider the sum of the means of all eigenvalues under H0, for which it holds:

K∑
i=1

EH0 [λi] = EH0

[
K∑
i=1

λi

]
= EH0 [tr(Σ)]

= tr(EH0 [Σ]) =
K∑
i=1

EH0 [σ2
wi ] = K

ρ+ ρ−1

2 . (6.26)

For large K, the summation over the mean of all eigenvalues except the largest one
is approximately equal to the sum of the mean of the noise powers of K − 1 SUs:

K−1∑
i=1

EH0 [λi] ≈
K−1∑
i=1

EH0 [σ2
wi ] (6.27)

= (K − 1) ρ+ ρ−1

2 . (6.28)

There, we essentially ignore the ordering of the eigenvalues, which is introduced by
sorting them from smallest to largest. Thus, we have obtained an approximation
of the denominator of (6.20).
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Second, one can directly study the right part of (6.21) for large K, that is for
K →∞:

lim
K→∞

(1
2(ρ− ρ−1) K

K + 1 + ρ−1
)

= ρ

2 −
1
2ρ
−1 + ρ−1 = ρ+ ρ−1

2 . (6.29)

Hence, replacing the right part of (6.21) with the asymptotic value for K →∞, we
arrive at the same approximation for the denominator of (6.20).

Applying this approximation to the result of (6.20), one finds:

EH0 [TGLRT] ≈ EH0 [λK ]∑K−1
i=1 EH0 [λi]

≈
(ρ− ρ−1) K

K+1 + ρ−1

(K − 1) ρ+ρ−1

2
. (6.30)

While significantly simpler, we can take a further approximation step by noticing
that

EH0 [σ2
wi ] = ρ+ ρ−1

2 ≈ 1 , (6.31)

for the range of values for the noise uncertainty factor ρ that are commonly discussed
in literature. On a logarithmic scale (see (3.54)), we predominantly find values in
the range 0.5 dB ≤ ρdB ≤ 2 dB, cf. [17, 18,41,48]. In Table 6.1 typical values for ρ
in both logarithmic and normal scale are shown including the resulting values for
EH0 [σ2

wi ] = ρ+ρ−1

2 . Also, in Figure 6.2 the term 1
2(ρ − ρ−1) K

K+1 + ρ−1, which was
approximated by the constant one in the derivation above is depicted for different
values of SUs and different noise uncertainty factors. One can see that especially
for larger numbers of SUs, say K ≥ 8, and for moderate noise uncertainty factors,
say ρdB ≤ 1 dB, the approximations taken in (6.28) are reasonable.

ρdB in [dB] ρ ρ+ρ−1

2

0.5 1.1220 1.0066
1.0 1.2589 1.0266
1.5 1.4125 1.0602
2.0 1.5849 1.1079

Table 6.1: Typical values for the noise uncertainty factor ρdB in [dB] and normal
scale with resulting values for ρ+ρ−1

2 .

By inserting (6.31) into the approximation from (6.30), we finally obtain a much
simpler approximation:

EH0 [TGLRT] ≈ EH0 [λK ]∑K−1
i=1 EH0 [λi]

≈
(ρ− ρ−1) K

K+1 + ρ−1

(K − 1)

= ρ2K + 1
ρ (K + 1)(K − 1) . (6.32)
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Figure 6.2: Value of the term 1
2(ρ−ρ−1) K

K+1 +ρ−1 for different numbers of SUs and
different noise uncertainty factors. Left: ρdB = 1 dB. Right: K = 8.

Now, we can also use this result to find a more favorable formulation for the ap-
proximation of the lower bound on the SNR wall of the GLRT detector under this
rectangular model by inserting (6.32) into (6.24) and simplifying:

αGLRT
wall '

1
K

(
ρ2K + 1
ρ (K + 1) − 1

)
= ρ2K + 1
ρ (K + 1)K −

1
K
. (6.33)

We perform a detailed numerical comparison of the results obtained in Section 6.1.5,
which includes the different approximations of EH0 [TGLRT] from (6.22), (6.30)
and (6.32) and the approximations of the lower bound on the SNR wall of the
GLRT detector from (6.25) and (6.33).

QST Detector

The QST detector can be expressed as the ratio of the `2-norm and the `1-norm of
the eigenvalues, see (3.25). Although this detector was originally derived to exploit
correlation over time for a single SU and was not specifically developed for the
collaborative system model employed here, we nevertheless include it in this study
since it shows very promising performance also in collaborative scenarios [24].

Since both numerator and denominator are functions, which operate on all eigen-
values in the same manner, no ordering of the eigenvalues must be respected. Thus,
the joint PDF of the eigenvalues underH0 in the asymptotic regime for this scenario
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is

fλ(λ) =
K∏
i=1

1
ρ− ρ−1 I[ρ−1,ρ](λi)

= 1
(ρ− ρ−1)K I[ρ−1,ρ]K (λ) . (6.34)

Consequently, we can find EH0 [TQST] by solving the following integral:

EH0 [TQST] =
∞∫
−∞

· · ·
∞∫
−∞

‖λ‖2
‖λ‖1

fλ(λ) dλ1 . . . dλK

= 1
(ρ− ρ−1)K

ρ∫
ρ−1

· · ·
ρ∫

ρ−1

‖λ‖2
‖λ‖1

dλ1 . . . dλK . (6.35)

Unfortunately, we are not aware of a closed-form solution of this integral. Instead,
we have numerically evaluated (6.35) using the “cubature” multidimensional inte-
gral evaluation library from [130].

Under H1, where the SUs are assumed to be perfectly calibrated, utilizing the
results from (4.10) and (4.14) readily gives the mean of the test statistic as

EH1 [TQST] =
√

(Kα+ 1)2 +K − 1
K(α+ 1) . (6.36)

Here, finding the SNR value for which EH0 [TQST] and EH1 [TQST] coincide — i.e.,
EH0 [TQST] != EH1 [TQST] — leads to the following quadratic equation:

α2 + α
2(K EH0 [TQST]2 − 1)
K (EH0 [TQST]2 − 1) + K EH0 [TQST]2 − 1

K (EH0 [TQST]2 − 1)
!= 0 . (6.37)

Solving (6.37) gives two solution candidates for the value of α, which is denoted by
α1 and α2 in the following.

The first solution candidate α1 can be shown to be non-negative:

α1 =
−(

≥1︷ ︸︸ ︷
KEH0 [TQST]2−1)−

√
(KEH0 [TQST]2 − 1)(K − 1)

K(EH0 [TQST]2︸ ︷︷ ︸
≤1

−1)
≥ 0 . (6.38)

This can be seen by recalling it holds 1√
K
≤ TQST ≤ 1 for the test statistic of the

QST, which was shown in Section 3.2.3. With the monotonicity of the mean, it
follows for the mean that 1√

K
≤ E[TQST] ≤ 1. Hence, 1

K ≤ EH0 [TQST]2 ≤ 1 and we
can see that the denominator must always be non-positive. Note also, that K ≥ 2.
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Similarly, we notice that KEH0 [TQST]2−1 ≥ 0. Thus, the numerator is non-positive
and in total α1 ≥ 0.

Using analogous reasoning, the second solution candidate α2 can be shown to be
non-positive:

α2 =
−(

≥1︷ ︸︸ ︷
KEH0 [TQST]2−1) +

√
(KEH0 [TQST]2 − 1)(K − 1)

K(EH0 [TQST]2︸ ︷︷ ︸
≤1

−1)
≤ 0 . (6.39)

Notice that KEH0 [TQST]2 − 1 ≤ K − 1 and hence it follows√
(KEH0 [TQST]2 − 1)(K − 1) ≥ KEH0 [TQST]2 − 1 . (6.40)

As a result, the numerator is non-negative. However, since we know from the
definition that the SNR must be non-negative, the solution candidate α2 is invalid.

Using α1 as the valid solution to (6.37), we obtain the lower bound on the SNR
wall

αQST
wall ≥ α1 = −(KEH0 [TQST]2 − 1)

K(EH0 [TQST]2 − 1) +
√

(KEH0 [TQST]2 − 1)(K − 1)
K2(EH0 [TQST]2 − 1)2 . (6.41)

Concrete values for this lower bound may be calculated by numerically evaluating
(6.35), which is done in Section 6.1.5.

6.1.2 Performance Limits for Gaussian Distributed Noise Powers

The scenario from Section 6.1.1 investigates the performance limits of the detectors
when the noise powers of the SUs lie within a fixed interval and follow a rectangular
distribution. However, measurement errors are commonly modeled with Gaussian
distributions. This section analyzes an average case scenario with a (truncated)
Gaussian distribution, that more closely resembles the situation we would expect
after an imperfect calibration step.

Two problems occur if we assume the noise powers after calibration to follow a
Gaussian under H0, which manifest due to the infinitely long tails of the distri-
bution. Firstly, there is a non-zero probability that negative eigenvalues occur.
This is not possible since both the statistical and the sample covariance matrix are
positive semi-definite, see also Section 3.2. Secondly, eigenvalues may theoretically
become arbitrarily large, even though no signal is present. In other words, the fact
that the support of the Gaussian density is the set of real numbers, contradicts
characteristic properties of eigenvalue-based spectrum sensing. Nevertheless, if the
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6 Robust Eigenvalue-Based Detection and Performance Limits

chosen Gaussian distribution fulfills some simple conditions, it still is an attractive
model for the imperfect calibration process.

Consider the following model under H0, where the noise powers of the SUs σ2
wi ,

i = 1, . . . ,K after calibration are i.i.d., each following a Gaussian N (σ2
w, ϑ

2) distri-
bution. If the area under the Gaussian density within a certain range of standard
deviations around the mean is very close to one and the left border of said interval
is positive, we may neglect the fact that there is a non-zero probability that non-
positive noise powers occur. Let p denote the area under the density in the interval
[σ2
w − βϑ, σ2

w + βϑ] with β ≥ 0, compare also Figure 6.3. The factor β controls the
extent of the interval around the mean and thereby the area p.

(2− ρ)σ2
w σ2

w ρ σ2
w

0

N (σ2
w, ϑ

2)

σ2
w − βϑ σ2

w + βϑ

p

noise power after calibration (σ2
wi , i = 1, . . . ,K)

PD
F

Figure 6.3: Gaussian distribution of the SU noise power after calibration with rel-
evant parameters.

As can be seen in Figure 6.3, the left and right borders of the interval are labeled
in two different ways. We describe the right border using a noise uncertainty
factor ρ, which was also used in Section 6.1.1 and related work in the literature,
e.g., [41,48,104]. However, the left border of the interval is (2−ρ)σ2

w in contrast to
ρ−1σ2

w. This results from the fact that the Gaussian PDF is symmetric about its
mean, which is why we also chose the noise uncertainty interval to be symmetric.

By using this parametrization, one can specify the model in two ways. Firstly, one
could estimate the standard deviation ϑ of the Gaussian distribution by analyzing
the calibration process, choosing a factor β and calculating the resulting noise
uncertainty factor:

ρ = 1 + ϑβ

σ2
w

. (6.42)

Secondly, one can specify a noise uncertainty factor (e.g., to compare two models),
choose a factor β and obtain the resulting standard deviation of the Gaussian
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distribution:

ϑ = (ρ− 1)σ2
w

β
. (6.43)

When determining β, one chooses the probability p that the noise power of a SU
after calibration lies within β standard deviations around the nominal value. The
probability p can easily be obtained by

p = Φ

(
σ2
w + βϑ− σ2

w

ϑ

)
− Φ

(
σ2
w − βϑ− σ2

w

ϑ

)
= Φ(β)− Φ(−β)
= 2Φ(β)− 1 . (6.44)

Some typical choices for β and the resulting values for p and 1− p are summarized
in Table 6.2.

β p 1− p

1 0.6826894 0.3173105
2 0.9544997 0.0455002
3 0.9973002 0.0026997
4 0.9999366 0.0000633
5 0.9999994 0.0000005

Table 6.2: Typical values for the parameter β and resulting probability p (rounded
to seven decimal places) that the noise power of a SU after calibration
falls within β standard deviations around the nominal value σ2

w.

Summarizing, if it holds that σ2
w−βϑ > 0 (or equivalently ρ < 2) and the parameter

β is chosen such that p is close to one, this model fulfills the following properties:

1. The SU noise power after calibration is modeled with a Gaussian distribution,
i.e., small deviations from the nominal value occur more often than large ones.

2. If β is sufficiently large, the effects due to the remaining non-zero probability
outside the interval [σ2

w − βϑ, σ2
w + βϑ] are neglected.

3. Due to the interval [(2−ρ)σ2
w, ρ σ

2
w] that was used in the parametrization, the

model is still comparable to other models that use a single noise uncertainty
factor ρ in their description. (Typically, the upper boundary of the interval
is relevant for robustly setting the threshold.)

4. The error model is symmetric around the nominal value σ2
w.
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6 Robust Eigenvalue-Based Detection and Performance Limits

Under H1, we again assume that the SUs are perfectly calibrated. Below, we show
the existence of an SNR wall under this Gaussian average case scenario in the
asymptotic regime and thereby obtain lower bounds, since the cases examined here
are not the worst case scenario (see also Section 6.1 and case d) in Figure 6.1).

MME Detector

Similarly to the analysis of the MME detector (see (3.22)) from Section 6.1.1, we
relate the task of finding the asymptotic mean of the test statistic under H0 to
studying the order statistics of standard Gaussian samples.

Let U(1) ≤ · · · ≤ U(i) ≤ · · · ≤ U(K) denote the order statistic of a random sample
with K samples from a standard Gaussian distribution (see Sections 3.6 and 3.6.2)
with PDF fU (u) = φ(u) and CDF FU (u) = Φ(u) as given in (2.48) and (2.49).

With the affine transformation ϑU(i) +σ2
w, the asymptotic mean of the test statistic

under H0 can be expressed as

EH0 [TMME] = E
[
ϑU(K) + σ2

w

ϑU(1) + σ2
w

]
= E

[
U(K) + σ2

w ϑ
−1

U(1) + σ2
w ϑ
−1

]

= E
[
U(K) + β (ρ− 1)−1

U(1) + β (ρ− 1)−1

]
. (6.45)

Finding the exact form of (6.45) would involve finding the joint density of two order
statistics (see (3.58)), transforming it to find the ratio and subsequently calculating
the mathematical expectation. Already the CDF of a standard Gaussian cannot
be given in closed form, so that it seems hopeless to find a tractable exact form
for (6.45). Since we had success in approximating EH0 [TMME] using a first order
Taylor expansion in (6.9), we use it here again to obtain:

EH0 [TMME] ≈ EH0 [λK ]
EH0 [λ1] =

E[U(K) + β (ρ− 1)−1]
E[U(1) + β (ρ− 1)−1] =

E[U(K)] + β (ρ− 1)−1

E[U(1)] + β (ρ− 1)−1 . (6.46)

There exists a relation for the mean of Gaussian order statistics, cf. (3.61), with
which we find that

E[U(1)] = −E[U(K)] . (6.47)

Thus, we only need to find an expression for the mean of either the largest or the
smallest Gaussian order statistic.

Since the mean of Gaussian order statistics remains unknown for a general number
of samples, a lot of research has been conducted to find suitable approximations
and bounds, see, e.g., [109, p. 82 ff.]. The approximation we make use of here is
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6.1 Imperfect Noise Power Calibration

of a convenient form that can be readily evaluated with the help of the inverse
standard Gaussian CDF Φ−1, which is either available in tabulated form or can be
numerically evaluated using algorithms that are widely included in mathematical
software libraries. The approximation

E[U(i)] ≈ −Φ−1
(
K − i+ 1− ψ
K − 2ψ + 1

)
, (6.48)

was given in [131], where a compromise value for the parameter ψ — that gener-
ally depends on both K and i to achieve the best possible approximation — was
suggested to be ψ = 3

8 . For small K, say K ≤ 20 [109, p. 86], this value is a
decent compromise. However, it was shown that this choice of ψ is too low for
higher K and better values can be found in [132]. In the numerical evaluation in
Section 6.1.5 we vary K between two and 24. From [132, Tables 2 & 3] we find that
for the largest (or smallest) order statistic the value ψ = 3

8 is close to the optimal
choice for K = 24. Since the approximation is quite stable for small K, we do
not adjust ψ in this work. If one desires to evaluate this approximation and the
formulas derived from it for larger K, the value ψ should be chosen with the help
of the tables or formulas from [132].

Using the relations and approximations from (3.61), (6.46) and (6.48), we derive
our approximation for EH0 [TMME]:

EH0 [TMME] ≈
E[U(K) + β (ρ− 1)−1]
E[U(1) + β (ρ− 1)−1] =

2β (ρ− 1)−1 − E[U(1) + β (ρ− 1)−1]
E[U(1) + β (ρ− 1)−1]

= 2β (ρ− 1)−1

E[U(1) + β (ρ− 1)−1] − 1 = 2β (ρ− 1)−1

β (ρ− 1)−1 − Φ−1
(

K−ψ
K−2ψ+1

) − 1

= 2
1− β−1 (ρ− 1)Φ−1

(
K−ψ

K−2ψ+1

) − 1 . (6.49)

Choosing ψ = 3
8 = 0.375 results in the approximation that we use in the remainder

of this work:

EH0 [TMME] ≈ 2
1− β−1 (ρ− 1)Φ−1

(
K−0.375
K+0.25

) − 1 , (6.50)

which is intended for K ≤ 24.

While there are some conditions, which can be stated about the correlation between
λ1 and λK , a simple general form like in the rectangular case does not seem to exist,
cf. [110].

Since under H1 the model is the same as in Section 6.1.1, the lower bound for the
SNR wall is given by (6.18). By inserting (6.50) into (6.18) we gain an approxima-
tion of the lower bound on the SNR wall of the MME detector using this Gaussian
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scenario:

αMME
wall '

1
K

 2
1− β−1 (ρ− 1)Φ−1

(
K−0.375
K+0.25

) − 2

 . (6.51)

A detailed numerical evaluation of this result is performed in Section 6.1.5.

GLRT Detector

For the investigation of the GLRT (see (3.24)), we can make use of results that were
obtained in the preceding derivations and in Section 6.1.1. If K = 2 the GLRT
and MME detectors are equal. Therefore, we presume K ≥ 3 in the following
derivations.

To obtain the mean of the test statistic under H0, we employ the first order Taylor
approximation from (6.20). Using the affine transformation ϑU(i) + σ2

w we may
relate the mean of the i-th eigenvalue to the i-th order statistic of a standard Gaus-
sian sample for i = 1, . . . ,K. Hence, we can simplify the denominator significantly
as follows:

K−1∑
i=1

EH0 [λi] =
K−1∑
i=1

E[ϑU(i) + σ2
w] = ϑ

K−1∑
i=1

E[U(i)] + (K − 1)σ2
w

= ϑE[U(1)] + (K − 1)σ2
w . (6.52)

The last step deserves some further explanation. From (3.61), we see that there is
a symmetry, such that all summands cancel out except i = 1 if K is even. If K is
odd only the summands i = 1 and i = K+1

2 remain. Moreover, in the latter case
we find from (3.62) that E

[
U(K+1

2 )
]

= 0, such that the same result follows for both
even and odd K.

Using the result from (6.52), the relation from (3.61) and the already familiar
approximation from (6.48) for the mean of standard Gaussian order statistics, we
derive an approximation for EH0 [TGLRT]:

EH0 [TGLRT] ≈ EH0 [λK ]∑K−1
i=1 EH0 [σ2

wi ]
=

E[ϑU(K) + σ2
w]

ϑE[U(1)] + (K − 1)σ2
w

=
2σ2

w − E[ϑU(1) + σ2
w]

ϑE[U(1)] + (K − 1)σ2
w

=
σ2
w − ϑE[U(1)]

ϑE[U(1)] + (K − 1)σ2
w

= K σ2
w

ϑE[U(1)] + (K − 1)σ2
w

− 1 ≈ K σ2
w

(K − 1)σ2
w − ϑΦ−1

(
K−ψ

K−2ψ+1

) − 1

= K

(K − 1)− β−1 (ρ− 1)Φ−1
(

K−ψ
K−2ψ+1

) − 1 . (6.53)
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By choosing ψ = 3
8 = 0.375, we gain the approximation intended for K ≤ 24 that

is used in the remainder of this work:

EH0 [TGLRT] ≈ K

(K − 1)− β−1 (ρ− 1)Φ−1
(
K−0.375
K+0.25

) − 1 . (6.54)

Analogously to the examination of the MME, due to the fact that theH1 models are
the same for Sections 6.1.1 and 6.1.2, the lower bound on the SNR wall from (6.24)
holds here as well. Thus, we can insert (6.54) into (6.24) to find an approximation
of the SNR wall of the GLRT in this Gaussian model:

αGLRT
wall '

1
1− ρ−1

β(K−1) Φ
−1
(
K−0.375
K+0.25

) − 1 , (6.55)

which is evaluated numerically in Section 6.1.5.

In Section 6.1.1 with rectangular distributed noise powers after calibration, further
approximations to the denominator of (6.52) were made. One could argue, that
the same approach might be successful here. If we utilize said approximation from
(6.27) as well as the affine transformation ϑU(i) + σ2

w from and the relation (3.61)
we gain the following result:

EH0 [TGLRT] ≈ EH0 [λK ]∑K−1
i=1 EH0 [σ2

wi ]
≈

E[ϑU(K) + σ2
w]

(K − 1)σ2
w

=
(ρ− 1)β−1 σ2

w E[U(K)] + σ2
w

(K − 1)σ2
w

=
(ρ− 1)β−1 E[U(K)] + 1

(K − 1)

=
−(ρ− 1)β−1 E[U(1)] + 1

(K − 1) ≈
(ρ− 1)β−1 Φ−1

(
K−ψ

K−2ψ+1

)
+ 1

(K − 1) . (6.56)

Inserting the result from (6.56) into the lower bound on the SNR wall from (6.24)
and choosing ψ = 3

8 = 0.375, we gain another approximation for the lower bound on
the SNR wall of the GLRT detector intended for K ≤ 24 in this Gaussian scenario:

αGLRT
wall '

(ρ− 1)Φ−1
(
K−0.375
K+0.25

)
β K

. (6.57)

However, in Section 6.1.5 it is shown that the accuracy of this approximation is not
satisfactory.

QST Detector

In the test statistic of the QST (see (3.25)), no ordering of the eigenvalues is present.
Hence, under H0 the joint PDF of the eigenvalues can be readily stated as

fλ(λ) =
K∏
i=1

1√
2π ϑ

e−
(λi−σ2

w)2

2ϑ2 = 1
(2πϑ2)

K
2

exp
(
− 1

2ϑ2

K∑
i=1

(
λi − σ2

w

)2
)
, (6.58)
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which is the joint PDF of K i.i.d. random variables following a N (σ2
w, ϑ

2) distri-
bution, i.e., the joint distribution is N (σ2

w1K , ϑ2IK). As we have discussed in the
beginning of Section 6.1.2, the fact that the support of the PDF from (6.58) is the
K-dimensional space of real numbers (RK) is problematic, since the eigenvalues of
the (sample) covariance matrix must be non-negative.

Thus, we use a scaled and truncated version of the PDF from (6.58) to ensure
the eigenvalues are non-negative by excluding the values outside the interval [(2−
ρ)σ2

w, ρ σ
2
w] and scaling the resulting function, such that it becomes a valid PDF.

This results in the following scaled and truncated Gaussian PDF:

f̌λ(λ) = 1
pK

fλ(λ) I[(2−ρ)σ2
w,ρ σ

2
w]K (λ) . (6.59)

This PDF is a suitable approximation for an intermediate amount of cooperating
SUs. For example, if β = 3 is chosen and if K > 40 one has to decide whether this
Gaussian model can still be applied since the probability that all the SUs’ noise
powers after calibration lie in the interval [(2−ρ)σ2

w, ρ σ
2
w] (which is pK) falls below

0.9. At some point the area under the PDF outside this interval may become to
large to be neglected. In our numerical evaluations, we consider values for K in the
interval [2, 24] for which pK ≥ 0.9346 for β = 3.

Using (6.59), we can find an approximation of EH0 [TQST] as:

EH0 [TQST] =
∞∫
−∞

· · ·
∞∫
−∞

‖λ‖2
‖λ‖1

f̌λ(λ) dλ1 . . . dλK

= 1
pK

ρσ2
w∫

(2−ρ)σ2
w

. . .

ρσ2
w∫

(2−ρ)σ2
w

‖λ‖2
‖λ‖1

fλ(λ) dλ1 . . . dλK

= 1
pK (2πϑ2)

K
2

ρσ2
w∫

(2−ρ)σ2
w

. . .

ρσ2
w∫

(2−ρ)σ2
w

‖λ‖2
‖λ‖1

K∏
i=1

e−
(λi−σ2

w)2

2ϑ2 . (6.60)

Regrettably, a closed form solution to this integral does not exist to the best of
our knowledge. Instead, we have used the “cubature” multidimensional integral
evaluation library from [130] to calculate concrete values of (6.60).

Since Sections 6.1.1 and 6.1.2 share the same model under H1, the lower bound
on the SNR wall from (6.41) holds here as well. In Section 6.1.5, we evaluate this
bound by inserting numerically calculated values of (6.60).

6.1.3 Lower Bounds on the SNR Wall

In order to obtain tighter lower bounds on the SNR wall we consider a differ-
ent scenario, where no concrete distribution of the SU noise powers after calibra-
tion is assumed under H0. Instead, a worst case analysis is performed where it
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is assumed that the noise powers of the SUs after calibration are in the interval
σ2
wi ∈ [ρ−1σ2

w, ρσ
2
w] for i = 1, . . . ,K. In the following derivations we presume,

w.l.o.g., σ2
w = 1. Note, that the presented derivations can be easily extended to

general (finite) noise power intervals if desired.

By assuming the SUs are perfectly calibrated under H1, lower bounds on the SNR
wall can be derived, cf. Section 6.1 and case c) in Figure 6.1. In Section 6.1.4 we
additionally derive upper bounds on the SNR walls for the MME and the GLRT.

MME Detector

Obviously, for the worst case under H0, the test statistic of the MME detector (see
(3.22)) must be as large as possible. It can be easily seen that this happens when
the largest and the smallest eigenvalue attain the largest and smallest possible value
in the interval [ρ−1, ρ], respectively. Hence, the worst case eigenvalue vector is given
by

λH0
MME,wc =

(
ρ−1, ∗, . . . , ∗, ρ

)T
, (6.61)

where ∗ stands for any admissible value. By inserting these worst case eigenvalues
into the test statistic (3.22), we obtain an attainable upper bound on the mean of
the test statistic under H0

EH0 [TMME] ≤ ρ

ρ−1 = ρ2 . (6.62)

The H1 model is the same as in Sections 6.1.1 and 6.1.2 and consequently the lower
bound for the SNR wall from (6.18) is valid here as well. Inserting (6.62) into
(6.18), we get

αMME
wall ≥

ρ2 − 1
K

, (6.63)

which is a tighter lower bound on the SNR wall than the ones studied before, since
we consider the worst case under H0 here. The bound from (6.63) has an interesting
relation to the approximation of the lower bound under the rectangular model from
(6.19), where the latter is smaller by a factor of

(
K−1
K+ρ2

)
≤ 1.

A numerical evaluation of this lower bound is performed in Section 6.1.5.

GLRT Detector

For the GLRT detector, the test statistic (see (3.24)) must be as large as possible in
the worst case. Consequently, due to the ratio, we notice that the numerator must
attain the largest value possible, while the denominator must take on the smallest
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permissible value. Hence, it is readily seen that the worst case eigenvalue vector
for the GLRT is

λH0
GLRT,wc =

(
ρ−1, ρ−1, . . . , ρ−1, ρ

)T
, (6.64)

i.e., all eigenvalues except the largest take on the smallest value in the interval
[ρ−1, ρ], while the largest eigenvalue must be the largest value in said interval.
Calculating the test statistic with the worst case eigenvalues results in an attainable
upper bound on the mean of the test statistic under H0:

EH0 [TGLRT] ≤ ρ

(K − 1) ρ−1 = ρ2

(K − 1) . (6.65)

The H1 model used here is the same as in Sections 6.1.1 and 6.1.2. Therefore, the
lower bound from (6.24) is also valid here. Inserting (6.65) into (6.24) finally gives
the tighter lower bound

αGLRT
wall ≥ ρ2 − 1

K
. (6.66)

Notice, that the result coincides with the one obtained for the MME detector in
(6.63).

This may seem counter intuitive at first. One would expect that the GLRT is
more resilient to imperfect noise power calibration compared to the MME, since
it effectively computes a (non-normalized) average in the denominator instead of
using only the smallest eigenvalue like the MME. The reason for the above result is
that to derive the (lower bound) of the SNR wall a worst case analysis is performed.
There, we saw that for the GLRT all K − 1 smallest eigenvalues have the smallest
value ρ−1 in the worst case and consequently the averaging effect disappears. If
we compare the worst case eigenvalue vectors for the GLRT and MME from (6.61)
and (6.64), respectively, we see that the latter case has a much higher practical
relevance than the former. In practice, it is much more likely to find two out
of K receivers, which are very badly calibrated (where one has a very low noise
power and one has a very high noise power) than finding a situation where exactly
K − 1 receivers have a very low noise power and the last one has a very high noise
power. Hence, we still expect the GLRT to be less sensitive to noise uncertainty
than the MME in practice. If we are interested in a performance limit below which
meaningful detection cannot be guaranteed under imperfect noise power calibration,
however, then we find from (6.63) and (6.66) that the lower bound on this limit
is the same for both detectors. Still, we have to keep in mind that this is not the
actual SNR wall, since we did not study the worst case scenario under H1.

In Section 6.1.5, a numerical evaluation of these findings is conducted.
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6.1.4 Upper Bounds on the SNR Wall

In order to find an upper bound on the SNR wall, it is necessary to lower bound
EH1 [T ]. While we have identified the worst case (or smallest upper bound) of
EH0 [T ] for the MME and the GLRT, finding the worst case under H1 seems much
more difficult. Under H1, due to the model of the noise calibration uncertainty,
the additivity of the eigenvalues of Rx and Rw from (4.14) is lost, since Rw is no
longer a scaled identity matrix. While there are many results on the eigenvalues
of the sum of two Hermitian matrices (see [133]), finding the worst case exactly
for this model still seems to be a very elaborate problem. Thus, we derive a lower
bound on the test statistics for the MME and the GLRT to subsequently derive
an upper bound for their respective SNR walls, see also Section 6.1 and case a) in
Figure 6.1. For this, we utilize the same model as in Section 6.1.3, where the noise
powers of the SUs after calibration are in the interval σ2

wi ∈ [ρ−1, ρ] for i = 1, . . . ,K
without being assigned a concrete distribution. The SNR wall upper bounds are
especially meaningful when studied in conjunction with the lower bounds from
Section 6.1.3. Note, that an extension of the following results to general (finite)
noise power intervals is straightforward.

MME Detector

To lower bound EH1 [TMME], we follow analogous reasoning as we did for finding the
(attainable) upper bound of EH0 [TMME]. The numerator of the test statistic TMME
(see (3.22)) must be as small as possible, while the denominator must get as large
as possible simultaneously. Consequently, we individually bound the largest and
smallest asymptotic eigenvalues under H1. In order to do so, we need two relations
about the eigenvalues of the sum of two Hermitian matrices. We review them in
the following.

Let Ǎ, B̌ and Č denote K ×K Hermitian matrices and let a, b and c stand for
their ordered eigenvalue vectors in the same order, respectively. Consider the sum
Č = Ǎ + B̌. Then, we find from [133, Eq. (2)] that

c1 ≤ a1 + bK (6.67)

and

cK−1 ≤ aK−1 + bK . (6.68)

Another helpful relation can be derived from [133, Eq. (11)], which is:

cK ≥ aK + b1 . (6.69)
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Using (6.67) and (4.11) we can now upper bound the smallest eigenvalue λ1 under
H1 as

λ1 ≤ min(eig (Rx))︸ ︷︷ ︸
=0

+ max(eig (Rw)) ≤ ρ , (6.70)

since max(eig (Rw)) ≤ ρ.

Similarly, a lower bound on the largest eigenvalue can be found with the help of
(4.10), (4.11) and (6.69):

λK ≥ max(eig (Rx)) + min(eig (Rw)) = αK + min(eig (Rw))
≥ αK + ρ−1 , (6.71)

since min(eig (Rw)) ≥ ρ−1.

We have obtained lower and upper bounds for the numerator and denominator of
TMME, respectively. Thus, by inserting these into (3.22) we obtain a lower bound
on EH1 [TMME]:

EH1 [TMME] ≥ αK + ρ−1

ρ
. (6.72)

Note, that this bound is only valid for

α ≥ ρ2 − 1
ρK

, (6.73)

since λK ≥ λ1 must hold.

To obtain the upper bound for the SNR wall, the value for the SNR must be found,
such that EH0 [TMME] and EH1 [TMME] overlap under this model. With the help of
(6.62) and (6.72) we find:

αMME
wall ≤

ρ

K

(
ρ2 − 1

ρ2

)
= ρ2 − 1

K

ρ2 + 1
ρ

= αED
wall

ρ2 + 1
K

. (6.74)

Since ρ2 + 1 ≥ 2, the condition (6.73) is obviously fulfilled.

The upper bound (6.74) is evaluated in Section 6.1.5. Note, that the upper bound
may be related to the lower bound by the factor ρ2+1

ρ . Similarly, we observe that
the upper bound shows a relation to the SNR wall of ED. If K > ρ2 + 1, it can be
seen from (6.74) that the SNR wall of the MME detector is guaranteed to be lower
than the one of ED.
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GLRT Detector

For the GLRT we can reuse certain results from the preceding analysis of the MME.
Similarly, we can develop a lower bound on the test statistic by lower and upper
bounding the numerator and denominator, respectively. From (6.71), a lower bound
on the largest eigenvalue is already available.

The denominator can be upper bounded by realizing from (6.68) that the second
largest eigenvalue can be upper bounded as

λK−1 ≤ [eig (Rx)]K−1︸ ︷︷ ︸
=0

+ max(eig (Rw)) ≤ ρ . (6.75)

Since it holds that λ1 ≤ · · · ≤ λK−1 ≤ λK , we may readily construct an upper
bound of the denominator as

K−1∑
i=1

λi ≤ (K − 1)λK−1 ≤ (K − 1) ρ . (6.76)

Hence, using (6.71) and (6.76) the lower bound for the test statistic of the GLRT
under H1 becomes

EH1 [TGLRT] ≥ αK + ρ−1

(K − 1) ρ . (6.77)

Finding the SNR value for which EH0 [TGLRT] and EH1 [TGLRT] coincide using (6.65)
and (6.77) gives the upper bound on the SNR wall of the GLRT:

αGLRT
wall ≤ ρ

K

(
ρ2 − 1

ρ2

)
= ρ2 − 1

K

ρ2 + 1
ρ

. (6.78)

Note, that again the upper bounds of the SNR wall of the MME and the GLRT
are equal (cf. (6.74) and (6.78)).

In Section 6.1.5 this upper bound is evaluated.

6.1.5 Numerical Evaluation

The following part is dedicated to a numerical evaluation of the results derived in the
preceding Sections 6.1.1 to 6.1.4. In particular, the accuracy of the approximations
for the asymptotic mean of the test statistic (EH0 [T ]) are evaluated for both the
rectangular and the Gaussian average case scenarios. Then, the lower bounds of the
SNR walls — and their respective approximations — are investigated. It is shown
which of the approximations are practical for the range of parameters considered
here (0.1 dB ≤ ρdB ≤ 2.0 dB and 2 ≤ K ≤ 24). Moreover, the consequences of
these findings for eigenvalue-based spectrum sensing systems is discussed.
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Evaluation of the Results for Rectangular Distributed Noise Powers

First, we visualize the exact value of EH0 [T ] (where available) and the derived
approximations for the three detectors MME, GLRT and QST for the rectangular
model, from Section 6.1.1. Thereafter, we investigate the relative deviations of
the approximations. Finally, we take a look at the relative deviations of EH0 [T ]
for the rectangular scenario case from the worst case values of (6.62) and (6.65),
which gives insights into the difference of robustness against noise calibration errors
between the MME and the GLRT.

To verify the derivations of exact results and to obtain a “ground truth” in case
the exact result is unknown, Monte Carlo simulations using MATLAB [128] were con-
ducted. There, the results from 107 Monte Carlo instances were averaged for each
parameter combination. In every instance, K samples from a rectangular distribu-
tion with support [ρ−1, ρ] were drawn, which serve as the asymptotic eigenvalues.
With these the test statistics of the three detectors in question (MME, GLRT and
QST) were calculated. This procedure was done for each combination of integer K
with 2 ≤ K ≤ 24 and noise uncertainty factors 0.1 dB ≤ ρdB ≤ 2.0 dB in steps of
0.1 dB.

For the evaluation of the integral from (6.35) the “cubature” multidimensional
numerical integration library [130, Version 1.0.2] was utilized. To do so, a program
in the programming language C was developed that calls the adaptive hcubature
integration routine of the library, which is based on [134, 135]. For convergence, it
was requested that each integrand individually satisfies the error constraint (i.e.,
the norm parameter was set to ERROR_INDIVIDUAL). A relative error of 10−3 was
set as the error constraint. In this way, for K ≤ 24 the integral from (6.35) can
be evaluated. For K ≥ 25 the memory demands of the integration routine begin
to exceed practical ranges with these settings. Note, that we describe the values
obtained by evaluating (6.35) in this way as “results”. Strictly speaking, this is
of course not correct as the numerical integration routine approximates the true
value of the integral. However, the conservatively estimated numerical errors are
required to fulfill the relative error constraint, i.e., 10−3. Hence, for our purposes
these values can be considered as the exact values. If desired, one can evaluate even
more precise values with the techniques described above.

In Figure 6.4, we plot EH0 [T ] using exact values (where possible), the approxima-
tions derived in Section 6.1.1 and empirical results from a Monte Carlo simulation
for the MME, GLRT and QST detectors, see the description of the figure for more
details. We see that the empirical resuls are in very good agreement with the exact
values obtained from our theoretical investigation. Moreover, at this scale there
is barely any deviation visible between the approximations and exact / empirical
values. In addition, we see that the MME seems to converge to the worst case
value as K gets larger. For the GLRT the distance to the worst case also seems to
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decrease slightly, however no definitive conclusion can be drawn from studying this
plot, which is why we study this effect in more detail below.
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Figure 6.4: Evaluation of EH0 [T ] for the MME, GLRT and the QST. For the MME
and the QST the exact values are depicted using (6.7) and (6.35), respec-
tively. For the MME and the GLRT approximations (app.) are shown
from (6.13) and (6.32), while the worst case upper bounds (w.c.) are
evaluated from (6.62) and (6.65), respectively. Empirical values (emp.)
from a Monte Carlo simulation are drawn for all three detectors. Left:
ρdB = 1 dB. Right: K = 8.

We subsequently investigate the approximations in a more meaningful way by study-
ing their relative deviation (also called relative error) from a reference v, which we
define as

u− v
|v|

. (6.79)

There, u denotes the approximated value under investigation. For the approxima-
tions, if the exact value is known it is taken as the reference, otherwise the empirical
values are used instead.

The relative deviation of the approximation of the mean of the test statistic of the
MME from the exact value is depicted in Figure 6.5. As expected, the approxima-
tion gets tighter for increasing K. We see that for moderate values of the noise
uncertainty factor ρ — say ρdB ≤ 1 dB — the relative error stays well below −1 %
for K = 8. For higher values of ρ the accuracy of the approximation deteriorates.
However, values of ρdB ≥ 2 dB correspond to uncertainty factors of ρ ≥ 1.5849,
which already represent very large calibration errors. The worst relative error over
the parameter range studied here (0.1 dB ≤ ρdB ≤ 2 dB, 2 ≤ K ≤ 24) is ca. −3.3 %.
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Thus, we argue from this analysis that the approximation from (6.13) is very ac-
curate and we favor it over the exact formulation from (6.7) due to its significantly
simpler form for the ranges of parameters studied here.
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Figure 6.5: Relative deviation of the approximation of EH0 [TMME] of (6.13) from
the exact result of (6.7). Left: ρdB = 1 dB. Right: K = 8.

Three approximations of increasing simplicity for EH0 [TGLRT] were derived in Sec-
tion 6.1.1, see (6.22), (6.30) and (6.32). Their relative deviation from the empirical
values resulting from a Monte Carlo simulation are shown in Figure 6.6. The most
accurate and also most complicated approximation from (6.22) stays well within
−1 % of relative error and can be considered a very good substitute for the ex-
act value, which remains unknown. We notice also, that it gets tighter as K in-
creases. Over the whole parameter range considered here (0.1 dB ≤ ρdB ≤ 2 dB,
2 ≤ K ≤ 24) the worst relative error is around −1.9 %. A significant bias can be
observed for the approximation (6.30). Since it performs worst of the three alter-
natives, we do not consider it in the remainder of this work. The simplifying step
from (6.31), which was taken to further simplify (6.30) into the most elementary
approximation (6.32) seems to counteract the negative bias of its ancestor. Hence,
(6.32) shows a more balanced error profile, exhibiting a negative bias for small K
or ρ, while showing a positive bias for larger K or ρ. Especially for intermediate
values of ρ — say ρdB ≤ 1 dB — the much simpler expression of (6.32) is a viable
alternative over (6.22) if one is willing to trade off interpretability over precision.
Over the whole parameter range (0.1 dB ≤ ρdB ≤ 2 dB, 2 ≤ K ≤ 24) the worst
relative error is around 8.6 %.

Figure 6.7 confirms that the GLRT is more resilient to noise calibration errors
than the MME, despite the fact that their lower bounds on the SNR wall are equal
(cf. (6.63) and (6.66)). As already argued in Section 6.1.3, since the MME only uses
the extreme eigenvalues in its test statistic (see (3.22)), it is much more susceptible
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6.1 Imperfect Noise Power Calibration

to large calibration errors. Additionally, as K increases, it becomes more likely that
two SUs show a very low and a very high noise power after calibration, respectively.
This effect is prevented by normalizing the largest eigenvalue by the sum of the
remaining K − 1 smallest eigenvalues as done in the test statistic of the GLRT,
cf. (3.24). Note, that for increasing K the relative deviation of EH0 [TGLRT] from
its worst case seems to level off, while EH0 [TMME] seems to converge to towards the
worst case value. As ρ increases, the relative deviation of EH0 [T ] from the worst
case values increases for both the MME and the GLRT. This is explained by the
increase in variance of the rectangular distribution.
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Figure 6.6: Relative deviation of the approximations of EH0 [TGLRT] of (6.22), (6.30)
and (6.32) from empirical results obtained by Monte Carlo simulation.
Left: ρdB = 1 dB. Right: K = 8.

Evaluation of the Results for Gaussian Distributed Noise Powers

The analysis that was performed for the rectangular model case in the preceding
section is similarly repeated here for the Gaussian model, which was investigated
in Section 6.1.2. Note, however, that no exact results for EH0 [T ] are available for
all three detectors, such that empirical results from a Monte Carlo simulation serve
as the reference.

Empirical results were generated using a Monte Carlo simulation, that is analogous
to the one performed for the rectangular scenario. Here, in each of the 107 instances,
K Gaussian samples were drawn independently from a N (1, ϑ2) distribution, where
ϑ depends on both β and ρ (cf. (6.43)). The additional parameter β is fixed as β = 3
for this chapter, since for viable choices of β the results do not change fundamentally.
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Figure 6.7: Relative deviation of EH0 [T ] from the worst case upper bound (see
(6.62) and (6.65), respectively). For the MME the exact value from
(6.7) is used and for the GLRT empirical results from a Monte Carlo
simulation are evaluated. Left: ρdB = 1 dB. Right: K = 8.

For the numerical evaluation of (6.60) we again made use of the “cubature” library
using the same settings already explained for the rectangular scenario. Unfortu-
nately, (6.60) converges slower than (6.35), such that the computation time and
memory demands exceed practical limits for K ≥ 12 with the chosen method and
settings. Since we have the results of the Monte Carlo simulation and we have
shown that one can obtain the value of (6.60) by numerical evaluation in principle,
we did not further pursue alternative methods of numerical evaluation to calculate
it for larger K.

Figure 6.8 depicts EH0 [T ] using the results derived in Section 6.1.2 and the empirical
results from the Monte Carlo simulation for the three detectors MME, GLRT and
QST. Additionally, the worst case values from (6.62) and (6.65) are shown, see
the figure caption for details. At this scale, not much can be deduced about the
accuracy of the approximations. We note, however, that the convergence of EH0 [T ]
to the worst case value for the MME seems to be less profound than under the
rectangular model.

In Figure 6.9 the relative deviation of (6.50) from the empirical results is drawn.
It can be observed, that the approximation error increases for larger K. For inter-
mediate values of ρ, that is ρdB ≤ 1, the relative error is well below ±1 % and the
approximation is very precise. The worst relative error is ca. −3.2 % over the pa-
rameter range studied here (0.1 dB ≤ ρdB ≤ 2 dB, 2 ≤ K ≤ 24). We conclude that
for the ranges of parameters studied here, this approximation is highly significant,
since an exact formulation remains unknown.
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Figure 6.8: Evaluation of EH0 [T ] for the MME, GLRT and the QST. For QST the
exact values are depicted using (6.60) for K ≤ 11. For the MME and
the GLRT approximations (app.) are shown from (6.50) and (6.54),
while the worst case upper bounds (w.c.) are evaluated from (6.62)
and (6.65), respectively. Empirical values (emp.) from a Monte Carlo
simulation are drawn for all three detectors. Left: ρdB = 1 dB. Right:
K = 8.
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Figure 6.9: Relative deviation of the approximation of EH0 [TMME] of (6.50) from
empirical results obtained by Monte Carlo simulation. Left: ρdB = 1 dB.
Right: K = 8.
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A comparison between the relative errors of the approximations (6.54) and (6.56)
is displayed in Figure 6.10. It is directly evident that (6.54) is superior. For
0.1 dB ≤ ρdB ≤ 2 dB, 2 ≤ K ≤ 24 and β = 3 the worst relative error is around
−0.44 %, while for the most parameter combinations it stays way below ±0.1 %.
Thus, we conclude that the approximation from (6.54) is an excellent substitute for
the unknown exact expression of EH0 [TGLRT].
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Figure 6.10: Relative deviation of the approximations of EH0 [TGLRT] of (6.54)
and (6.56) from empirical results obtained by Monte Carlo simulation.
Left: ρdB = 1 dB. Right: K = 8.

From Figure 6.11 the observation that the GLRT is more robust towards noise
calibration errors than the MME can be confirmed in the Gaussian scenario as
well. Here one can see that the convergence to the worst case value is less profound
for the MME, which is due to the shape of the PDF. That is, small deviations from
the nominal value are more likely than large ones.

Evaluation of the SNR Wall Lower Bounds

Finally, we numerically evaluate the results regarding the lower bounds of the SNR
walls derived in Sections 6.1.1 to 6.1.4, respectively. First, we take a look at the rel-
ative deviations of the approximations from the exact (where available) or empirical
results. Then, we interpret the results and their implications for eigenvalue-based
spectrum sensing systems. Note, that β = 3 for results concerning the Gaussian
model.

In the preceding sections we evaluated the accuracy of the EH0 [T ] approximations.
Since these are used in the derivations to obtain approximations to the SNR wall
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Figure 6.11: Relative deviation of EH0 [T ] from the worst case upper bound (see
(6.62) and (6.65), respectively). For both the MME and the GLRT
empirical results from a Monte Carlo simulation are evaluated. Left:
ρdB = 1 dB. Right: K = 8.

lower bounds, it is of interest to evaluate their error behavior as well. For the rect-
angular scenario, Figure 6.12 shows the relative deviations of the approximations of
the SNR wall lower bounds (i.e., (6.19), (6.25) and (6.33)) from the exact / empir-
ical results. We notice that the relative errors are amplified compared to the ones
observed for EH0 [T ]. However, one must keep in mind that SNR walls are typically
evaluated in dB, i.e., in a logarithmic scale. Hence, errors are perceived less serious
there. For example the relative deviation of ca. −0.226 attained for (6.33) at K = 3
and ρdB = 1 dB translates to an error of about −1.11 dB as seen in Figure 6.14.
We conclude that (6.19) and (6.25) are suitable approximations. Due to its better
interpretability (6.33) might be of interest, however, one must account for larger
approximation errors then. Table 6.3 summarizes the worst errors in dB-scale for
the SNR wall lower bound approximations over the parameter space investigated
here.

In Figure 6.13 the relative errors of the approximations to the SNR wall lower
bounds (cf. (6.51) and (6.55)) are shown for the Gaussian scenario. The relative
errors increase by about an order of magnitude with respect to the EH0 [T ] approx-
imations. However, one can see that the relative errors are around ±1 % in the
left part of the figure for ρdB = 1 dB, which translates to an error of ca. ±0.04 dB.
Hence, the approximations derived for the Gaussian average case perform very well
for the parameter space in question, see also Table 6.3.

In Figures 6.14 and 6.15 the lower bounds of the SNR walls are depicted under
the rectangular and the Gaussian model, respectively. As a reference, the SNR
wall of ED is shown. Both figures also depict the tighter lower bounds from (6.63)
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Figure 6.12: Relative deviation of the approximations of the lower bounds of the
SNR wall from the exact result (MME, cf. (6.18) with inserted values
from (6.7)) / empirical result (GLRT) under the rectangular model,
respectively. For the MME the relative deviation of the approximation
from (6.19) is considered, while for the GLRT the approximation (6.33)
and the more accurate approximation (6.25) are evaluated. Left: ρdB =
1 dB. Right: K = 8.

worst error in [dB] worst error in [dB]
rectangular model Gaussian model

MME GLRT MME GLRT
(6.19) (6.25) (6.33) (6.51) (6.55)

−0.5569 dB −0.2975 dB −1.6954 dB −0.2978 dB 0.1102 dB

Table 6.3: Worst errors of the SNR wall lower bound approximations over the inves-
tigated parameter space 2 ≤ K ≤ 24 and 0.1 dB ≤ ρdB ≤ 2.0 dB. Note,
that for the Gaussian scenario β = 3 and that K ≥ 3 for approximations
concerning the GLRT.

and (6.66) and the upper bounds from (6.74) and (6.78). The area between the
upper and lower bounds is shaded to visually emphasize the region in which the
true SNR wall must be located.

From the bounds one can infer that the SNR walls of the MME and the GLRT
under noise calibration uncertainty are lower (for K ≥ 3) than the SNR wall of ED
under noise uncertainty, which is at −3.3292 dB for ρdB = 1 dB. Also, in contrast
to ED, a larger number of cooperating SUs leads to an improvement of the detection
limit for noise calibration uncertainty for all three detectors under investigation.
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Figure 6.13: Relative deviation of the approximations of the lower bounds of the
SNR wall from empirical results stemming from a Monte Carlo simu-
lation under the Gaussian model. The approximations from (6.51)
for the MME and (6.55) for the GLRT are evaluated here. Left:
ρdB = 1 dB. Right: K = 8.

To assess the fundamental performance limits of cooperative eigenvalue-based de-
tection under noise calibration uncertainty, the SNR wall lower and upper bounds
from (6.63), (6.66), (6.74) and (6.78) are the most relevant results. Since the upper
and the lower bounds may be related by a factor, which is only dependent on the
noise uncertainty factor ρ, the location of the exact SNR wall must lie within

10 log10

(
ρ2 + 1
ρ

)
dB (6.80)

above the lower bound. Remarkably, the term from (6.80) is relatively stable for the
parameter range considered here (0.1 dB ≤ ρdB ≤ 2.0 dB), ranging from 3.0115 dB
to 3.4554 dB there. In other words, these results determine the SNR wall with a
remaining uncertainty of roughly 3 dB.

From these bounds, we can derive system design equations that return valuable
information about the amount of required cooperating SUs and the necessary accu-
racy of the calibration process. The minimum required number of cooperating SUs
Kmin given a fixed average SNR α and a fixed noise calibration uncertainty factor
ρ, such that the system is asymptotically guaranteed to be able to perform at an
operating point of PFA ≤ 0.5 and PMD ≤ 0.5 is between⌈

ρ2 − 1
α

⌉
≤ Kmin ≤

⌈
ρ2 − 1
α

ρ2 + 1
ρ

⌉
. (6.81)
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Similarly, given a fixed average SNR α and a fixed number of cooperating SUs K,
the maximum factor of tolerable noise calibration uncertainty ρmax might be as
small as

√
αK + 1 ≤ ρmax . (6.82)

As a first example, consider the situation where the noise uncertainty factor is
ρdB = 1.0 dB and the system is expected to asymptotically detect at an SNR of
αdB = −22 dB, then (6.81) evaluates to 93 ≤ Kmin ≤ 191. That means at least 93
users are needed, while without knowledge of the exact location of the SNR wall
the minimum number of users might be as large as 191.

For the second example let us again assume that the desired asymptotic operating
range includes αdB = −22 dB andK = 8 cooperating SUs are available. From (6.82)
we learn that without exact knowledge of the SNR wall the maximum tolerable noise
uncertainty factor might be as low as ρdB = 0.1069 dB or equivalently ρ = 1.0249.
In other words, for this system the noise power uncertainty must not exceed ca. 2.5%
after calibration.

Precise estimation of the receiver noise power is a daunting problem in spectrum
sensing, see Section 6.1. Hence, typical values for the noise uncertainty factor ρ
considered in the literature are comparatively large, i.e., values of ρdB = 0.5 dB
up to ρdB = 3 dB are discussed there, cf. [17, 18, 41, 48]. As a consequence, the
results obtained above indicate that cooperative eigenvalue-based spectrum sens-
ing under noise calibration uncertainty is reliant on a high number of cooperating
users to guarantee operation in the very low SNR regime. To amend the detec-
tion performance, another possibility is to extend the cooperative eigenvalue-based
detectors to also exploit time correlation, see Sections 3.2 and 4.1. However, also
eigenvalue-based detection using time correlation is not free of SNR walls, as shown
in Section 6.2. There, uncertainty about spectral coloring of the noise process and
correlation across receivers lead to fundamental detection limits.

To gain some additional insights about the robustness towards noise calibration
uncertainty of the MME and the GLRT we study the gap between the tighter
SNR wall lower bounds from (6.63) and (6.66) and the SNR wall lower bounds
under the rectangular / Gaussian model. This evaluation also reveals the amount
of “headroom” the detectors have in average cases compared to the worst case
situation. While the gaps can also be seen in Figures 6.14 and 6.15, Table 6.4 gives
the minimum / maximum gap over the whole parameter range studied here. As
one would expect, the Gaussian prior leads to larger gaps due to the shape of its
PDF. Furthermore, the greater robustness of the GLRT towards noise calibration
uncertainty compared to the MME is unveiled once again in Table 6.4.

Figures 6.16 to 6.21 show the results of a Monte Carlo simulation with the aim to
verify the SNR wall predictions under the average case scenarios from Sections 6.1.1
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Figure 6.14: SNR walls under the rectangular scenario. As a point of reference,
the SNR wall of ED is shown (cf. (3.53)). For the MME and the
QST, the exact lower bounds are shown from (6.18) and (6.41) by
inserting the exact values from (6.7) and (6.35), respectively. For the
MME and the GLRT approximations (app.) to the lower bounds are
evaluated from (6.19) and (6.33), where for the GLRT additionally
the more precise approximation (acc. app.) from (6.25) is depicted.
Empirical values (emp.) from a Monte Carlo simulation are drawn for
all three detectors. Moreover, the tighter lower bounds (l.b.) from
(6.63) and (6.66) and the upper bounds (u.b.) from (6.74) and (6.78),
are evaluated for the MME and the GLRT, respectively. Top: ρdB =
1 dB. Bottom: K = 8.
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Figure 6.15: SNR walls under the Gaussian scenario. As a point of reference, the
SNR wall of ED is shown (cf. (3.53)). For the QST, the exact lower
bound is shown from (6.41) by inserting the exact values from (6.60)
forK ≤ 11. For the MME and the GLRT approximations (app.) to the
lower bounds are evaluated from (6.51) and (6.55). Empirical values
(emp.) from a Monte Carlo simulation are drawn for all three detec-
tors. Moreover, the tighter lower bounds (l.b.) from (6.63) and (6.66)
and the upper bounds (u.b.) from (6.74) and (6.78), are evaluated for
the MME and the GLRT, respectively. Top: ρdB = 1 dB. Bottom:
K = 8.
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6.1 Imperfect Noise Power Calibration

gap in [dB] gap in [dB]
rectangular model Gaussian model

detector min. max. min. max.

MME 0.3700 5.9867 0.6690 7.4308
GLRT 3.2844 5.9127 4.7490 7.2725

Table 6.4: Minimum and maximum gap in [dB] between the tighter SNR wall lower
bounds from (6.63) and (6.66) and the SNR wall lower bounds in the rect-
angular / Gaussian scenario over the parameter range 0.1 dB ≤ ρdB ≤
2 dB and 2 ≤ K ≤ 24. For the MME under the rectangular average case,
the exact lower bound (6.18) is used to find the gaps by inserting exact
values from (6.7). For lower bounds of the GLRT under both models
and the MME under the Gaussian average case empirical values from a
Monte Carlo simulation are taken to calculate the gaps. Note, that for
the Gaussian model β = 3 and that K ≥ 3 for the values concerning the
GLRT.

and 6.1.2, respectively. There, the results were averaged from a Monte Carlo simula-
tion with 50000 instances, which was developed in MATLAB [128]. In each instance,
a block detection attempt with N samples taken from the K cooperating users.
Under H0, the complex Gaussian noise was drawn according to the model from
Sections 6.1.1 and 6.1.2, respectively. Under H1, perfect calibration was assumed,
such that the noise vector w(t) was drawn i.i.d. from a complex circularly symmet-
ric standard Gaussian distribution (CN (0K , IK)). The K channel coefficients, that
remain constant during one instance, were drawn i.i.d. from a CN (0, 1) distribu-
tion and the channel coefficient vector was subsequently normalized to accelerate
convergence of the simulations. The PU signal under H1 used a PSK modulation
with eight signaling points on the unit circle. Each symbol was drawn uniformly
from this modulation alphabet and was subsequently scaled, such that the desired
average SNR from (4.10) is achieved statistically. In every instance, each of the
three detectors in question was executed under both Hypotheses. Finally, the PMD
was estimated for a target PFA = 0.5, i.e., the detection threshold was chosen to be
the median of the 50000 instances of the test statistics under H0. This procedure
was repeated for a range of block sizes N ranging from 50000 to 500000 in steps of
50000 samples and for a range of different SNRs in 0.2 dB steps.

The Figures 6.16 to 6.21 depict the resulting estimate of PMD color coded from blue
(0) via white (0.5) to red (1), where each little block in the image corresponds to
the parameter combination of the average SNR α and the block size N indicated by
the axes. In all figures, a very rapid transition between perfect detection (PMD = 0)
to complete detection failure (PMD = 1) is seen. This is the visualization of the
SNR wall encountered by the detectors. Also, it can be seen that the predictions
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6 Robust Eigenvalue-Based Detection and Performance Limits

stemming from the derivations in Sections 6.1.1 and 6.1.2 match the empirical
results very closely.

Beyond that, two interesting effects of the finite sample size detectors are visual-
ized, one of which is rather intuitive and the other is not. Consider Figure 6.17,
where both effects are particularly apparent. Before the SNR wall, increasing the
block size results in higher detection performance, which can be seen in the col-
umn showing the results with an SNR of −15.8 dB. In the column above (SNR:
−16.0 dB), however, increasing the block size increases the probability of missed de-
tection PMD. There, the medians of the test statistic under both hypotheses have
switched their order, which is evident by noting that PMD > 0.5 for PFA = 0.5.
Since increasing the block size decreases the variance of the test statistic PDFs,
also the overlap of the PDFs is reduced. Hence, when the order of the medians
is swapped, PMD may increase when N is increased. For practical settings of the
false alarm rate (for example PFA = 0.01), however, successful detection is almost
impossible then.

6.1.6 Summary

This section investigated the effects of an imperfect noise power calibration on
the performance of cooperative eigenvalue-based spectrum sensing systems on the
example of three well-known detectors: MME, GLRT and QST. It was shown
that uncertainties in the noise power calibration lead to fundamental performance
limits, which present themselves through an SNR threshold below which reliable
detection becomes impossible, even if the number of samples goes to infinity. Said
phenomenon is called an SNR wall. Three scenarios were examined in this context:
two average case scenarios with rectangular / Gaussian distributed SU noise powers
after calibration and the worst case analysis.

The worst case analysis resulted in lower- and upper bounds on the SNR wall
for the MME and the GLRT detector in the asymptotic regime. Said bounds
allow localizing the SNR wall within a remaining uncertainty of roughly 3 dB.
Additionally, the bounds show that the SNR wall is dependent on the number of
cooperating SUs, such that the detection limit can be counteracted by increasing
their number. Perhaps surprisingly, MME and GLRT share the same lower- and
upper bounds. It is therefore tempting to conjecture that their exact SNR wall,
which is unknown and must be derived under the worst case, might coincide as
well.

The average case scenarios, under which lower bounds on the SNR walls were
developed for all three detectors in the asymptotic regime, show that the GLRT
is more resilient to noise calibration uncertainties than the MME. The obtained
results for the rectangular and Gaussian scenarios give viable indications about the
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Figure 6.16: PMD of the MME estimated by Monte Carlo simulations using different
block sizes N for K = 8, ρdB = 1 dB and target PFA = 0.5 under the
rectangular model. The SNR wall is predicted by (6.18) (inserting
exact values from (6.7)) at −12.6883 dB in this case.
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Figure 6.17: PMD of the GLRT estimated by Monte Carlo simulations using dif-
ferent block sizes N for K = 8, ρdB = 1 dB and target PFA = 0.5
under the rectangular model. The SNR wall is predicted by (6.25) at
−15.8855 dB in this case.
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Figure 6.18: PMD of the QST estimated by Monte Carlo simulations using different
block sizes N for K = 8, ρdB = 1 dB and target PFA = 0.5 under
the rectangular model. The SNR wall is predicted by (6.41) (inserting
exact values from (6.35)) at −13.1381 dB in this case.

115



6 Robust Eigenvalue-Based Detection and Performance Limits

0.5 1 2 3 4 5
·105

−14.2
−14.4
−14.6
−14.8
−15
−15.2
−15.4

N

SN
R
α
[d
B
]

0
0.2
0.4
0.6
0.8
1

P
M

D

Figure 6.19: PMD of the MME estimated by Monte Carlo simulations using different
block sizes N for K = 8, ρdB = 1 dB, β = 3 and target PFA = 0.5
under the Gaussian model. The SNR wall is predicted by (6.51) at
−14.5201 dB in this case.
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Figure 6.20: PMD of the GLRT estimated by Monte Carlo simulations using differ-
ent block sizes N for K = 8, ρdB = 1 dB, β = 3 and target PFA = 0.5
under the Gaussian model. The SNR wall is predicted by (6.55) at
−17.4469 dB in this case.
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Figure 6.21: PMD of the QST estimated by Monte Carlo simulations using different
block sizesN forK = 8, ρdB = 1 dB, β = 3 and target PFA = 0.5 under
the Gaussian model. The SNR wall is predicted by (6.41) (inserting
exact values from (6.60)) at −15.0665 dB in this case.
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amount of headroom a certain detector has in average case situations in contrast
to its worst case behavior.

In summary, it was concluded that a very high number of cooperating SUs or a
very precise noise calibration is needed to ensure a detection limit that is below
the desired SNRs in spectrum sensing, which are as low as −22 dB. It is doubtful,
that operation of cooperative eigenvalue-based spectrum sensing systems can be
guaranteed in practical settings without also exploiting correlation over time.

6.2 Colored and Correlated Noise

In this section, we briefly study the effect of colored and correlated noise in a
cooperative eigenvalue-based spectrum sensing system. The performance limits in
the presence of these model uncertainties are quantified on the example of the
MME detector, which was introduced in Section 3.2.1. Parts of this section have
been published in [29,30].

Eigenvalue-based detectors rely on the assumption that a receivers’ noise can be
modeled as a white random process and that the noise is uncorrelated among dif-
ferent receivers, see Section 3.2. Since the detectors are sensitive to correlations,
it is obvious that noise coloring and noise correlation have adverse effects on the
detection performance.

The aggregate noise experienced by a SU can be divided into internal and external
parts. Internal noise is caused by the receivers’ radio frequency front end, which
includes the electronic circuitry after the antenna up to and including the analog-to-
digital converter. While some types of noise, such as thermal noise, are accurately
modeled by AWGN, other types of noise have frequency dependent power spectral
densities, cf. [136, p. 5 ff., Ch. 1].

Moreover, coloring of the noise process may be caused by the receivers’ filtering.
In [19] it is assumed that the receiver filter is perfectly known and that its effects
may thus be reversed by applying certain pre-whitening procedures. However, ideal
filter design is not exactly realizable in practice and also the processing intended
to invert the coloring is unlikely to be perfect. As a result, a residual amount of
coloring is easily conceivable.

External noise is the superposition of unintended disturbances that are not intrin-
sically generated by the receiver itself. Realistic examples of non-white noise are
atmospheric noise, galactic radiation noise and man-made noise. The former two
have power spectral densities which are not flat [137]. The latter may cause corre-
lations due to two effects. Firstly, it is impulsive in nature, see [138, 139]. Thus, it
affects samples in bursts and leads to correlations over time. Secondly, it may cause
noise correlation among receivers, if their geographical location subjects them to
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6 Robust Eigenvalue-Based Detection and Performance Limits

noise which is partially generated by the same sources. Since man-made noise is
created by electronic devices and power transmission lines, it can hardly be avoided.

In summary, assuming perfectly white noise which is uncorrelated between different
receivers is a simplification that is only accurate up to a certain degree.

For the analysis, model MDM from Section 4.2.1 is used and it is assumed that
the channel coefficients are equal, i.e., h = 1K . As a result, all SUs experience
the same SNR. This simplification is chosen to achieve tractable results. While the
random processes describing signal and noise (x(t) and w(t)) are still presumed
to be wide-sense stationary, the noise process is not considered to be white and
uncorrelated between different SUs anymore. As a result, Rw̃ 6= σ2

wIK̃ .

We describe the correlation in the noise covariance matrix Rw̃ by noise correlation
coefficients εij = Cov[w̃i,w̃j ]

σ2
w

for 1 ≤ i, j ≤ K̃. Analogously, the signal covariance
matrix is represented by the signal correlation coefficients %ij = Cov[x̃i,x̃j ]

σ2
s

for 1 ≤
i, j ≤ K̃. Hence, under our system model it holds that [Rw̃]1≤i,j≤K̃ = σ2

wεij and
[Rx̃]1≤i,j≤K̃ = σ2

s%ij , where εii = %ii = 1.

Based on the definitions above, a lower bound on EH0 [TMME] and an upper bound on
EH1 [TMME] in the asymptotic regime (N →∞) can be derived. By characterizing
the SNR region under which the bounds overlap, conservative lower bound on the
SNR wall was found in [29,30].

In the following, we summarize simplified results for the situation in which εij = 0
for i 6= j under H1 is assumed. Please refer to [29, 30] for the detailed derivations.
The lower bound on the SNR wall for the MME detector under the system model
described above is

αMME
wall ≥

cε − 1
1 + c% + cε(c% − 1) . (6.83)

There, εmax = max
i 6=j

εij and the constants cε and c% are defined as

cε = 1 + |εmax|
1− |εmax|

(6.84)

and

c% = max
i

K̃∑
i=1
j 6=i

|%ij | , (6.85)

respectively. Note, that this bound is only valid if the following condition is fulfilled:

α <
1

c% − 1 . (6.86)
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As can be seen from (6.83) and (6.85), K̃−1 parameters %ij are needed to evaluate
the lower bound. Defining %max = max

i 6=j
%ij , it is easy to see that

(K̃ − 1) |%max| ≥ c% . (6.87)

Thus, by replacing c% by its upper bound from (6.87) in (6.83) we loosen the bound
and obtain a new lower bound on the SNR wall of the MME:

αMME
wall ≥

cε − 1
1 + (K̃ − 1) |%max| (1 + cε)− cε

. (6.88)

Although the new bound from (6.88) is not as tight as (6.83), it only depends on
the parameters K̃, |%max| and |εmax|. Thus, it is more convenient to evaluate than
(6.83). Note, that this bound is valid under the condition

α <
1

(K̃ − 1) |%max| − 1
. (6.89)

Evidently, |%max| ≤ 1 holds for the (largest) signal correlation coefficient. Hence, by
evaluating (6.88) with |%max| = 1, a lower bound for the best case situation in terms
of signal correlation is obtained. This implies that the signal covariance matrix Rx̃
must be of rank one in this case.

In Figure 6.22, the lower bound from (6.88) is evaluated with |%max| = 1 and for
different values of K̃ and |εmax|. Even for best case signal correlation, it can be
seen that the lower bound on the SNR wall only drops below −20 dB for some
combinations of K̃ and |εmax|. As we mentioned above, we expect this lower bound
to be rather loose in practice, i.e., we conjecture the true SNR wall to be located
considerably above the bound.

In summary, even for this very idealized system model with constant channel
h = 1K̃ , equal SNR and perfect signal correlation, the lower bound on the SNR
wall of the MME detector in the presence of colored / correlated noise lies in the
immediate vicinity of the desired low SNR operating range. Hence, these results
suggest that the detrimental effect of noise coloring and correlated receiver noise
must be carefully considered in practical systems. It seems reasonable to aim at ex-
tending our findings to more realistic system models in future studies and to strive
for obtaining tighter bounds. Furthermore, it would be sensible to investigate the
performance limits of other eigenvalue-based detectors.
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Figure 6.22: Lower bound on the SNR wall of the MME detector in the presence
of colored and correlated noise from (6.88) evaluated with |%max| = 1.
Top: |εmax| = 0.05. Bottom: K̃ = 8.
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6.3 Summary

6.3 Summary

In this chapter, the effect of model uncertainties on cooperative eigenvalue-based
spectrum sensing systems was examined. Insights on the robustness of certain
detectors and performance limits in the form of bounds on the SNR walls were
obtained. Two practical model uncertainties were considered.

Firstly, imperfect calibration of the SUs noise powers was analyzed and the per-
formance impact in the asymptotic regime (N → ∞) on three detectors (MME,
GLRT and QST, see Sections 3.2.1 to 3.2.3) was studied. For this investigation, no
time correlation was incorporated. It was found that all three detectors suffer from
the SNR wall phenomenon. An average case analysis, which assumes the calibrated
noise powers follow a known probability distribution, yielded lower bounds on the
SNR wall for rectangular and Gaussian distributions. The GLRT was found to be
the most resilient detector in this case. Using a worst case analysis, upper and
(tighter) lower bounds on the SNR wall were derived for the GLRT and the MME
detector. The latter bounds allow location of the SNR wall with a remaining uncer-
tainty of roughly 3 dB. However, all of these bounds are inversely proportional to
the number of SUs K, such that the SNR threshold can be influenced to a certain
degree.

Secondly, the effect of colored and correlated noise was briefly studied on the exam-
ple of the MME detector. A conservative lower bound on the SNR wall was derived,
which depends on three parameters: the dimension K̃ of the sample covariance ma-
trix, the maximum signal correlation coefficient and the maximum noise correlation
coefficient under H0.

For both model uncertainties the (lower) bounds on the SNR walls lie above or in
close vicinity of the desired low SNR operating range, i.e., −20 dB to −22 dB. This
suggests, that in practical scenarios proper noise calibration must be implemented
and coloring / correlation in the noise must be taken into account if one desires to
achieve robust detection in the low SNR regime.
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7 Theoretical Analysis of the MMME
Block Detector

In this chapter, the MMME detector [24] is analyzed from a theoretical perspective.
Under a very simple system model, i.e., model MDM with two cooperating SUs,
the PDFs of the test statistic under both hypotheses are derived in Section 7.1.
Since under this model, also the test statistic PDFs of the MME detector can be
derived under both hypotheses (see Sections 5.3.2 and 5.3.3), the performance of
both detectors can be compared on the basis of these theoretical results. This is
done in Section 7.2. Parts of this chapter have been published in [26].

7.1 Test Statistic Distributions

For the derivations, system model MDM from Section 4.2.1 without exploiting
time correlation and without oversampling (Q = M = 1) is employed, which is a
very simple AWGN model. While this model allows identifying the distributions
of the sample covariance matrices under both hypotheses for a general number of
cooperating SUs K (see Section 5.3.1), we confine the model to K = 2 to obtain
analytical results.

In order to derive the PDFs of the test statistic TMMME, see (3.27), the joint PDF
of the ordered eigenvalues of the sample covariance matrix is needed under both
hypotheses. For both derivations in Sections 7.1.1 and 7.1.2, the non-normalized
sample covariance matrix R̂ is utilized and additionally the noise variance is as-
sumed to be σ2

w = 1. This is done to ease the readability of the derivations.
Subsequently, using a suitable transformation, the derived PDFs are generalized to
allow arbitrary noise powers and to respect the normalization present in standard
sample covariance matrices.

Let the joint PDF of the ordered eigenvalues of the non-normalized sample covari-
ance matrix R̂ be denoted by fλ̂(λ̂). Since we confine the number of SUs to K = 2,
the eigenvalues and the test statistic of the MMME are related by the following
transformation

λ̂2 = λ̂1 + TMMME . (7.1)
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Performing said transformation on the joint PDF of the eigenvalues gives the desired
PDF of the test statistic:

f̃(T̃ ) =
∞∫
0

fλ̂(λ̂1, λ̂1 + T̃ ) dλ̂1 . (7.2)

Here, the notation f̃ and T̃ stands for the PDF and test statistic belonging to the
non-normalized version of the detector with the additional assumption σ2

w = 1,
respectively. Hence, for both hypotheses the derivation of the test statistic PDF
corresponds to solving the integral above. This is done in Section 7.1.1 under H0
and in Section 7.1.2 under H1, respectively.

7.1.1 Derivation of the Test Statistic PDF under Hypothesis H0

Under H0, the non-normalized sample covariance matrix R̂0 with σ2
w = 1 is a

complex uncorrelated central Wishart matrix of dimension K with N degrees of
freedom, see Section 5.3.1. A convenient representation of the joint PDF of the
eigenvalues of R̂0 for this case can be found with Table 3.1 and (3.39).

Since we assume that K = 2, the PDF simplifies to

fλ̂(λ̂) = (λ̂2 − λ̂1)2(λ̂1λ̂2)(N−2)e−(λ̂1+λ̂2)

(N − 1)! (N − 2)! . (7.3)

Inserting (7.3) into the transformation (7.2) and solving the integral yields:

f̃0(T̃ ) = T̃ 2 e−T̃

(N − 1)! (N − 2)!

∞∫
0

e−2λ̂1(λ̂1 + T̃ )(N−2)λ̂
(N−2)
1 dλ̂1

=
T̃ (N+ 1

2 )K( 3
2−N)

(
T̃
)

√
π Γ(N) 2(N− 3

2 ) . (7.4)

There, we used the definite integral from [32, p. 348, Eq. (3.383.8)], where Ka (v)
is the modified Bessel function of the second kind of order a, cf. [32, p. 910 ff.,
Sec. 8.4] or [31, p. 374 ff., Sec. 9.6]. Furthermore, we have used the relation from
(2.24). Note, that (7.4) is only valid for T̃ ≥ 0 and that f̃0(T̃ ) = 0 for T̃ < 0.

In contrast to the MME detector the MMME detector is dependent on the noise
power σ2

w as well as the typically present normalization factor of the sample co-
variance matrix R̂. When considering the normalized sample covariance matrix,
the eigenvalues λ̂ must be scaled by N−1 compared to the non-normalized case

124



7.1 Test Statistic Distributions

derived above. Similarly, a noise power σ2
w 6= 1 results in a scaling factor σ2

w for the
eigenvalues. Hence, using the simple transformation

T = σ2
w

N
T̃ (7.5)

that results in the transformed PDF

f(T ) = N

σ2
w

f̃

(
TN

σ2
w

)
, (7.6)

one may find the desired generalized version of the PDF.

Applying this transformation to (7.4) results in the test statistic PDF of the MMME
under H0:

f0(T ) =
T (N+ 1

2 )N(N+ 3
2 )K( 3

2−N)
(
TN
σ2
w

)
√
π Γ(N) 2(N− 3

2 ) σ(2N+3)
w

, (7.7)

which is only valid for T ≥ 0, while f0(T ) = 0 for T < 0.

A plot of f0(T ) is shown in Figure 7.1 for different numbers of samples N and fixed
noise variance σ2

w = 1. As one would expect, increasing the number of samples N
reduces the variance of the PDF and also reduces its mean. The latter is a bias
due resulting from the estimation of the covariance matrix with a finite amount
of samples. Asymptotically, i.e., for N → ∞, the TMMME is zero under H0, see
also [24].
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Figure 7.1: f0(T ) for different number of samples N and noise power σ2
w = 1.

In Figure 7.2, the dependency of f0(T ) on the noise variance σ2
w is visualized by

plotting the PDF with varying σ2
w and fixedN . It can be clearly seen that increasing

σ2
w increases the variance and also shifts the mean away from zero.
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Figure 7.2: f0(T ) for different values of the noise variance σ2
w and N = 1000 number

of samples.

The influence of the noise variance σ2
w or more precisely the uncertainty about the

same is further investigated in Section 7.2.2.

7.1.2 Derivation of the Test Statistic PDF under Hypothesis H1

Under H1 the non-normalized sample covariance matrix R̂1 with σ2
w = 1 is a

complex uncorrelated non-central Wishart matrix of dimension K with N degrees
of freedom, see Section 5.3.1. This distribution depends on a parameter called the
non-centrality matrix Ω. Under model MDM, it is a rank one matrix and can be
given explicitly as Ω = αN 1K×K . Thus, also the vector of ordered eigenvalues
ω of Ω may be given analytically, cf. (5.7). Here, where K = 2, these follow as
ω2 = 2αN and ω1 = 0. As argued in Section 5.3.1, this model is exact for PUs using
PSK modulations and a very good approximation for general digitally modulated
PU signals.

The joint PDF of the eigenvalues of the non-normalized sample covariance matrix
R̂1 with σ2

w = 1 can be found with see also Table 3.1 and (3.39). Partially substi-
tuting the parameter vector ω with the explicit values given above and inserting
K = 2 leads to the following form:

fλ̂(λ̂) = e−(2αN)e−(λ̂1+λ̂2)(λ̂2 − λ̂1)(λ̂1λ̂2)(N−2)

2αN [(N − 2)!]2
∣∣∣F(λ̂;ω)

∣∣∣ . (7.8)

There,
∣∣∣F(λ̂;ω)

∣∣∣ is the determinant of a 2×2 matrix where the (i,j)-th entry is com-
posed of 0F1(N − 1; λ̂(3−j)ω(3−i)), which is defined using the standard generalized
hypergeometric function (2.29).
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Here, where K = 2 and ω2 6= ω1, the determinant can be explicitly calculated to∣∣∣F(λ̂;ω)
∣∣∣ = 0F1(N − 1; 2αNλ̂2) 0F1(N − 1; 0)− 0F1(N − 1; 2αNλ̂1) 0F1(N − 1; 0)

= 0F1(N − 1; 2αNλ̂2)− 0F1(N − 1; 2αNλ̂1) , (7.9)

where it was used that 0F1(N − 1; 0) = 1. Inserting (7.8) into the transformation
(7.2) yields:

f̃1(T̃ ) = T̃ e−T̃ e−(2αN)

2αN [(N − 2)!]2

∞∫
0

e−(2λ̂1)λ̂
(N−2)
1 (λ̂1 + T̃ )(N−2)

[
0F1(N − 1; 2αN(λ̂1 + T̃ ))− 0F1(N − 1; 2αNλ̂1)

]
dλ̂1 . (7.10)

To the best of our knowledge, the definite integral in (7.10) does not possess a closed-
form solution. Hence, we take a similar path to the work in [25,126] (compare also
Section 5.3.3), and aim at obtaining a series representation of the PDF. Firstly, we
rewrite the hypergeometric function in terms of the modified Bessel function of the
first kind of order a, denoted by Ia(v), by using the identity (5.31). Secondly, we
proceed to replace the Bessel function by its series expansion, see (5.33).

Inserting (5.31) and (5.33) into (7.10) and simplifying gives

f̃1(T̃ ) = T̃ e−T̃ e−(2αN)

2αN Γ(N − 1)

∞∑
i=0

(2αN)i

Γ(i+ 1) Γ(i+N − 1) ∞∫
0

λ̂
(N−2)
1 (λ̂1 + T̃ )(i+N−2) e−2λ̂1 dλ̂1 (7.11)

−
∞∫
0

λ̂
(i+N−2)
1 (λ̂1 + T̃ )(N−2) e−2λ̂1 dλ̂1

 ,
where we have also used the relation from (2.24). To find a solution to the integrals
in (7.11), we perform the substitution Λ = λ̂1

T̃
and obtain

f̃1(T̃ ) = e−T̃ e−(2αN)

2αN Γ(N − 1)

∞∑
i=0

(2αN)i T̃ (i+2N−2)

Γ(i+ 1) Γ(i+N − 1) ∞∫
0

Λ(N−2)(Λ + 1)(i+N−2) e−(2T̃Λ) dΛ (7.12)

−
∞∫
0

Λ(i+N−2)(Λ + 1)(N−2) e−(2T̃Λ) dΛ

 .
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Now, both definite integrals in (7.12) can be found in terms of Tricomi’s conflu-
ent hypergeometric function, denoted by U (a, b, c), see (2.30). Using the definite
integrals, we finally get:

f̃1(T̃ ) = e−T̃ e−(2αN)

Γ(N − 1)

∞∑
i=0

(2αN)(i−1)T̃ (i+2N−2)

Γ(i+ 1) Γ(i+N − 1)[
Γ(N − 1)U

(
N − 1, i+ 2N − 2, 2T̃

)
(7.13)

−Γ(i+N − 1)U
(
i+N − 1, i+ 2N − 2, 2T̃

)]
,

which is only valid for T̃ ≥ 0 and f̃1(T̃ ) = 0 for T̃ < 0.

Analogous to the approach in Section 7.1.1, we must apply the transformation
from (7.6) to (7.13) such that arbitrary noise powers σ2

w and the typically present
normalization factor of the sample covariance matrix are accounted for. Applying
said transformation finally results in the test statistic of the MMME under H1:

f1(T ) = e
−
(
TN

σ2
w

)
e−(2αN)

Γ(N − 1)

∞∑
i=0

(2αN)(i−1)N (i+2N−1)T (i+2N−2)

Γ(i+ 1) Γ(i+N − 1)σ(2i+4N−2)
w[

Γ(N − 1)U
(
N − 1, i+ 2N − 2, 2TN

σ2
w

)
(7.14)

−Γ(i+N − 1)U
(
i+N − 1, i+ 2N − 2, 2TN

σ2
w

)]
,

which is only valid for T ≥ 0 and f1(T ) = 0 for T < 0.

Figure 7.3 visualizes f1(T ) for different SNRs and also depicts f0(T ) as a reference.
Higher SNRs predominantly increase the mean of the PDF, while only slightly
increasing the variance.

To verify the theoretical findings, a Monte Carlo simulation with 50000 instances
was performed using MATLAB [128]. In each instance a sample covariance matrix was
calculated using N = 1000 samples, where the samples were generated according
to the specifications of model MDM with K = 2 SUs. There, the PU used PSK
modulation with eight signaling points. The MMME detector was run on the
estimated matrix in each instance. Finally, a histogram of the obtained values
of the test statistic under the respective hypothesis was created. In Figure 7.3,
the resulting empirical PDFs are drawn as crosses for f0(T ) and for f1(T ) with
α = −13 dB. Clearly, the empirical results confirm our theoretical derivations.

7.1.3 Techniques for Numerical Evaluation of the PDFs for Large N

Both test statistic PDFs of the MMME are expressed using functions that are diffi-
cult to evaluate for large N , which are required in very low SNR spectrum sensing
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Figure 7.3: f0(T ) and f1(T ) for different values of the SNR αdB in [dB], N = 1000
number of samples and noise power σ2

w = 1. Empirical results from a
Monte Carlo simulation are indicated by crosses.

applications. Even advanced numerical computing software such as MATLAB [128]
typically cannot handle evaluating Ka (v), U (a, b, v) and Γ(v) for large N , which
appear in (7.4) and (7.13), with built-in routines. More precisely, the numerical
range needed to evaluate these functions exceeds the (64 bit) IEEE 754 double
precision floating point format (also called binary64) [127]. This section presents
techniques to tackle this problem and gives versions of both PDFs, which were used
to evaluate the PDF in this chapter.

Evaluation of the H0 PDF for large N

To increase readability of the derivations, we start with the formulation from (7.4),
which assumes a non-normalized sample covariance matrix and fixed noise power
σ2
w = 1. However, the transformation from (7.6) can easily be implemented in

software, such that the result can be readily generalized.

Starting from (7.4), we first use the following identity [32, p. 928, Eq. (8.485)]

Ka (v) = π

2
I−a(v)− Ia(v)

sin(aπ) , (7.15)

where a must not be integer. Obviously this condition is always fulfilled in (7.4).
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Inserting (7.15) into (7.4) results in:

f̃0(T̃ ) =
√
π T̃ (N+ 1

2 )

Γ(N) 2(N− 3
2 ) sin

((
3
2 −N

)
π
) (I(N− 3

2 )(T̃ )− I( 3
2−N)(T̃ )

)

=
√
π

sin
((

3
2 −N

)
π
)
 T̃ (N+ 1

2 ) I(N− 3
2 )(T̃ )

2(N− 3
2 )Γ(N)︸ ︷︷ ︸

:=ς1(T̃ )

−
T̃ (N+ 1

2 ) I( 3
2−N)(T̃ )

2(N− 3
2 )Γ(N)︸ ︷︷ ︸

:=ς2(T̃ )

 . (7.16)

Note, that we have defined two functions ς1(T̃ ) and ς2(T̃ ), which are treated sepa-
rately in the following.

The goal of the following steps is to obtain a series representation of the terms
ς1(T̃ ) and ς2(T̃ ), where we try to perform the numerically critical parts of the
calculations in the logarithmic space to increase the scope of the parameter N that
can be successfully evaluated using (64 bit) IEEE double precision floating point
arithmetic. For this we make use of the logarithmic Gamma function log(Γ(v))
for which the built-in gammaln routine is available in MATLAB [128] that allows
numerically stable evaluation of said function for large arguments v.

Inserting the series representation for Ka (v) from (5.33) into ς1(T̃ ) as defined in
(7.16) and rearranging the numerically critical calculations such that they are per-
formed in the logarithmic domain, it follows:

ς1(T̃ ) ≈
Is∑
i=0

T̃ (2N+2i−1)

4(N+i−1) Γ(i+ 1) Γ(N) Γ
(
N + i− 1

2

)
=

Is∑
i=0

exp
(

(2N + 2i− 1) log(T̃ )− (N + i− 1) log(4)

− log(Γ(i+ 1))− log(Γ(N))− log
(

Γ
(
N + i+ 1

2

)) )
. (7.17)

Note, that if Is → ∞ the approximation converges to the true value of ς1(T̃ ).
Naturally, for numerical evaluation this is impossible, such that after i = Is the
summation is stopped. This approximation is viable, since we have observed that
after a certain point the contribution of the further summands becomes negligible.
One can see, that by exploiting the logarithmic identities we have transformed the
numerically critical evaluations of the Gamma functions in the ratio to subtractions
in the logarithmic domain.

Inserting the series expansion (5.33) of Ka (v) into ς2(T̃ ) as defined in (7.16) we
gain the following form after simplifying:

ς2(T̃ ) ≈ 1
2

Is∑
i=0

T̃ (2i+2)

4i Γ(i+ 1) Γ(N) Γ
(

1
2 + i− (N − 2)

) . (7.18)
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There, the term Γ
(

1
2 + i− (N − 2)

)
is problematic, since depending on the values

of i and N , the argument of the Gamma function is negative. In contrast to positive
arguments, for negative arguments the Gamma function may become negative itself.
Evidently, evaluating it in the logarithmic space is not possible directly in this case.
Hence, we must distinguish the two cases i < N − 2 and i ≥ N − 2. In the latter
case, the argument of the Gamma function is always positive and we may directly
evaluate its values in logarithmic scale. To handle cases when i < N − 2, the
following identity is helpful, with v ∈ N [129, p. 479, Eq. (8.106f)]:

Γ
(1

2 − v
)

= (−1)v 4v Γ(v + 1)
√
π

Γ(2v + 1) , (7.19)

where we have also used the relation (2.24).

Treating the two cases separately, using (7.19) and performing the critical calcula-
tion in the logarithmic domain leads to:

ς2(T̃ ) = 1
2

N−3∑
i=0

(−1)(N−2−i) T̃ (2i+2) Γ(2(N − 2− i) + 1)
4(N−2) Γ(i+ 1) Γ(N) Γ(N − 1− i)

√
π

+ 1
2

Is∑
i=N−2

T̃ (2i+2)

4i Γ(i+ 1) Γ(N) Γ
(

1
2 + i− (N − 2)

)
= 1

2

N−3∑
i=0

(−1)(N−2−i)
√
π

exp
(
(2i+ 2) log(i) + log(Γ(2(N − 2− i) + 1))

− (N − 2) log(4)− log(Γ(i+ 1))− log(Γ(N))− log(Γ(N − 1− i))
)

+ 1
2

Is∑
i=N−2

exp
(

(2i+ 2) log(T̃ )− i log(4)− log(Γ(i+ 1))

− log(Γ(N))− log
(

Γ
(1

2 + i− (N − 2)
)))

. (7.20)

Choosing a suitable limit Is for the sum, the PDF f̃0(T̃ ) can now be numerically
approximated with the results from above as

f̃0(T̃ ) =
√
π

sin
((

3
2 −N

)
π
) (ς1(T̃ )− ς2(T̃ )

)
. (7.21)

Using this representation, we were able to evaluate the PDF for N > 100000.
The appropriate limit Is depends on the parameters. However, for most cases
Is ≤ 1000 are sufficient. That also means that evaluating the sum for the second
case (i ≥ N − 2) in (7.20) is not needed in most cases with large N .
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Evaluation of the H1 PDF for large N

The goal in this section is the same as in the preceding one. Namely, to reformulate
the test statistic PDF in order to perform numerically critical calculations in the
logarithmic domain.

Besides this, however, the function U (a, b, c) is typically not directly included in
many mathematical software libraries. Hence, we manually evaluate the function in
its integral form (2.30) numerically. It is problematic that the integral is improper
since the upper limit is infinity. A common technique in numerical integration is to
transform improper integrals using a suitable substitution, such that the resulting
integrand can be integrated over a standard interval, e.g., [0, 1]. Here, the substitu-
tion v = a+ u

1−u with u = v−a
1+v−a and dv = 1

(1−u)2 du, is appropriate. For a general
integrand o(v) it follows:

∞∫
a

o(v) dv =
1∫

0

o

(
a+ u

1− u

) 1
(1− u)2 du . (7.22)

Performing this substitution on the integral in question leads to the following form
of the function U (a, b, c):

U (a, b, c) = 1
Γ(a)

1∫
0

exp
( −cv

1− v

)
v(a−1)

(1− v)b dv . (7.23)

Starting from (7.13), which assumes a non-normalized sample covariance matrix
and σ2

w = 1, by inserting (7.23) we arrive at:

f̃1(T̃ ) = e−T̃ e−(2αN)

Γ(N − 1)

∞∑
i=0

(2αN)(i−1)T̃ (i+2N−2)

Γ(i+ 1) Γ(i+N − 1) 1∫
0

exp
(
−2T̃ v
1− v

)
v(N−2)

(1− v)(i+2N−2) dv (7.24)

−
1∫

0

exp
(
−2T̃ v
1− v

)
v(i+2N−2)

(1− v)(i+2N−2) dv

 .

Rewriting this result, so that the critical calculations are done in the logarithmic
domain, leads to the following formulation, which also incorporates the approxima-
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tion of the infinite series by a finite one stopping after i = Is:

f̃1(T̃ ) =
Is∑
i=0

 1∫
0

exp
(
− (2αN)− T̃ − 2T̃ v

1− v + (i− 1) log(2αN)

+ (i+ 2N − 2) log(T̃ )− log(Γ(i+ 1))− log(Γ(i+N − 1))

− log(Γ(N − 1)) + (N − 2) log(v) + (i+ 2N − 2) log(1− v)
)

dv

−
1∫

0

exp
(
− (2αN)− T̃ − 2T̃ v

1− v + (i− 1) log(2αN)

+ (i+ 2N − 2) log(T̃ )− log(Γ(i+ 1))− log(Γ(i+N − 1))
− log(Γ(N − 1)) + (i+ 2N − 2) log(v)

+ (i+ 2N − 2) log(1− v)
)

dv

 . (7.25)

In every summand, a numerical integration must be performed for which we chose
a trapezoidal quadrature rule (see [31, p. 885, Eq. (25.4.2)]) with a step size of
5 · 10−5 to evaluate (7.25) in this work.

Using the formulation from (7.25) we were able to numerically evaluate the PDF
for N > 100000. Appropriate choices of Is are dependent on the parameters. In
most cases, though, Is ≤ 4000 yields a very precise approximation. Note, that
the transformation from (7.6), which can be easily applied to (7.25) in software,
allows generalization to normalized sample covariance matrices and noise variances
σ2
w 6= 1.

7.2 Performance Comparison with the MME Block
Detector

This section compares the performance of the MME and the MMME detector based
on theoretical results. For both detectors, the test statistic PDFs are now available
for both hypotheses under modelMDM (cf. Section 4.2.1) with K = 2 cooperating
SUs. Said results can be found in Section 7.1 for the MMME (see (7.7) and (7.14))
and Sections 5.3.2 and 5.3.3 for the MME (see (5.25) and (5.38)).

7.2.1 Receiver Operating Characteristic

The most common way of assessing and comparing the performance of detectors is
by examining the ROC, see also Section 3.1. If the CDFs of the test statistic were
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known under both hypotheses, the ROC could be calculated directly. Although a
CDF is known for the MME detector under Hypothesis H0 [125], the other PDFs
are highly complicated and analytical forms of their respective integrals remain
unknown to us. However, having exact expressions for the PDFs, the CDFs can be
evaluated by numerical integration very accurately.

Let, for this comparison, the PDFs of the test statistic of the MME be denoted
by g0 under H0 and g1 under H1. Their corresponding CDFs are identified by G0
and G1, respectively. The threshold of the MME is denoted by hMME, so that its
probability of false alarm Pfa,MME and its probability of detection Pd,MME can be
related to the CDFs / PDFs using (3.3) to (3.5). Likewise, let f0, f1 and F0, F1
denote the PDFs and CDFs of the MMME detector under H0 and H1, respectively.
Then, with its threshold hMMME, the probability of false alarm Pfa,MMME and the
probability of detection Pd,MMME of the MMME can be determined analogously.

Using numerical integration with a trapezoidal quadrature rule (cf. [31, p. 885,
Eq. (25.4.2)]) the CDFs were obtained for both detectors for a range of 100 thresh-
olds each. In Figure 7.4, the ROCs of both detectors are depicted for three different
SNRs with N = 1000 number of samples per block and noise power σ2

w = 1.
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Figure 7.4: ROCs of the MMME and the MME detector for different SNRs with
N = 1000 number of samples and noise power σ2

w = 1. The crosses
indicate empirical values obtained from a Monte Carlo simulation.

As a verification of the theoretical results, a Monte Carlo simulation with 50000
blocks was performed. There, in each instance, both detectors were run on samples
created according to model MDM under the H0 and H1 hypotheses. A vector of
100 equally spaced thresholds was used to estimate the corresponding CDFs, which
were used to calculate the ROCs. These are drawn with crosses in Figure 7.4. A
similar calculation of the ROC for the MME was performed for N = 500 in [25].
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Firstly, we note that the predicted performance is in agreement with the empirical
results. Secondly, as was reported in [24] under a different system model, the
MMME detector clearly outperforms the MME detector.

7.2.2 Noise Uncertainty Evaluation

The test statistic PDFs of the MME is independent of the noise variance σ2
w under

H0 and only dependent on the SNR α underH1. Hence, in order to set the detection
threshold hMME knowledge of σ2

w is not required. In contrast, both test statistic
PDFs of the MMME are dependent on the noise variance. This means, that the
noise variance σ2

w must be known in order to set the threshold precisely for this
detector.

We have shown that the MMME detector performs better than the MME detector
under ideal conditions in the preceding Section 7.2.1. Since the precise noise power
σ2
w is usually unknown at the receiver, it must be estimated. For a robust detection

the uncertainty of the noise power estimation must be taken into account when
setting the detector threshold of the MMME, see also Section 3.5. Hence, its per-
formance deteriorates as the noise power uncertainty increases. If the noise power
of all SUs is equal, the performance of the MME remains unaffected. Naturally, the
question arises how much noise uncertainty can be tolerated, so that the MMME
detector still performs better or equal than the MME detector.

For this analysis, let σ2
w and α denote the actual noise power and SNR, respectively.

The noise power estimation is assumed to return a value that is accurate within
a bounded interval [ρ−1 σ2

w, ρ σ
2
w], compare also Section 3.5. When designing the

threshold hMMME, it is usually desired to attain a false alarm rate that is below or
equal to a predefined value. Thus, in order to have an upper bounded Pfa,MMME,
the noise power must be assumed to be ρ σ2

w to set the threshold robustly.

Suppose the threshold of the MME detector hMME was set, so that the false alarm
rate is Pfa,MME. In order to find the threshold of the MMME detector hMMME,
which results in the same detection performance, it must hold Pd,MME = Pd,MMME
and hence

hMMME = F−1
1 (G1(hMME)) . (7.26)

Then, we have to find the largest possible ρ, such that for the chosen threshold
hMMME it holds Pfa,MMME = Pfa,MME, that is

F0(hMMME; ρσ2
w) != Pfa,MME . (7.27)

Here, F0(hMMME; ρσ2
w) denotes the CDF of the MMME detector under hypothesis

H0 evaluated for the upper bounded noise power. With this procedure, we find the
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largest admissible value for the noise power uncertainty ρ, such that it is guaranteed
that Pd,MMME ≥ Pd,MME while Pfa,MMME ≤ Pfa,MME.

Deriving a closed-form expression for finding ρ is not feasible, since closed-form
expressions for the (inverse) CDFs are unknown to us. However, analogous to the
ROC calculation, ρ can be readily found by numerical evaluation of the formulas
involved. Table 7.1 shows the values for ρ (also in decibel scale, see (3.54)) found
by numerically evaluating the process described above for N = 1000 number of
samples per block, actual noise power σ2

w = 1 and target probability of false alarm
Pfa,MME, Pfa,MMME ≤ 0.01 for different SNRs α.

max. tolerable noise uncertainty

SNR αdB in [dB] ρdB in [dB] ρ

-10 0.3904 1.0941
-11 0.3163 1.0755
-12 0.2563 1.0608
-13 0.2062 1.0486
-14 0.1662 1.0390
-15 0.1321 1.0309

Table 7.1: Maximum noise uncertainty ρ tolerable, so that Pd,MMME ≥ Pd,MME with
upper bounded Pfa,MME, Pfa,MMME ≤ 0.01 for N = 1000 and σ2

w = 1.

Thus, if an estimation of the noise power is available that is at least as accurate as
summarized in Table 7.1 it would be beneficial to use the MMME detector instead
of the MME detector. As an example, if the SNR is −11 dB, we can deduce from
the table that the noise power estimate may be approximately 7.6% larger than the
actual value before the MMME starts to perform worse than the MME.

Although it might seem that these results are encouraging at first sight, one has to
keep in mind that in the literature noise power uncertainties as large as ρdB = 3 dB
are mentioned. Most authors study values in the range 0.5 dB ≤ ρdB ≤ 2 dB
(see Section 3.5 or [17, 18, 41, 48]). Hence, we must conclude that for this model
the MMME should be favored over the MME only when the noise power of the
receiver can be very accurately estimated or when the detector is to be designed
for higher SNRs, for which the MMME has a larger lead in detection performance.
Note, however, that the MME detector is sensitive to errors in the noise power
calibration, i.e., if the noise power of the SU are not exactly equal, as shown in
Section 6.1.
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7.3 Summary

In this chapter the MMME detector from [24] was analyzed theoretically. Utilizing
results from random matrix theory, the test statistic PDFs under both hypotheses
were derived in Section 7.1 for the simple system model MDM from Section 4.2.1
with two cooperating SUs. Moreover, in Section 7.1.3 it was discussed how the
presented PDFs can be evaluated numerically for large numbers of samples that
are customary in low SNR spectrum sensing. There, reformulated expressions of
both PDFs were given, which can be evaluated using standard double precision
arithmetic.

Furthermore, in Section 7.2 a performance comparison between the MMME and the
MME block detectors was carried out. This was done based on theoretical results,
since also the test statistic PDFs of the MME are available under the system model
considered in this chapter, cf. Sections 5.3.2 and 5.3.3. Firstly, it was shown that the
MMME outperforms the MME under ideal conditions by examining their ROCs,
which were calculated on the basis of the corresponding PDFs. Secondly, since
the MMME detector requires knowledge of the receiver noise power, the amount of
tolerable noise power uncertainty was investigated, such that the detection perfor-
mance of the MMME remains superior to the MME. It was concluded that for this
model the MMME should only be used when the noise power estimation is very
precise or the detector is intended for higher SNR ranges, where the MMMEs lead
in detection performance is larger.

Although the results presented here are obtained under a very simple system model
with only two cooperating SUs, the investigation process remains valid for other
system models. It is doubtful, however, that exact results for the test statistic PDFs
can be derived under more complex models. There, the exact PDFs may be replaced
by estimated versions stemming from Monte Carlo simulations or measurements.
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8.1 Summary

In opportunistic spectrum access, reliable spectrum sensing is the essential technol-
ogy to minimize harmful interference for the licensed primary system. A spectrum
sensing algorithm is responsible for detecting whether a frequency band is currently
used by the licensed system (hypothesis H1) or not (hypothesis H0). It is therefore
required to exhibit high detection performance even in low SNR scenarios.

The class of detectors operating on the eigenvalues of the sample covariance ma-
trix is subsumed under the term eigenvalue-based spectrum sensing. It aims at
exploiting correlations in the received signal over time or among multiple cooperat-
ing users in the presence of a licensee. Since the receiver noise is typically assumed
to be a white random process which is uncorrelated among different receivers, the
received signal samples should be free of correlations when the frequency band in
question is vacant. Eigenvalue-based spectrum sensing is a prominent detection
method since it requires very little knowledge about the signal characteristics of
the primary system, while still displaying good detection performance. This thesis
makes contributions to this field in three areas. Firstly, it explores the potential
of reducing detection delays using results from the theory of quickest detection.
Secondly, performance limits of well-known detectors in the presence of practical
model uncertainties are studied. Finally, this work advances the theoretical analysis
of detectors with the help of random matrix theory.

The concept of centralized, collaborative quickest eigenvalue-based spectrum sens-
ing was introduced. Moreover, the characteristics and requirements of relevant
change detection problems were discussed. A time-dependent system model was
established, which is convenient for the development of algorithms and the compar-
ison to classical eigenvalue-based block detection. For digitally modulated signals,
flat fading wireless channels and additive white Gaussian noise, the distributions for
the sample covariance matrix and the joint distributions of its ordered eigenvalues
were given under both hypotheses. Quickest detection algorithms for known and
unknown SNR were introduced for the special case of two cooperating receivers
and for both types of possible hypothesis changes. They utilize the well-known
maximum-minimum eigenvalue (MME) test statistic, for which analytical distribu-
tions could be obtained under both hypotheses. It was found that compared to
the classical MME block detector, the quickest detection approach offers reduced
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detection delay at comparable or better detection performance for a wide range of
SNRs for the H0 to H1 change. For the H1 to H0 change, however, the results
indicate that classical block detection performs favorably.

Furthermore, the adverse effects of model uncertainties on cooperative eigenvalue-
based spectrum sensing systems were studied. On the example of two practical
model uncertainties, insights on the robustness of detectors and performance limits
in the form of bounds on the SNR walls were obtained. The SNR wall represents
a threshold below which detection becomes impossible in the presence of model
uncertainties, even when the number of samplesN is arbitrarily large. Two practical
model uncertainties were analyzed in the asymptotic regime (N →∞). Firstly, the
influence of imperfect calibration of the receiver noise powers on three well-known
detectors was investigated. It was shown that all three detectors suffer from the
SNR wall phenomenon. Lower bounds on the SNR wall were derived in average case
scenarios for rectangular and Gaussian distributed noise powers after calibration.
The worst case analysis yielded upper and lower bounds on the SNR wall for two
detectors. With the help of the latter bounds, the asymptotic SNR wall may be
located to within roughly 3 dB of uncertainty for practical scenarios. All of these
mentioned bounds are inversely proportional to the number of cooperating receivers,
such that the SNR threshold may be alleviated up to a certain degree. Secondly,
we briefly examined the influence of colored and correlated noise on the MME
detector. A conservative lower bound on the SNR wall was derived, which depends
on three parameters: the dimension of the sample covariance matrix, the maximum
signal correlation coefficient and the maximum noise correlation coefficient. In
the numerical evaluation it was found that for both model uncertainties the lower
bounds on the SNR walls are located above or in close vicinity of the desired low
SNR operating range for practical values of the system’s parameters.

Moreover, the maximum-minus-minimum eigenvalue (MMME) detector was ana-
lyzed theoretically and compared to the well-known MME detector. Under a sim-
ple system model with flat fading and two cooperating receivers, the PDFs of the
MMME test statistic were derived under both hypotheses. On the one hand, this
allows precise calculation of the detection threshold. On the other hand, the detec-
tion performance may be accurately predicted. Since analogous theoretical results
were obtained for the MME detector, an analytical comparison was conducted. It
was found that the MMME outperforms the MME under ideal conditions. How-
ever, if the noise power is not known precisely, the results showed that the MME
performs favorably.

8.2 Outlook

For practical application of the quickest eigenvalue-based detection algorithms, a
more realistic model with an arbitrary number of cooperating receivers and a more

140



8.2 Outlook

general wireless channel model is needed. Since it is probably intractable to derive
the required PDFs of the test statistic exactly in this case, an approximation that
is applicable in a variety of different channel scenarios is desired. Furthermore,
a hybrid detection strategy in which the strengths of both quickest detection and
block detection are combined may be worth investigating in future research.

The performance limits of cooperative eigenvalue-based spectrum sensing systems
may be generalized in a number of ways. Firstly, it may be possible to derive similar
bounds on the SNR wall in the non-asymptotic regime. Secondly, a combined
treatment of multiple model uncertainties at the same time may yield even more
valuable insights for practical applications. From a theoretical point of view, an
interesting question is whether it is possible to prove that all eigenvalue-based
detectors suffer form an SNR wall under certain model uncertainties. Particularly
the results on colored and correlated noise would benefit from a generalization to
a more realistic system model and the examination of additional detectors.
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List of Symbols

0N ,0K×N vector and matrix containing only zeros of dimensions N and K ×N ,
respectively

1N ,1K×N vector and matrix containing only ones of dimensions N and K × N ,
respectively

α signal-to-noise ratio (SNR)

β factor of standard deviations considered for modeling the SU noise
power after calibration with a Gaussian distribution

εij noise correlation coefficient related to the covariance matrix Rw̃

εmax maximum noise correlation coefficient εmax = max
i 6=j

εij

pFq(·; ·; v) generalized hypergeometric function

Γ(v) Gamma function

H0 noise only hypothesis

H1 signal and noise hypothesis

Ia(v) a-th order modified Bessel function of the first kind

IB(v) indicator function with respect to the set B

IN identity matrix of dimension N

Ka (v) a-th order modified Bessel function of the second kind

λi i-th increasingly ordered eigenvalue of the statistical covariance matrix
R

λ̂i i-th increasingly ordered eigenvalue of the sample covariance matrix R̂

λ increasingly ordered eigenvalue vector of the statistical covariance ma-
trix R
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λ̂ increasingly ordered eigenvalue vector of the sample covariance matrix
R̂

MDM system model for digitally modulated PU signals with flat fading and
a memoryless channel

MFF system model with flat fading and a memoryless channel

MMP system model with a multipath propagation channel

Ω non-centrality matrix of the non-central Wishart distribution

φ, Φ PDF and CDF of the univariate standard Gaussian distribution, re-
spectively

ψ parameter in the approximation of the mean of Gaussian order statistics

ρ noise (power) uncertainty factor

%ij signal correlation coefficient related to the covariance matrix Rx̃

%max maximum signal correlation coefficient %max = max
i 6=j

%ij

σs standard deviation of the PU signal

σw standard deviation of the SU noise

σwi standard deviation of the i-th SU’s receiver noise

τ̄d mean time to detection (conditional mean delay)

τ̄?d worst mean delay

τ̄fa mean time to false alarm

ϑ standard deviation of the Gaussian distribution used to model the SU
noise power after calibration

U (a, b, c) Tricomi’s confluent hypergeometric function

ζC output of the cumulative sum (CUSUM) algorithm

ζG output of the generalized likelihood ratio (GLR) algorithm

F cumulative distribution function (CDF)

f probability density function (PDF)
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h detection threshold

hi(t) channel impulse response of the wireless channel from the PU to SU i
in theMMP model

h channel coefficient vector in theMFF andMDM models

K number of cooperating SUs

K̃ number of eigenvalues of the (sample) covariance matrix, i.e., K̃ = KQ

k block index

l log-likelihood ratio (LLR)

M oversampling factor

m estimated change time in the GLR algorithm

N number of samples

p area under the density of the Gaussian distribution within a βϑ envi-
ronment around the mean, which is used to model the SU noise power
after calibration

PD probability of detection

PFA probability of false alarm

PMD probability of missed detection

Q smoothing factor, i.e., number of consecutive time points considered for
exploiting time correlation

R statistical covariance matrix of the processing vector z

R̂ sample covariance matrix of the processing vector z

R̂(k) sample covariance matrix estimated from the k-th consecutive process-
ing matrix Z(k)

R0 statistical covariance matrix of the processing vector z under H0

R̂0 sample covariance matrix of the processing vector z under H0

R1 statistical covariance matrix of the processing vector z under H1
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R̂1 sample covariance matrix of the processing vector z under H1

Rx statistical covariance matrix of the filtered and distorted signal vector
x

Rx̃ statistical covariance matrix of the reordered filtered and distorted sig-
nal vector x̃

Rw statistical covariance matrix of the noise vector w

Rw̃ statistical covariance matrix of the reordered noise vector w̃

s(t) PU signal at time index t

T test statistic

TGLRT test statistic of the GLRT detector

TMME test statistic of the MME detector

TMMME test statistic of the MMME detector

TQST test statistic of the QST detector

T (k) test statistic calculated from the k-th consecutive sample covariance
matrix R̂(k)

t discrete time index

ta alarm time

tc change time

w(t) N dimensional vector of the SU receiver noise at time index t

W N ×N matrix containing a block of N SU receiver noise vectors

w̃(t),W̃ reordered versions of w(t) and W for exploiting time correlation, re-
spectively

x(t) N dimensional vector of the filtered and distorted signal at time index
t

X N × N matrix containing a block of N distorted and filtered signal
vectors
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x̃(t), X̃ reordered versions of x(t) and X for exploiting time correlation, respec-
tively

y(t) N dimensional vector of the SU’s received samples at time index t

Y N ×N matrix containing a block of N SU received sample vectors

z(t),Z processing vector and matrix, which are reordered versions of y(t) and
Y for exploiting time correlation, respectively

Z(k) processing matrix of the k-th consecutive block of N samples of the
processing vector z
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Acronyms

AWGN additive white Gaussian noise

BCED blindly combined energy detection

CDF cumulative distribution function
CUSUM cumulative sum

ED energy detection

GLR generalized likelihood ratio
GLRT generalized likelihood ratio test

i.i.d. independently and identically distributed

LLR log-likelihood ratio

MIMO multiple-input and multiple-output
MLE maximum likelihood estimation
MME maximum-minimum eigenvalue
MMME maximum-minus-minimum eigenvalue

OFDM orthogonal frequency-division multiplexing

PDF probability density function
PMF probability mass function
PSK phase-shift keying
PU primary user

QAM quadrature amplitude modulation
QD quickest detection
QST quadratic sphericity test

RLRT Roy’s largest root test
RMT random matrix theory
ROC receiver operator characteristic

149



Acronyms

SCN standard condition number
SNR signal-to-noise ratio
SU secondary user

w.l.o.g. without loss of generality
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