
Effective Communication Methods for
Many-core Architectures with on-chip Networks

in the Absence of Cache Coherence

Von der Fakultät für Elektrotechnik und Informationstechnik
der Rheinisch-Westfälischen Technischen Hochschule Aachen

zur Erlangung des akademischen Grades eines Doktors
der Ingenieurwissenschaften genehmigte Dissertation

vorgelegt von

Diplom-Ingenieur
Pablo Reble

aus Düsseldorf

Berichter: Universitätsprofessor Dr. rer. nat. Rudolf Mathar
Universitätsprofessor Dr. rer. nat. Matthias Müller

Tag der mündlichen Prüfung: 25. September 2015

Diese Dissertation ist auf den Internetseiten
der Hochschulbibliothek online verfügbar

Acknowledgements

First, I would like to express my sincere gratitude to my thesis advisors
Professor Dr. rer. nat. Rudolf Mathar and Professor Dr. rer. nat. Matthias
Müller for their efforts and guidance.
The main research part of this work has been realized at the Chair for
Operating Systems at RWTH Aachen University. Special thanks go to Dr.
Stefan Lankes for his advice and mentoring. In addition, I would like to
thank my colleagues at RWTH for their help and enlightening discussions,
the LfBS team, in particular Carsten, Georg, and Simon, the HPC group,
in particular Christian, and Dieter. Additionally, I would like to thank
the students I worked with, especially Fabian, Florian, Jacek, Marian,
and Ole.
I would also like to thank Intel Labs, in particular Michael Riepen and
Michael Konow, for supporting my research with experimental hardware,
technical mentoring and funding.
I wish to thank my family for their support. My parents Bruno and Ulrike,
my siblings Nina and Janosch.
Finally, my biggest thanks go to Eva for her love, support, and inspiration.

Aachen, October 2015 Pablo Reble

Abstract

Since the beginning of the multicore era, parallel processing has become preva-
lent across the board. Accordingly, the development of processors with multi-
ple computing cores per chip was caused by the fact that fundamental limits
in single core performance had been reached. If the trend of integrating more
and more cores to a single die continues, general purpose processors with
hundreds of cores may be expected in the near future. Further in the future,
many-core technology will potentially lead to processors with thousands of
cores. The result of this development would be massive parallel-processor
architectures that will inevitably create new challenges for the scalability of
common software synchronization and communication methods.

It is commonly believed that a reevaluation of established concepts is needed
to address such research challenges. One important aspect is the reevaluation
of hardware support for effective communication methods. Given a particu-
lar power budget per chip, this aspect will be of significant importance. A
related question is the demand of changes for established architectures and
for redesign of components to support thousands of cores. Similar challenges
exist for the support of new memory technologies, which are emerging trends
in the field of parallel computing. For instance, instruction-set extensions
have been recently introduced for the established Intel Architecture to sup-
port non-volatile memory (NVM) and hardware transactional memory (TSX).
Full control of on-chip data movement is a related aspect that will result in
the waiving of transparent access – for example, of additional instructions for
finer-grained cache control.

Because the importance of efficient communication for processors with
many cores cannot be underestimated, the focus of this dissertation is on the
analysis of efficient communication methods to exploit locality, and on low
latency of architectures that follow the network-on-chip paradigm and pro-
vide software-controlled high-performance memory in terms of low latency
and high throughput.

In 2010, Intel Corporation founded the Many-core Applications Research
Community (MARC) to support many-core software research. As a mem-
ber of this community, the RWTH Aachen University started the projects
MetalSVM and iRCCE to explore new communication concepts and system-
software support for future many-core systems.

These projects – the results of which are presented in this dissertation –
include the development of software concepts for on-chip communication and

synchronization in the absence of hardware-cache coherence. Intel’s Single-
chip Cloud Computer (SCC) is a cluster-on-a-chip architecture that represents
the first x86 based many-core processor. It implements a new communication
concept by waiving full chip cache-coherence and providing hardware support
for on-chip message passing with alternative support for on-chip consistency
control and explicit communication. The experimental hardware consists of
48 cores which are connected through a mesh interconnect on a single proces-
sor die. This configuration, in combination with a flexible and fine-grained
memory control, has enabled experiments and the development and verifi-
cation of low-level communication concepts today, and it thereby guides the
development of future systems.

In order to further explore the scalability of low-level software for this kind
of architecture, this dissertation includes consideration of the design of a
transparent virtual extension. A major achievement of this project is a full
working prototype of a cluster of clusters on a chip, which can emulate a
many-core processor with more than two hundred cores. This prototype has
enabled a deeper analysis of new many-core communication concepts, and
has uncovered potential for optimization. Major performance improvements
could be achieved by the combination and further development of well-known
mechanism and software techniques.

Moreover, a communication model is essential if we are to analytically
explore the limits of many-core processors that follow the network-on-chip
paradigm and implement a low-memory abstraction by providing software-
controlled on-chip memory.

Fundamental requirements for the efficient communication methods that
are developed, parametrized and evaluated in this work include configurable
caches for direct on-chip memory access or at least finer-grained cache control
for data movement. Moreover, a low-level contention model is developed to
evaluate different synchronization concepts and to derive optimizations for
many-cores with remote direct memory access. Because on this level a con-
tention model is hardware specific, the decision was made to focus on a packed
switched on-chip mesh interconnect. This interconnect is implemented by the
experimental SCC architecture and also in the next many-core architecture
of the Xeon Phi family: codename Knights Landing (KNL).

The Intel SCC research system has been used to support analysis of meth-
ods and to verify the accuracy of our concepts when used to model commu-
nication. The research system has directly addressable memory, with a high-
performance in terms of low-latency and high throughput in relation to the

computational performance of the cores. The experimental hardware shares
basic characteristics with attributes of future many-core architectures that
result, for example, in a combination of stacked memory and a tight integra-
tion of the fabric interconnect. Such similarities create opportunities for the
applicability of the effective communication methods to future architectures.

Kurzfassung

Multicore-Prozessoren haben zu der Verbreitung von paralleler Programmie-
rung maßgeblich beigetragen. Die Entwicklung von Prozessoren mit mehr als
einem Rechenkern, liegt vor allem darin begründet, dass mit einer Steigerung
der Leistungsfähigkeit von Prozessoren mit nur einem Rechenkern physikalis-
che Grenzen erreicht wurden. Aktuelle Prognosen für die Weiterentwicklung
der Anzahl von Rechenkernen pro Prozessor zeigen, dass auch bei mod-
erater Steigerung ihrer Integrationsdichte, Prozessoren mit Tausenden von
Rechenkernen pro Chip in näherer Zukunft erwartet werden können. Dieser
Trend wird zu massiv-parallelen Prozessoren führen, welche gemeinhin als
Manycore Systeme bezeichnet werden. In letzter Konsequenz resultieren da-
raus neue Herausforderungen an etablierte Kommunikations- und Synchro-
nisations-Konzepte.

Es ist eine weit verbreitete Überzeugung, dass nur durch eine Reevaluation
etablierter Konzepte in der Forschung, solchen Herausforderungen begegnet
werden kann. Ein wesentlicher Aspekt ist die Neubewertung der Hardware-
unterstützung vor dem Hintergrund effektiver Kommunikations-Methoden.
Ausgehend von der Tatsache, dass Grenzen in der Leistungsaufnahme von
Prozessoren existieren, wird zukünftig effizienter Kommunikation eine stei-
gende Bedeutung zukommen. In diesem Zusammenhang stellt sich die Frage,
wie vorhandene Architekturen angepasst und welche Komponenten weiter-
entwickelt werden müssen, um Tausende von Kernen zu unterstützen. Ver-
gleichbare Herausforderungen ergeben sich bei der Unterstützung von neuen
Speicher-Technologien, wie nicht-flüchtigem Speicher (NVM) und Hardware
Transactional Memory (TSX). Diese Weiterentwicklung des Instruktionssatzes
der Intel Architektur steht beispielhaft für einen Paradigmenwechsel, weg von
einer vollständigen Abstraktion einer komplexen Speicher-Hierarchie, hin zu
einer umfassenderen Kontrolle des Datentransfers innerhalb eines Chips.

Insbesondere die effiziente Kommunikation der Kerne untereinander hat
sich dabei als wichtige Komponente hervorgetan, die in dieser Arbeit als zen-
trale Forschungsfrage im Detail betrachtet werden soll. Wesentlicher Beitrag
sind der Entwurf und die Analyse von effizienten Kommunikations-Methoden,
die Eigenschaften von Network-on-Chip basierten Architekturen in Kombina-
tion mit direkt adressierbarem Speicher ausnutzen.

Im Jahr 2010 gründete Intel die MARC Initiative um Forschungsvorha-
ben im Bereich parallele Software für Manycore-Systeme zu unterstützen.
Als Mitglied der “Many-core Applications Research Community” startete die

RWTH Aachen University die Projekte MetalSVM und iRCCE um neue
Kommunikations-Konzepte und System-Software Unterstützung für zukünf-
tige Manycore-Systeme zu erforschen.

Ergebnisse dieser Projekte sind unmittelbar in diese Dissertation einge-
flossen, insbesondere die beschriebenen Software-Aspekte zur Kommunikation
und Synchronisation von Manycore-Systemen ohne Cache Kohärenz. Intel’s
“Single-chip Cloud Computer” (SCC) ist ein Beispiel für eine “Cluster on a
Chip” Architektur die ein solches Kommunikations-Konzept ermöglicht. Das
Forschungs-System besteht aus 48 Rechenkernen auf Basis einer Intel Ar-
chitektur, welche als Gitter angeordnet in einem einzelnen Prozessor-Chip
integriert sind. Diese Architektur verzichtet vollständig auf Cache-Kohärenz
und setzt stattdessen auf Hardware Unterstützung für explizite Kommunika-
tion. Diese experimentelle Hardware ermöglicht bereits heute Grundlagen-
forschung für zukünftige Prozessor-Generationen.

Zur weiteren Betrachtung der Skalierbarkeit von “low-level Software” für
eine solche Architektur, wird in dieser Dissertation zudem eine virtuelle Er-
weiterung beschrieben. Ein wesentlicher Beitrag dieses Projektes ist ein voll-
funktionsfähiger Prototyp eines Cluster von “Cluster on a Chip” Prozes-
soren, welcher in der Lage ist ein Manycore-System mit über 200 Kernen zu
emulieren. Durch diese Arbeit konnten, durch die Kombination von klassis-
chen Software-Techniken und die Weiterentwicklung der resultierenden Meth-
oden, wesentliche Verbesserungen im Bezug auf die Kommunikation zwischen
den Kernen erreicht werden.

Um allgemein die Grenzen der Leistungsfähigkeit einer solchen Architektur
analytisch zu bestimmen wird in dieser Arbeit ein Kommunikations-Modell
vorgestellt. Die Grundannahme dieses Modells liegt in einer geringeren Ab-
straktion des Speicher-Zugriffs, so dass Speicher innerhalb eines Chips Spe-
icher direkt adressiert oder über direkte Kontrolle von Caches der Daten-
fluss gesteuert werden kann. Das Modell beinhaltet Kommunikation für Intel
basierte Mehrkern-Prozessoren mit direkt adressiertem integriertem Speicher
für konkurrierende Zugriffsmustern und damit die Evaluation von verschiede-
nen Synchronisations-Mechanismen und deren Optimierung.

Insbesondere für die Entwicklung von zukünftigen Many-core Architek-
turen sind die Konzepte zur Analyse und Modellierung von Kommunikati-
ons-Prozessen wertvoll, die in dieser Arbeit vorgestellt werden. Beispiels-
weise verfügt das nächste Produkt der Xeon Phi Produktfamilie mit dem
Codenamen Knights Landing (KNL) über wesentliche Gemeinsamkeiten mit
dem SCC bezogen auf den grundsätzlichen Aufbau der Architektur, wie die

Netzwerk-Topologie und einem relativ schnellem Speicher im Vergleich zu den
Rechenkernen, welcher direkt adressiert werden kann.

Contents

1 Introduction 1
1.1 Motivation . 3
1.2 Contribution . 5
1.3 Structure of this Work . 6

2 Many-core Systems 9
2.1 Basic Components . 12

2.1.1 Computing Core . 12
2.1.2 Memory Organization 13
2.1.3 Interconnect . 18

2.2 Single-chip Cloud Computer (SCC) 20
2.2.1 Research System . 21
2.2.2 Processor Cores . 22
2.2.3 Interconnect . 25
2.2.4 Basic Memory Types . 26
2.2.5 Synchronization Support 29

2.3 Communication Model . 32
2.3.1 Related Work . 33
2.3.2 Analysis . 34
2.3.3 Multi-Line Ping-Pong 35
2.3.4 Quantify synchronization overhead 37
2.3.5 Contention . 39
2.3.6 Back-off with Feedback 44

2.4 Conclusion . 45

3 Communication and Synchronization 47
3.1 Related Work . 50

3.1.1 Message Passing Interface 52
3.1.2 RCCE . 53

3.2 vSCC: Extending a Research Platform 56
3.2.1 Global Atomic Operations 58
3.2.2 Increasing the Core Count 59

3.3 iRCCE: Extending Rock Creek Communication Environment . 62
3.3.1 Communication Model 65
3.3.2 Communication Modes 68

3.4 Message Passing Buffer . 69
3.4.1 Communication Schemes 71
3.4.2 Flags . 73
3.4.3 Dynamic Buffer Allocation 75
3.4.4 Results . 77

3.5 Synchronization Constructs . 79
3.5.1 Lock . 81
3.5.2 Barrier . 86
3.5.3 Results . 94

3.6 Conclusion . 97

4 System Software and Application 99
4.1 Related Work . 101

4.1.1 Programming Models 103
4.1.2 Virtualization . 104

4.2 Concept of MetalSVM . 107
4.2.1 Motivation of MetalSVM 108
4.2.2 Integration of iRCCE into MetalSVM 109

4.3 Efficient implementation of a bare-metal Hypervisor 110
4.3.1 Bare metal framework 111
4.3.2 Many-core Virtualization 114
4.3.3 Hypervisor Performance 114

4.4 Application Examples . 117
4.4.1 Jacobi . 117
4.4.2 NPB . 121

4.5 Conclusion . 125

5 Conclusion 127
5.1 Methods . 129
5.2 Results . 130

List of Abbreviations 133

References 137

1
Introduction

“Synchronization is a key challenge for
the Many-core era” [SS08]

The demand of computing power for various kinds of applications is grow-
ing beyond the status quo of technology. This observation has been made
throughout the history of computing systems until today, especially in scien-
tific computing where computationally intense applications play a predomi-
nant role. To fulfill the requirements, computer architectures have changed
over the years with a strong emphasis on parallel execution. As a conse-
quence, state-of-the-art computer systems include processors, which are based
on multi-core technology. Besides this duplication of functional processor
units, a modern architecture implements different levels of parallelism. Paral-
lelism at instruction level, data level, and thread level includes a specific de-
gree of abstraction, which has to be considered for the software-development
process.

One challenge for programming that resulted from this growing parallelism
involves the concept of concurrency. Herb Sutter formulates the problem in a
fundamental article that was published in 2005 on the revolution of concur-
rency: “The Free Lunch is over: A Fundamental Turn toward Concurrency
in Software” [Sut05].

Today’s importance of parallel-computing systems cannot be underesti-
mated as their pervasion ranges from mobile phones to supercomputers. In
2004, Intel’s CEO Ottelini communicated a sea change in computing and
speculated that the company will dedicate all of its future product develop-
ment to multicore designs. This trend towards multi-core architectures has
manifested for decades and now dominates the market.

1

Chapter 1 Introduction

The first microprocessor architectures based on multi-core technology were
a consequence of reaching the physical limits. A limitation of power consump-
tion first manifested in cooling issues for single-chip processors when the limit
of air cooling was reached in 2004 [HP12]. Whereas an Intel 80386 proces-
sor chip consumed about 2 W, the Pentium 4, which was produced ten years
later, consumed more than 100 W with a comparable die size of about 1 cm2.
This development necessitated a paradigm shift, because a further frequency
scaling, which implies a growing power consumption, was not possible.

These days, the growing importance of energy efficiency can be observed
especially in the field of high-performance computing where performance has
long been the dominating criterion for the components of a computer system.
This observation is closely connected to the Exascale challenge, which envi-
sions supercomputers with at least 1018 floating point operations per second
(FLOPS) in the near future [SDM11].

It is most likely that to reach this goal – not only for processor chips or
system nodes but also on cluster level – that a specific power budget will have
to be taken into account [Esm+13]. For future systems, because communi-
cation has been identified as a potential bottleneck, fundamental changes in
processor design are expected such as the integration of scalable interconnects
and sophisticated memory organization [Don+11]. This will pose challenges
to system software; therefore, new operating-system designs are in the focus
of recent research projects. Related research questions include the role of
caches in such an environments, the necessity of full-chip coherent memory
and the impact to established programming models. The compatibility with
new massive parallel-processor architectures to existing programming models
becomes more and more complex as the level of parallelism grows.

Assuming that Moore’s Law – that the integration of transistors per chip
doubles every two years – will hold for at least the next decades [Moo65], the
possibility will arise to integrate thousands of cores per processor die in the
near future. For a chip vendor, such a development is of a high importance,
as design and verification costs are steadily increasing [NO97].

2

1.1 Motivation

1.1 Motivation

In current research, the hypothesis that cache coherency represents a gen-
eral limitation for the scalability of processor architectures is controversial.
Research contributions exist that, by promising the end of multicore scal-
ing, attempt to answer the question posed in: “Dark Silicon and the End
of Multicore Scaling” [Esm+11]. Other contributions exist which argue the
opposite assumption that, on the contrary, “on-chip cache coherence is here
to stay” [MHS12].

The Intel TeraScale computing research program started in 2006 [Intel06]
and is aiming at scalable processor architectures. The focus of this program
is to explore the programability of future many-core architectures. This focus
has lead to the development of design concepts and unconventional archi-
tectures. Besides this program, tiled processor architectures that follow the
network-on-chip paradigm represent an active field of research.

The term coherency wall has been introduced to describe the fact that
a limitation exists because of hardware cache-coherence, which introduces
additional architectural overhead [Mat11]. Dependent on the access pattern,
the cost in time and memory can grow to a point beyond which additional
cores are not useful in a single parallel program. Figure 1.1 illustrates this
connection. Costs for communication are constant for the local neighborhood
in the best case and grow at a linear slope in worst case because of the diameter
of the network for a many-core system with explicit on-chip communication.

For a scalable, directory-based scheme, hardware-cache coherency always
incurs an N-body effect [Kum+11]. At best, the cost for this technology
scales linearly regarding a fixed memory size as cores are added. At worst
it scales quadratically, if memory grows linearly with the number of cores.
Amdahl’s Law, which is commonly used to predict the maximum speedup of
parallel applications, predicts a limit of scalability regarding relatively small
overheads [HM08]. The general assumption is that relatively small overheads
(e.g., 1 % of overhead) can harm scalability [Bor07].

Furthermore, hardware validation costs represents a future challenge for
processor design, because growing chip complexity will influence verification
costs, which can become significant. It also remains an important and open
question whether full-chip cache coherence can be provided for future proces-
sors with a core count in the order of thousand cores.

Future processor architectures with many cores may waive full-chip cache
coherence. This class of many-core processors, with low memory abstraction

3

Chapter 1 Introduction

2 4 6 8 10 12

2

4

6

8

10

12

O(nα) : 1 ≤ α ≤ 2

O(4) toO(n1/2)

Number of Cores

C
os
ts

Figure 1.1: Comparison of costs in hardware and time for cache coherent and
distributed on-chip memory [Mat11]

and implicit data movements, is referred to as a cluster-on-a-chip processor.
Such a fundamental change will influence programming models and system
software. Major open issues for this type of architectures include resource
allocation (for example, of software controlled on-chip memory) and access
granularity.

The MetalSVM project started to explore shared memory programming
on non-coherent memory coupled cores at the RWTH Aachen University in
20101. The basic idea behind this project is the integration of a Shared
Virtual Memory (SVM) management system into a bare-metal hypervisor.
As a result, a shared-memory application can be executed in a partly virtu-
alized environment. Such an abstraction does not reduce the demand for
high-performance synchronization means regarding scalability and low la-
tency. The observed research trend toward many-core architectures which
target the integration of hundreds to thousands of cores per processor die will
lead to massive software-controlled on-chip parallelism.

A scalable synchronization becomes even more important, and any software-
based approach to control memory coherence – such as Shared Virtual Mem-

1The project was initially supported by a research grant of Intel Labs Braunschweig

4

1.2 Contribution

ory (SVM) – will require fast synchronization methods. For a many-core
architecture with non-coherent memory-coupled cores, established synchro-
nization methods that were designed for shared memory systems have to be
reevaluated. This implies that the communication performance of a many-
core architecture must be characterized.

1.2 Contribution

This work covers research on system-software and operating-system support
for x86 based many-core systems with low on-chip memory abstraction. The
resulting cluster of processors would be assembled without full chip coherence
– so called cluster-on-a-chip (CoC) processors – which creates the possibility,
for example, to flexibly handle memory coherence in software. Related tasks,
such as hardware support for software-controlled coherence or on-chip mes-
sage passing, pose new challenges to system software. The contribution of
this work is the investigation of a software abstraction for communication
and synchronization that is performed for the purpose of determining which
kind of hardware support is required to implement an efficient communication
layer [RCL13; Reb+12c].

A software layered approach is the basis of our project. Related structures
consist of a basic communication layer that abstracts the hardware details of
communication by controlling the consistency of access to on-chip memory.
On top of this hardware-abstraction layer, message-passing libraries can be
implemented with less effort that feature more complex protocols for point-
to-point and collective communication. The use of such an environment as
an inter-kernel communication layer has been treated in a previous publica-
tion [Reb+11]. In addition to the efficient implementation of a bare-metal
hypervisor, this communication layer builds the base of the project Metal-
SVM, which targets a virtualization of a shared-memory system on non-
coherent memory-coupled cores. This work has also been previously pub-
lished [Reb+12b].

A communication model is first presented in this work, which takes con-
tention into account as a result of thousands of cores that explicitly access on-
chip memory locations. This model is used to explore the limits of a cluster-
on-a-chip architecture, and it enables the comparison to cache-coherent many-
core architectures which implement a higher memory abstraction in hardware.
Parameters for the communication model are derived by means of low-level

5

Chapter 1 Introduction

timing analysis and statistical analysis is used to verify the contention exten-
sions of the communication model. As a result, the performance of different
access patterns can be characterized. Additionally, in this dissertation, as-
pects of real-time computing are applied to create a fully controlled bare-metal
benchmark environment [RW14].

As a result, the performance of classic algorithms can be analytically eval-
uated for this kind of architecture. Consequently, in this work, classic syn-
chronization methods for distributed memory and shared memory systems are
evaluated and optimized for a cluster-on-a-chip architecture. The Intel SCC
research processor – an example of this kind of architecture – has been used as
an application example. Prior to this work, with RCCE, a light-weight native
programming library was available to facilitate the use of the message-passing
programming model [MvW11].

We describe a virtual extension of Intel SCC’s on-chip network to further
explore the scalability of new communication concepts in previous publication
[Reb+12a]. A further development of this extension creates the possibility of
emulating a many-core system with up to 240 cores [Reb+15]. Such commu-
nication environments create new challenges to the existing software stack;
therefore, solutions are presented and analyzed in this study. This work in-
cludes the analysis of different communication protocols and the exploration
of the concept of communication offloading to make use of a scaling grid of
cluster-on-a-chip processors.

1.3 Structure of this Work

Figure 1.2 illustrates the structure of this work. The basic structure of this
work itself is bottom up, and it is focussed on a layered communication struc-
ture.

Specifically, this work is structured in the following way: Chapter 2 de-
scribes components of state-of-the-art many-core systems. The basic commu-
nication layer of an experimental research platform is covered in this chapter,
which includes low-level analysis of its on-chip interconnect. Moreover, a
communication model is developed and verified.

A communication-and-synchronization interface is presented in Chapter 3.
This includes protocols for efficient point-to-point and collective operations.
In addition, this chapter describes the development of a virtual extension of
a many-core-processor interconnect.

6

1.3 Structure of this Work

system software application

basic comm. layer extensions

hardware abstraction layer

gory interface: put, get, . . .

send, recv, . . . isend, irecv, . . .
non-gory interface:

many-core hardware

low-level operations: read, write, flush, invalidate . . .

Figure 1.2: Focus of this dissertation regarding a layered communication
structure

Chapter 4 targets system-software aspects for many-core software and soft-
ware-managed coherence. One aspect is the realization of shared memory
programming on non-coherent memory-coupled cores through Shared Virtual
Memory management. The efficient implementation of a bare-metal hyper-
visor is detailed. In this context, the communication extension described in
Chapter 3 is evaluated as an inter-kernel communication layer.

7

2
Many-core Systems

“Caches make the memory state difficult to
predict. This greatly complicates software
optimization.” [Mat11]

The integration of multiple processor cores per chip has become an emerging
trend within the last decade. Accordingly, this time is also known as the
multi-core era in the field of parallel computing. In recent years, a steadily
rising core count per processor package can be observed. From dual-cores to
quad-cores, processors based on multi-core technology with a core count in
the order of 10 cores per processor die are available on the market today.

The key motivation for the integration of multiple processor cores per chip
has been reaching the physical limits of manufacturing processors around
2004. Until this time, rising serial compute performance could be observed,
which was mainly enabled by increasing the processor frequency. In the field of
high-performance computing, and not only for embedded devices, power con-
sumption has become an increasingly hot topic. Processors based on many-
core technology provide a better performance-to-watt ratio than processors
based on multi-core technology. Accelerators and Coprocessors are options
that enable better energy efficiency in high-performance computing.

A sharp definition of a many-core architecture does not exist. In addition to
a categorization based on architectural features, another classification aspect
is programmability. In his book on programming many-core processors, Va-
jda formulates the widespread assumption that the definition of many-cores
architectures is loose [Vaj11].

In common understanding, it is a chip with at least several but more likely
hundreds or thousands of cores. These represent many small computing units,
which includes a moderate frequency and static-scheduling in combination

9

Chapter 2 Many-core Systems

with 2-way super-scalar or scalar execution of instructions. In 2012, Reinders
communicated1 his view on the key differences between many-core and multi-
core [gop12]. In his opinion, further differences exist between many-core and
multi-core architectures in addition to differences in core count. For example,
he points out the importance of interconnects for the many-core era.

Another distinction can be made with respect to the manner in which chip
design handles physical constraints: e.g., the available number of transistors
and the given power budget per chip. Figure 2.1 sketches the utilization of
available chip size for many-core and multi-core processor architectures.

As a concrete example in 2015, available high-end processor that imple-
ment multi-core design – such as Intel Haswell – provide large shared caches
(< 50 MB) and a moderate core count (< 18) running with a high frequency
(< 3.6 GHz). Many-core processors such as the Xeon Phi target a large core
count (> 60) with a moderate frequency (∼1 GHz). The design concepts can
be distinguished between latency optimized and throughput optimized.

(a) multi-core (b) many-core

Figure 2.1: Comparison of different architectural concepts regarding the uti-
lization of chip size

Mattson identifies2 the 48 core SCC research processor by Intel Labs with
two cores per tile as one example for the future of many-core computing [Mat11].
If the number of cores grows, the level of software controlled on-chip paral-
lelism evidently rises. The combination of this massive thread-level paral-
lelism and instruction-level parallelism, in the form of vector instructions,

1interview: published on http://go-parallel.com
2in his talk “The Future of Many-Core Computing: a Tale of two Processors”

10

http://go-parallel.com

demonstrates that sheer computational performance will become less impor-
tant, especially for many-core architectures. The ongoing evolution of multi
to many-core technology raises the question what a future many-core system
may look like, including the interconnect and memory organization.

Message passing and shared memory are established programming mod-
els for parallel programs. Hybrid concepts exist that combine both models;
however, many-core architectures increase the demand for new programming
concepts. For established programming models, limitations exist regarding
the mapping of tasks to computing resources that are embedded into com-
plex memory hierarchies, dynamic load balancing and overhead of operating
systems and runtimes.

Rather than just focus on applications that are limited by memory band-
width, synchronization is an open challenge for the many-core era, especially
for architectures without full-chip memory coherence. These architectures
will provide predictable low latencies to on-chip memory. Influence of specific
attributes to synchronization methods, which were intentionally designed for
classic distributed shared memory (DSM) systems, have to be reevaluated.

In addition to challenges for established communication and synchroniza-
tion methods, a loss of full-chip cache coherence will create opportunities for
software optimization of many-core memory access. A common assumption
is that software-controlled coherence needs additional hardware support. In
this work, this hypothesis is studied and evaluated.

Organization of this Chapter

This chapter is organized as follows. The next section covers components of a
processor architecture which includes multi-core as well as many-core technol-
ogy. Section 2.1 is structured into subsections according to the components of
a tiled many-core architecture, computing cores, memory organization, and
interconnect. Section 2.2 describes the Single-chip Cloud Computer (SCC)
that represents Intel’s first many-core processor which implements an exam-
ple of a cluster-on-a-chip. The SCC is a tiled architecture, that combines 48
x86-based cores on a single chip and builds an excellent and flexible research
platform for many-core software research.

A communication-and-contention model for the investigated architectures
with a low-memory abstraction is discussed in Section 2.3. The remainder
of this chapter is on experimentation. It uses a low-level timing analysis
with synthetic benchmarks to explore predictability and fairness of on-chip

11

Chapter 2 Many-core Systems

memory access. Our experiments make possible a better understanding of the
preferred communication patterns for a tiled many-core architecture.

Parts of this chapter consist of or are based on previous publications. A
study of the predictability of operating-system supported communication was
published previously. My contribution was the analysis of on-chip memory
access for tightly coupled Intel SCCs within a controlled environment [RW14].
The hardware-synchronization support of the SCC research platform was con-
sidered in previous publication [Reb+12c]. My contribution to this work was
an analysis of SCC’s hardware synchronization support and design of methods
to relax contention.

2.1 Basic Components

In this section, the concept of a many-core architecture with a tiled structure is
detailed. The design concept of a many-core architecture has been successfully
implemented as a product, the Intel Xeon Phi coprocessor, and besides the
Intel SCC [Mat+10], as several research projects such as Tilera [Bel+08] and
SCORPIO [Day+14].

The terminology, which can be used to describe the components of a many-
core architecture are illustrated in Fig. 2.2. A tile represents the basic unit of
a network-on-chip (NoC) based processor. Each tile can consist of a combina-
tion of computing cores and local memory. The different components, com-
puting cores, on-chip memory organization, and interconnects are described
in the following of this section.

2.1.1 Computing Core

Over the years, two key concepts have been developed which can be catego-
rized according to the complexity of a single machine instruction, RISC and
CISC.

A modern processor natively works on instructions with a low complexity,
Reduced Instruction Set Computer (RISC). For historical reasons, primarily
due to backwards compatibility, processors by Intel are the only modern pro-
cessors that retain a Complex Instruction Set Computer (CISC) architecture.
Complex instructions are translated to microcode, which includes a certain
overhead. Intel has shown, with the existence of x86 based, also called in-
tel based, processors in the field of embedded computing as well as in the

12

2.1 Basic Components

tile tile tile

tile tile tile

tile tile tile

core core

core core

memory

tile

processor

interconnect

Figure 2.2: Basic structure of a tiled processor with the used terminology

field of high-performance computing, that this overhead represents no general
limitation building popular general purpose processors.

Intel based processors represent a classic load and store architecture with
a flat memory model. Although memory is physically distributed, a trans-
parent view on memory is provided by a cache coherency protocol on node
level. The well established instruction set of Intel’s load and store CISC ar-
chitecture, supports the move operation in different variations, with several
limitations for the operands. Explicit on-chip data movement is not sup-
ported, for instance to communicate between computing cores.

2.1.2 Memory Organization

For decades, a trend can be observed that the computational performance is
faster growing than the memory performance in computing systems. Since
over 30 years an exponential grow in computational performance can be ob-
served, whereas the memory performance has grown at least linear in this
period of time. Figure 2.3 shows proportional memory and processor per-
formance, in terms of byte moved per second and computational operation
per second. Absolute values for the last three decades are referenced to the
year 1980, when computing was as fast as data movement. As a result of this
development, an issue known as the memory performance gap manifests for
computing systems.

Such characteristics of modern computing systems can have a major impact
to the performance of applications. For instance, for a scientific application

13

Chapter 2 Many-core Systems

with a specific data access pattern, which potentially includes a low ratio of
computation per data, the processor performance is not important in contrast
to the memory performance. A direct connection between the performance
of specific applications and the performance of main memory, is known as
memory wall and resulting of the development described above [WM95].

1980 1985 1990 1995 2000 2005 2010
1

10

100

1000

10000

100000

pro
ces

sor

memory

Year

P
er
fo
rm

an
ce

Figure 2.3: Development of memory performance and processor performance
over the last 30 years [HP12]

Memory organization of modern processor architectures is designed to hide
latencies, and provide a flat memory abstraction. For state-of-the-art large
scale shared memory systems with hundreds to thousands of processor cores,
based on multi-core technology, a programmer has to take architectural details
into account.

Traditionally, modern processors use caches to bridge the memory perfor-
mance gap. A processor cache memory, shortened to cache, can be defined
as a transparent on-chip storage. To hide memory latency, a cache replicates
data in on-chip memory. This method results in the existence of copies within
the memory systems, for cache memory and main memory.

Commonly for a modern processor, caches with different size and latency
are organized in a hierarchy, as illustrated in Fig. 2.4 on Page 15. Between

14

2.1 Basic Components

levels of the hierarchy, costs3 differ between fast memory that provides data
within few processor cycles and slow memory with a latency in the order of
hundreds of processor cycles. If a memory request cannot be served by the
cache, it is termed as a cache miss. Respectively, if the memory request can
be served it is termed as a cache hit. Commonly different types of cache hits
and cache misses are distinguished. Those types are influenced by the overall
amount of on-chip memory and the displacement strategy. In general, it is
distinguished between capacity, conflict and compulsory misses.

CPU
L1
Cache

CPU

1000 B

300 ps

size:

latency:

L1
Cache

32 kB

2 ns

L2
Cache

2 MB

15 ns

Memory

16 GB

50 ns

Figure 2.4: Example of a memory hierarchy of a multi-core processor

Besides the obvious displacement strategy, the hardware controller imple-
ments a protocol, with the following attributes:

• Granularity

• Write policy

• Associativity

• Replication

• Coherency

3Here, costs can be related to price of the hardware and performance in terms of latency
and bandwidth

15

Chapter 2 Many-core Systems

Specific attributes are discussed in the following paragraphs.

Granularity

Caches use the principle of locality, such as temporal and spatial locality to
speedup memory access on average [SY05]. Temporal locality is based on the
assumption of a higher probability that a memory location is accessed at a
point in time and again in the near future. The term spatial locality includes
a higher probability of accessing a near memory location than accessing a far
memory location. In other words, it is more likely to access a memory location
with a small difference of its address compared to last accessed address.

To support spatial locality, modern processor caches are organized in a
certain granularity. The basic entity is called a cache-line, which is equal
to the minimum data transfer between cache memory and main memory. A
common size of a cache-line is 64 B, which is a constant value for all levels of
caches. For a hardware cache coherency protocol a cache-line represents the
basic unit of maintaining coherence.

Associativity

A cache controller has to perform a lookup operation to decide whether a
memory access results in a cache hit or a cache miss. As the cost of this
lookup operation is related to the overall size of a cache, modern processor
caches are organized in different degrees of associativity. This organization
is commonly a tradeoff between 1-way for latency and hardware cost opti-
mization and full associativity for effective cache utilization. Except for full
associativity, whereas the location of a specific cache-line within a cache mem-
ory is not restricted, the effective useable cache-size can appear smaller to an
application, than the physical size of a cache.

Replication

Replication of data – with a certain granularity – is a basic method of cache
memories to hide latency of the main memory. Dependent on the distribution
of copies within different cache levels, a cache memory is specified exclusive,
if a cache-line is uniquely located at a single level of the cache hierarchy. In
contrast to exclusive caching, a full inclusive cache organization holds multiple
copies of a single cache-line in all cache levels.

16

2.1 Basic Components

The main advantage of inclusive caching is a simplification of the displace-
ment process. In contrast to exclusive caching, where a cache-line is only
located in a single cache level. For exclusive caching, a copy operation is
necessary within the cache hierarchy, if a cache-line is displaced.

The main disadvantage of an inclusive cache organization is that the use
of the overall cache capacity is not optimal, as copies exist in different levels.
Additionally, an inclusive organization of a shared last level cache can cause
side effects. For example, a single core can implicitly invalidate the cache
content of another core’s higher level private cache by intensively using the
shared cache.

Coherency

False sharing describes a performance issue, that occurs if cores in a shared
memory system hold references to different data objects, which results in
unnecessary coherency operations because the data objects are sharing a co-
herency block [BS93; TLH94]. False sharing is one example, when charac-
teristics of a cache organization have to be taken into account to avoid a
performance loss, which contradicts a full memory abstraction.

For a processor with multiple cores, the existence of caches poses additional
challenges. Assuming a shared access of data from the programming level,
also called SMP, additional support is needed to ensure its coherence, because
different copies of data can exist in multiple caches. The common cache
organization of modern multi-core architectures, separates private and shared
caches [CS06]. Commonly the highest level cache memory, the so called Last
Level Cache (LLC) is shared, whereas cache memories that are located closer
to the core are typically private.

In addition to the replication of data, a cache coherency protocol adds in-
formation to each cache-line to track its status. MESI represents a simple and
prevalent cache coherency protocol, which is named after its state: modified,
exclusive, shared, and invalid. The protocol is based on snooping to identify
remote memory transactions, that may trigger changes to local cache-lines.

The protocol invalidates all other existing copies in shared status to guaran-
tee coherency of cached data rather than a reload of modified cache-lines. Es-
pecially for large shared memory systems, which typically have non-uniform
memory access (NUMA) characteristics, it is a disadvantage that the four
state MESI protocol can not support cache-to-cache transfer of data within
a coherency domain. In order to overcome this limitation, AMD Opteron

17

Chapter 2 Many-core Systems

(a) bus (b) star (c) ring (d) mesh

Figure 2.5: Examples of Network Topologies

microarchitecture implemented with MOESI an extension to MESI. This ex-
tension introduced a so called owned state that allows a single copy of a
cache-line being modified without invalidation of other copies. Obviously the
protocol has to broadcast the modification to other shared copies, but this
method enables cache-to-cache transfer of data.

A similar approach of extending the classic MESI protocol was first imple-
mented the Intel Nehalem microarchitecture. The resulting extension, called
MESIF, adds a so called forward state. One copy of a cache-line may exist
in this state, which can then be used to serve requests from other processor
caches.

2.1.3 Interconnect

A classic terminology to describe network topologies are graphs and edges
[DT04]. Apart from this abstract terminology, graphs can represent devices,
such as computing nodes, cores or organization of memory and edges the
connections between the devices. Dependent on the connection between the
graphs, networks can be classified into basic topologies or combinations of
them. Examples for different topologies of network interconnects are illus-
trated in Fig. 2.5 [TvS13].

Figure 2.5a illustrates a bus topology, a single physical connection to con-
nect all nodes. For a communication between the nodes, the connection is
typically shared through time multiplexing. If one node represents the cen-
tral connection point, a so called root node, the topology represents a star,

18

2.1 Basic Components

as shown in the next figure. All other nodes are connected to the root by
point-to-point connections. The next figure illustrates a ring topology, where
every node has exactly two neighbors, which leads to a circular path. Last,
an example of a mesh topology is shown, which consists of two or more nodes
with redundant paths in between. Consequently a routing mechanism is nec-
essary for the available point-to-point connections. Specific examples for the
abstract network topologies, such as described in this paragraph, can be found
in classic as well as state-of-the-art processor architectures.

A classic example for the implementation of a bus topology is the front-side
bus (FSB) by Intel, which was integrated into a huge number of processors
from Pentium to Pentium 4 to connect computing cores and the chipset. AMD
was the first chip vendor that replaced the established bus by a crossbar in
2002 for their server processors to increase scalability of the architecture. This
technology was adopted by Intel for its Nehalem microarchitecture in 2008.
Since 2013, the interconnect of the state of the art multi-core micro architec-
ture by Intel named Haswell, relies on a ring topology. To connect multiple
processor chips to a single coherency domain recent Intel processors include
with QuickPath Interconnect (QPI) a point-to-point interconnect which in-
cludes a cache coherency protocol.

QPI is organized in different layers with the following attributes [QPI09]:

• Physical layer: handles phits, 20 bit physical units

• Routing: Describes the path, that a packet will traverse

• Link layer: Granularity of link layer is a flit with 80 bit length

• Transport layer: Dependent on the architecture

• Protocol layer: Supports different message classes

Intel corporation recently released the Many Integrated Core (MIC) proces-
sor architecture, which is the first commercial version of a many-core architec-
ture in the x86 landscape. The MIC (pronounced: Mike) architecture is based
on research of the Larrabee project [Sei+08], the Teraflops Research Chip
Polaris [Van+08] and the Single-chip Cloud Computer (SCC) [Mat+10]. In
2010, early prototypes with the codename Knights Ferry have been released
to developers. The first generation product with the codename Knights Cor-
ner (22 nm) has been announced in 2011 and released in 2013. The second

19

Chapter 2 Many-core Systems

generation product codenamed Knights Landing (14 nm) has been announced
in 2013 for a release in 2015.

The Intel Xeon Phi first generation product is an example of a many-core
processor that implements a ring interconnect. The interconnect of the many-
core processor consists of three bidirectional rings to transfer data, command
and address, and coherence as well as credits information, and fulfill their
different requirements regarding latency and throughput. All basic processor
components, specifically the PCIe logic, processor cores, and memory con-
trollers providing GDDR5 are directly connected to the interconnect. Here,
multiple processors represent different coherency domains because PCIe does
not provide the feature of maintaining coherent caches, which is supported
by QPI.

Another example for a processor architecture that includes an interconnect
based on a ring topology, is the Cell processor that has been developed by
Sony, Toshiba and IBM. The architecture is of heterogeneous nature. It com-
bines general purpose PowerPC processor cores and special purpose SPU ele-
ments [Hof05]. This heterogeneity posed challenges to software development
for the processor in its programability. Binary compatibility between the cores
was not supported because the SPU elements used a different instruction set
that targets efficient execution of SIMD floating point operations.

Intel Labs founded in 2009 the Many-core Applications Research Com-
munity (MARC) to support research in the field of many-core software re-
search [MARC]. Through this community with a strong academic part, the
SCC has been provided to researchers as a vehicle for many-core software
research. A major target of this experimental architecture has been an un-
derstanding of the programmability and application scalability of many-core
chips. Furthermore, fine grained voltage and frequency control enables new
possibilities regarding exploration of energy efficient methods for software de-
velopment.

2.2 Single-chip Cloud Computer (SCC)

The Single-chip Cloud Computer (SCC) is a concept vehicle created by Intel
Labs as a platform for many-core software research [SCC10]. The full research
platform consists of the experimental processor, which has been developed
under the project name RockCreek, the development board with a coprocessor
implementation, and a new many-core software stack.

20

2.2 Single-chip Cloud Computer (SCC)

As a PCIe coprocessor, the SCC cannot be used as a standalone system.
The processor is connected to a standard server hardware called Management
Console PC (MCPC). A standard Linux operating system runs on the MCPC
with SCC’s software stack, which has been developed by Intel Labs to setup
and debug the connected SCC processor.

Figure 2.6 illustrates the tiled architecture of the experimental architecture,
consisting of 48 P54C based cores, that are arranged in a 6 × 4 on-die mesh
of tiles, with two cores per tile.

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

MC

MC

MC

MC

I/O to Host PC

Tile

router

IA32
core

L2
cache

MPB

IA32
core

L2
cache

Figure 2.6: Layout of the Intel SCC, focusing on the tiled processor architec-
ture with 24 tiles and 4 memory controllers (MCs) in the corners
of the mesh interconnect (Figure based on: [Mat+10])

2.2.1 Research System

The SCC chip has four on-die memory controllers to address the external
main memory. The supported DRAM type is DDR3-800, where frequencies
of the cores and the routers of the mesh are configurable. The routers support
frequencies of 800 MHz and 1.6 GHz, while the cores use a frequency between
100 and 800 MHz. The power consumption of the full chip depends on the
configuration (frequency and voltage of the mesh and cores) and is between
25 and 125 W.

21

Chapter 2 Many-core Systems

For a many-core processor that follows the network-on-chip paradigm, each
remote memory access can be logically split into two parts: request and ac-
knowledge of a memory operation. Read and write requests from computing
cores are transparently performed by the Mesh Interconnect Unit (MIU),
which is part of each tile and directly connected to the FSB of each core (cf.
scale-up from Fig. 2.6). Thus, these read and write requests can be a result
of a cache-miss or a memory access to an uncached region. For a read opera-
tion, the acknowledge holds the actual data, whereas for a write operation the
request package holds the data. Regarding a single blocking access, a sym-
metric pattern can be assumed, when reads and writes on same granularity
have identical costs.

The full SCC System consists of the many-core processor that shares a
special main board in a common form factor with an FPGA. The FPGA
implements a System Interface (SIF) and tunnels the native protocol of the
on-chip interconnect to the MCPC through PCIe. For this purpose, the FPGA
is directly connected to the on-chip interconnect. Due to the fact that a retar-
getable component has been chosen for implementation of a system interface,
new firmware can add new functionality, such as a set of synchronization
registers or a global interrupt controller.

For all benchmark results presented in this chapter4, the SCC has been
used in its default configuration with a frequency of 533 MHz for the cores,
and a frequency of 800 MHz for the mesh and the memory.

2.2.2 Processor Cores

Two classic P54C based cores are located on each tile, which are fully com-
patible to IA32, the 32 bit x86 instruction set. The classic architecture has
been chosen for the implementation of the Intel SCC, because it could be
fully synthesized [Lu+07]. Positive consequences for software development
are that the software stack for x86 based processors, such as a standard com-
pilers (icc,gcc) and a standard operating system (Linux) can be re-used with
minor modifications.

In contrast to its successor, a classic Pentium single-core processor of 1994
with a maximum frequency below 200 MHz, the SCC is implemented in 45 nm
CMOS technology, which results in a maximum frequency of 1 GHz. Both
processors have an identical two level cache hierarchy, with a Level 1 Cache

4Unlike noted otherwise.

22

2.2 Single-chip Cloud Computer (SCC)

(L1) size of 32 kB and a Level 2 Cache (L2) size of 256 kB. For the SCC
processor cores, hardware cache coherence is provided not even between two
cores that share a tile. The design resembles an on-chip distributed shared
memory system, which has been defined as a cluster-on-a-chip architecture.

For embedded systems, software controlled on-chip memory is usually termed
as scratch-pad memory [Ban+02]. In addition to local processor caches, the
on-chip memory organization of the SCC consists of a software controlled
on-chip SRAM with a size of 16 kB per tile, which is called Local Memory
Buffer (LMB). This memory represents a low-latency infrastructure for com-
munication and synchronization. If the architecture does not provide cache
coherence in hardware, the use of caches is per default restricted to private
memory regions. For efficient communication, hardware support is needed
to selectively flush and invalidate shared data, if shared memory regions are
used in combination with caches or write-combining buffers. The P54C in-
struction set has been extended for the SCC to support a selective invalidation
of cache-lines. A software workaround, has been implemented to flush mod-
ified data by writing dummy data. These extensions in combination with
software controlled on-chip memory represent the hardware support of the
SCC for message passing.

Especially, if on-chip memory can be explicitly controlled, distributed shared
memory can be categorized according to its location and resulting latency.
The SCC has two different types of shared memory that can be accessed by
all cores without any coherency: off-chip memory which is represented by
four DDR3 memory controllers with a supported size of up to 64 GB as well
as on-chip memory of 16 kB per tile.

Figure 2.7 illustrates different software layers of a cluster-on-a-chip commu-
nication environment. RCCE, such as its extension iRCCE, enables message
passing communication through send and recv functions [MvW11; Cla+13b].

The existing communication libraries can be logically separated into two
parts: In this chapter the focus is on a basic communication layer, which
abstracts a specific hardware and represents the lower part of these two-
sided communication layers. The upper part and its further development is
described in the next chapter.

A software layer like RCCE can be used to abstract communication by
means of software controlled on-chip memory, which is called Local Memory
Buffer (LMB) in the scope of Intel SCC research projects. For related projects,
the Message Passing Buffer (MPB) has been established as the LMB that
is assigned to each core on a tile for low-latency communication. Explicit

23

Chapter 2 Many-core Systems

native application or library

RCCE iRCCE

basic communication layer

gory interface: put, get, . . .

send, recv, . . . isend, irecv, . . .
non-gory interface:

cluster-on-a-chip hardware

low-level operations: read, write, flush, invalidate . . .

Figure 2.7: Overview of a layered communication structure for a cluster-on-
a-chip processor

access to the MPBs and the synchronization of concurrent access can be
abstracted by RCCE. However, part of this buffer is typically used for flags
for synchronization purpose.

As cores of the SCC are based on 32 bit architecture – each core has 4 GB
as maximum amount of addressable memory – further mechanism is needed
to access the 64 GB of physical system memory. This support is an extension,
which has been realized as another level of memory indirection. Therefore,
each core holds a separate Lookup Table (LUT) to translate the 32 bit core
addresses into 46 bit system addresses. Each LUT has 256 entries. Its entries
are configurable and point to specific types of memory regions, such as off-chip
memory, on-chip memory, configuration-and-synchronization register, with a
maximum size of 16 MB. In detail, each LUT entry holds the upper 32 bit of a
system address, which consists of mesh coordinates, a target router port, and
a specific memory segment. To complete the translation process, the lower
14 bit of a core address are added as an offset, whereas the upper 18 bit select
the LUT entry.

24

2.2 Single-chip Cloud Computer (SCC)

2.2.3 Interconnect

The tiles of the SCC are connected by a 2D mesh. The mesh consists of
routers, where a pair of routers is connected through bidirectional point-to-
point connections. One router is located at each tile with four external ports.
Consequently, a router has five ports, local, north, east, south, and west.
Each router uses static round robin scheduling between the ports to forward
packages. Virtual channels are used to avoid the blocking of incoming packets
that target a free output port. The reason of such a blocking would be that
another output port is blocked, because a packet that has been previously
enqueued [Dal92].

A memory request is generated by reading or writing a memory location
within the physical address space of a core. A request is split by the Mesh
Interconnect Unit (MIU) into basic units, so called flits. The on-chip mesh
interconnect of the SCC uses a fixed x-y wormhole routing to transfer data,

Table 2.1 shows average latencies for a memory access of a core to an
on-chip and off-chip memory location with a certain distance on the mesh,
which is detailed in the Intel SCC technical documentation [SCC12]. These
numbers represent latencies of a tile boundary which can be used as a lower
bound, because effects resulting from architectural overhead or collisions on
the interconnect are not taken into account. To determine a more realis-
tic communication performance, a communication and contention model is
derived in the following in this chapter.

Table 2.1: Theoretical memory latencies [SCC12]

Latency Table Approximate latency to read a cache line (out-
put from the core to input back to core)

L2 access 18 core cycles
MPB access 45 core cycles + 8 ∗ n mesh cycles
DDR3 access 40 core cycles + 8 ∗ n mesh cycles + 30 cy-

cles (400 MHz on-die memory controller)+ 16
cycles (400 MHz off-die DDR3 latency)
n=number of hops to the MPB or the memory
controller (0 < n < 8)

25

Chapter 2 Many-core Systems

2.2.4 Basic Memory Types

Modern processors use virtual memory management to abstract details of
main memory management. The operating system provides a separate address
space for each process, with the result that virtual addresses are managed
which are translated to physical addresses in hardware. A hardware unit,
the Memory Management Unit (MMU), is responsible for the translation of
virtual addresses to physical addresses. Page tables, which are commonly
organized in multiple levels, hold the mapping of virtual to physical addresses
as well as additional meta information, namely page table attributes. Due
to the organization in multiple levels, the translation process is called table
walk, a time consuming process consisting of multiple memory accesses and
commonly accelerated by a Translation Look aside Buffer (TLB). As TLBs
are critical for system performance, hardware solutions exist and optimization
techniques have been evaluated, for example prefetching [KS02].

The following example in C programming language shows indirect access
of data with a pointer.

1 int * ptr = malloc(sizeof(int));

2 int a = *ptr;

If this code example is executed within the scope of a process, the return
value of the called function malloc is a virtual address. To read the data
which is stored at this address, the virtual address is translated to a physical
address. Here, the allocation of physical memory can be delayed until data
is accessed. For the x86 processor architecture the following memory types
can be categorized in the four following categories: uncacheable, cacheable,
write back, write through. The configuration and the resulting use of caches
is crucial in terms of memory performance [Dre07].

If a missing hardware cache coherence is taken into account, data has to
be explicitly updated. This includes an implicit data transfer and leads to
the question, how cache memories are used. For a write back policy, a valid
strategy is to flush locally outdated values. If a write through policy is used,
it would be sufficient to invalidate potentially outdated values. Through the
method of page table attributes it is possible to tag data, for instance volatile
data which is potentially in an inconsistent state. As a result, system software
can distinguish between private and shared data.

A processor based on the IA32 compatible Intel P54C, such as the Intel
SCC, can distinguish between three cache memory configurations [Intel95]:

26

2.2 Single-chip Cloud Computer (SCC)

• write back: In this configuration reads from and writes to the main
memory are cached. A reading memory access can lead to a cache miss.
On the basis of its caching policy, a core writes changes back from its
cache to memory.

• write through: In this configuration, a processor core may use the cache
to accelerate reads to main memory. Writes are written through to the
main memory.

• uncacheable: In this configuration, access to main memory is not cached
for the specific memory region. This behavior leads to the highest per-
formance penalty in terms of throughput compared to other cache mem-
ory configurations.

The processor manual says that hardware registers should be accessed in
write through or uncacheable configuration. Due to its direct data manipula-
tion, uncacheable is the preferred configuration for hardware registers which
are, for example, used for providing atomic operations to the SCC.

Option for Non-coherent Memory Access

Software controlled memory coherence provides certain advantages [LH89].
For example meta information can be used to selectively flush and invalidate
data. In order to realize such a behavior, additional hardware support is
needed to explicitly move selected cache-lines.

The concept of a cluster-on-a-chip architecture implies that a different ac-
cess of private and shared memory regions is used. Intel’s SCC introduces
an additional memory option to handle access to shared memory regions.
For selected cache memory configurations, on-chip or off-chip shared memory
regions can be tagged.

• Message Passing Buffer Tagged (MPBT): Cache-lines with this option
are placed only in Level 1 Cache and bypass all higher level caches. A
write combine buffer is used to accelerate writes to regions with this
memory type.

Memory regions in uncached or write through configuration can be com-
bined with this new memory option for hardware distributed shared memory.
As a result of this option, bursts of write operations are accelerated with a
write-combining-buffer. The SCC extends IA32 by an instruction to support

27

Chapter 2 Many-core Systems

fast invalidation of cache-lines which are tagged as MPBT. This is necessary
to enable the use of caches for non-coherent shared memory.

Local memory performance

For modern processors with hardware support to hide latencies and to guar-
antee data consistency – for example out-of-order execution, prefetching, and
cache coherency – results from the classic membench are no longer sufficient
to characterize memory performance [Juc+04]. However, for an in-order ar-
chitecture without hardware prefetching, such as the Intel SCC, results are
sufficient for a characterization of the local memory performance. For shared
memory regions, the scenario becomes more complex. A detailed analysis of
the relation between memory access and tile distance, respectively memory
contention is presented later in this chapter.

Figure 2.8 shows the results of membench, a benchmark that measures the
average memory access latencies by running iteratively through an allocated
array of size range with a step width of stride [McC95].

4 32 256 2 k 16 k 128 k 1M
4 k

64 k

1M

16M

0

100

200

300

400

Stride [Byte]

R
ange

[B
yte]

L
a
te
n
cy

[n
s]

(a) SCC Core 0 (south west)

4 32 256 2 k 16 k 128 k 1M
4 k

64 k

1M

16M

0

100

200

300

400

Stride [Byte]

spacer

(b) SCC Core 47 (north east)

Figure 2.8: Influence of mesh distance to memory performance

The varying latencies for different range and stride parameters arise from
the effect of cache hits within a cache line (stride < cache line size) and the
reuse of cached data (range < cache level size). As shown in Fig. 2.8a and

28

2.2 Single-chip Cloud Computer (SCC)

Fig. 2.8b (in addition to the memory latencies of the SCC platform and its
cache sizes) the information that a cache line has the size of 32 B as well as the
4-way associativity of the L2 cache can be extracted. The difference between
the two test cases is the distance from a core to its main memory located
in off-chip DDR3 RAM. Thus, Fig. 2.8 compares memory latencies of a core
located at the closest to a core located at the farthest mesh tile, compared to
a single memory controller.

These measurements show a difference of about 100 cycles for the latency
to the main memory of a core which is located close to a memory controller
compared to a core which is located on the opposite side of the mesh intercon-
nect. The default configuration of the SCC system takes this difference into
account by placing private memory regions to the memory controller which
has the smallest distance. As a processor core and its private cache is located
on the same tile, latencies with a smaller range are independent from the
distance of a tile to the memory controller.

2.2.5 Synchronization Support

Architectural support of atomic operations, for example fetch-and-φ, is a com-
mon mean for efficient synchronization of shared memory systems [KRS88]. In
general, fetch-and-φ stands for a read-modify-write synchronization operation
and can be implemented as: test-and-set, fetch-and-add, or compare-and-swap.

The hardware synchronization support of the SCC architecture is limited
to atomic reads and writes on 1, 2, 4 and 32 B granularity. This represents an
important attribute to set and get flag values, which is a common mean for
the synchronization of distributed shared memory systems. However, regard-
ing efficient implementation of lock-based as well as lock-free synchronization
methods, read-modify-write operations provide several advantages [MS91].

In order to overcome this obvious limitation, the SCC provides a set of mem-
ory mapped configuration registers dedicated for synchronization. In general,
dependent on the behavior and location of the unit that is configured, the
access latency can differ in orders of magnitude. For instance, configuration
registers to change frequency and voltage of cores, mesh, and memory con-
trollers have a latency in a range of ms to µs. Core frequencies can be changed
independently and have a range of 100 MHz to 1 GHz. They are fully con-
figurable and only depend on a selected voltage domain, which spans across
four cores.

29

Chapter 2 Many-core Systems

lockunlock

read/1

write/x

read/0

Figure 2.9: State transition of a test-and-set register

The interconnect of the Intel SCC does not support an encoding of atomic
operations and consequently selected operations have to be emulated by ad-
ditional units, so called synchronization registers. This method represents an
extension to the processor architecture, without modifications to the core and
network components. The same way as a configuration register, the access
to a synchronization register is memory mapped with one or more memory
locations, which is dependent on the complexity of the operation. By the use
of synchronization registers, atomic operations, such as test-and-set, can be
executed on these specific memory locations. Read-and-write requests trigger
the synchronization registers to perform a certain operation on an internal
value. To illustrate the behavior of the described synchronization register,
Fig. 2.9 holds a diagram that describes two internal states of a test-and-set
register and its transitions.

As a result busy wait implementations, which are commonly used for low
latency synchronization constructs such as locks, can only be used with limita-
tions on the SCC. By switching off or explicitly flushing local caches, on-chip
memory as well as the off-chip shared memory can be used for flag based syn-
chronization. Additionally, to emulate atomic operations, the SCC possesses
a small set of special memory mapped hardware registers, namely Test and
Set Register (TSR) and Atomic Increment Register (AIR). Consequently,
synchronization registers can be used to implement a spin-lock.

Figure 2.10 on Page 31 gives an overview on average read latencies for all
possible combinations of source and target location of SCC’s mesh intercon-
nect. The diagram shows in x direction the variation of target synchronization
register and in y direction the cores that access a register. These measure-
ments verify the assumed linear relation between mesh distance and on-chip
access latency.

30

2.2 Single-chip Cloud Computer (SCC)

0 6 12 18 24 30 36 42 47 0
12

24
36

47
20

60

100

140

180

220

target id
core id

la
te

n
cy

[n
s]

Figure 2.10: Average latencies (in z direction) of synchronization register ac-
cess from different tiles (core in y direction) to different tiles
(target in x direction). [SCC12]

Linear Back-off

For evaluation purpose it can be useful to trace information on a memory
access, such as latency or ordering. If the tracing targets a high resolution
and therefore the additional memory access is in the critical path, a low and
predictable overhead is intended.

Our measurements have verified a linear relation between latency of explicit
on-chip memory access and its communication distance. As presented in
this chapter, with a low load on the interconnect and memory system of the
architecture the latency for a single memory access can be predicted with a
high precision. The combination of this predictability with a quantified back-
off, can be used to store for instance tracing results including a constant and
location independent overhead.

An example to apply this technique, is the realization of a unified global
counter. Assuming that the access to this counter is defined as a critical
section and the communication distance to the counter is constant, dummy
operations can be added to each access and thereby unify the costs for an

31

Chapter 2 Many-core Systems

access from each core. Our concept of a unified global counter is valuable for
debugging and collecting statistical data, such as record the order of events.

The fact that the cores of the Intel SCC are based on the P54C archi-
tecture creates the possibility of a high resolution back-off by using the nop

instruction. Because of its 2 way superscalarity, an SCC core can perform
2 simple operations, such as a nop, per cycle. Dependent on the core fre-
quency, an advantage of the simple architecture is that a precise back-off can
be precomputed and realized by executing nop instructions in a loop.

2.3 Communication Model

The understanding of memory contention and network congestion for a many-
core architecture that follows the network-on-chip paradigm is a primary goal
to optimize access patterns for on-chip memory. Contention is a result of mul-
tiple cores that access a single on-chip memory location in parallel. It depends
on the costs of contention, in terms of increasing latencies, if a synchroniza-
tion algorithm should rely on a central access pattern or a distributed access
pattern, or a combination of both. Consequently, a quantification of the costs
of explicit memory accesses to hardware distributed shared memory regions
is essential. A communication model for this kind of memory is developed to
achieve this goal, with the following assumptions:

• each core has explicit access to a certain amount of hardware distributed
on-chip memory

• read and write operations to on-chip memory have identical costs

• on-chip memory locations can be accessed in different memory configu-
rations

As a first step, a simple ping-pong communication scheme is investigated
to qualify the best case communication performance without contention. As
a second step the synchronization overhead is quantified, and optimizations
for a cluster-on-a-chip architecture are discussed. The results have been used
for the optimization of a layer that abstracts on-chip data access and real-
izes efficient synchronization and communication. This upper communication
layer is studied in the next chapter.

32

2.3 Communication Model

2.3.1 Related Work

The LogP model family names a class of basic communication models with a
small set of parameters [Cul+93]. The classic LogP model leaves out effects
caused by network contention and uses four parameters to describe commu-
nication. The four parameters of LogP are:

• L: latency of the communication medium.

• o: overhead of sending and receiving a message.

• g: gap between successive send or receive operations

• P: number of processor and memory modules

Extensions to this model exist, that replace or add parameters to model
communication by including the cost of contention C, such as LoPC and
LoGPC. Frank et al. focus in “LoPC: Modeling Contention in Parallel Algo-
rithms” on the communication with active messages, that have small message
sizes and to execute code at receiver’s side [FAV97]. Moritz et al. extend with
LoGPC, the LogP and LogGP model by network contention and collision for
message processing [MF01]. LogP has not been designed to model memory
access, nevertheless it is accurate in predicting the on-chip memory access of
the Intel SCC without contention [Rot11].

Already in 1987, Yew et al. explored the Distributing Hot-Spot Address-
ing in Large-Scale Multiprocessors [YTL87]. This study targets clusters with
thousands of processors. The resulting conclusion is that serious performance
problems can occur, if a small percentage of accesses targets a single mem-
ory location. Regarding many-core systems with software controlled on-chip
memory, this issue can even occur without connecting multiple processors.

The focus of this work is on a tiled many-core system that implements the
network-on-chip paradigm and enables explicit on-chip memory access. Stud-
ies exists that express research challenges for on-chip interconnects in general
and evaluate congestion for specific types of networks [Owe+07; NM93]. Dally
studies the performance of networks using virtual channels [Dal92]. This work
is interesting for research with the SCC because its interconnect applies the
technique of virtual channels.

Few practical approaches exist that follow the LogP communication model
with extensions to derive optimizations for communication of real hardware
in an analytic way [Hoe+05]. Ramos and Hoefler present a communication

33

Chapter 2 Many-core Systems

model for cache coherent SMP systems [RH13]. In this work, it is shown that
a communication distance is not measurable for the Xeon Phi, if the cache is
implicitly used for inter core communication. This situation changes for an
architecture with a lower memory abstraction and explicit access to on-chip
memory.

For a first evaluation of the SCC’s theoretical communication performance,
the focus of the subsequent paragraph is on a simple communication pattern.
A message is transferred with a one-sided put operation of data to local on-
chip memory, which implies a remote get communication scheme on receiver’s
side. A simple synchronization scheme works with a so called canary in the
last cache-line that is transferred. A canary is a unique tag that holds a
specific information, for example a completion of the put operation.

2.3.2 Analysis

This section covers the detailed analysis of data movement characteristics
for a cluster-on-a-chip architecture. We use a low-level benchmark routine
to derive parameters for a communication model and to quantify the pre-
dictability of memory access [RW14]. Our communication model leads to a
deeper understanding of the interconnect and of the identification of bottle-
necks. Moreover, we present in this work a statistical analysis for the Intel
SCC to verify our communication model.

In addition to the average latency, we are interested in the overall distri-
bution of latencies. This information is important, especially if we want to
quantify the predictability of a communication path.

For all x86-based processors since Pentium, a high resolution and low over-
head timing measurement is possible. The time stamp counter is a 64 bit
register, which counts the number of CPU cycles since reset and is accessed
by the rdtsc instruction. For modern processors a slightly different metric is
implemented in order to calculate the elapsed time for a code fragment while
scaling the processor frequency. Another invariant can represent the over-
head of the instruction to calculate timing differences, for example, for out
of-order architectures. We have measured a constant overhead of 13 cycles,
which represents the lowest possible granularity for the simple in-order cores
of the SCC. The processor frequency for the actual timing interval was set
to a constant value for all of our measurements due to comparability reasons,
and unless otherwise noted the cores are running at 533 MHz.

34

2.3 Communication Model

The setup of the measurements, which are presented in this section, is
that a single process is started at each core. Since each process runs with
a separate operating system instance, a pinning of processes to cores is not
necessary because a migration is not possible. One method that we have
selected for low level timing analysis is to disable all sources of interrupts for
the benchmark runtime and thereby emulate bare-metal execution. Otherwise
for the identification of outliners, effects of the operating system have to be
taken into account.

2.3.3 Multi-Line Ping-Pong

The benchmark which we analyze in this section copies multiple chunks of data
between two cores. As this benchmark targets a measurement of the on-chip
inter-core communication performance, it transfers data between private-and-
shared buffer. Parameters have to be chosen within certain bounds to exclude
a pure benchmark of the cache-memory system. We specify those architecture
dependent parameters exemplarily for the Intel SCC.

For low latency communication, on-chip memory is the preferred location
for allocation of shared buffers. Several constraints exist regarding architec-
ture dependent buffer sizes for this benchmark. As we target the evaluation of
hardware support for message passing, a limitation resulting from the private
buffer access has to be avoided. Consequently, both buffers should fit into the
first level cache of each core. In addition to that limitation, the smallest gran-
ularity of a data transfer is the size of a cache-line, which is also architecture
dependent.

The Intel SCC has 16 kB of software controlled on-chip memory per tile,
respectively 8 kB per core, a cache-line size of 32 B, and a first level cache size
of 16 kB. Consequently, 8 kB of memory is allocated for each core as a private
buffer and as a shared buffer. The cache for the private buffer memory region
is configured as write back and for the shared buffer as write through with
MPBT option.

The ping-pong communication pattern, which is illustrated in Fig. 2.11,
can be described as follows: First, core A transfers n cache-lines by copying
the data from its private to the shared buffer. Second, core B transfers the
data from the shared to its private buffer. Next, the procedure is repeated,
whereas the cores change their roles: B is the sender and A is the receiver.

A coordination of the shared buffer is enabled by writing a predefined value,
a so called canary, into the last byte of the last cache-line that is transferred

35

Chapter 2 Many-core Systems

Core A Core B

shared buf.

private buf. private buf.

put get

Figure 2.11: Multi-line ping pong communication scheme

between the cores. A requirement of this synchronization scheme for the ap-
plied communication protocol is that the architecture provides strong write
ordering. This is valid for x86 architectures, that implement total store or-
dering [OSS09].

Figure 2.12 holds round-trip times with 5000 repetitions for different trans-
fer sizes, which are plotted on a logarithmic scale. For the sake of clarity, the
diagram holds only measurements for the minimum communication distance,
where each packet crosses a single router. A detailed analysis has shown,
that latencies of a point-to-point connection without additional load on the
mesh interconnect have a low jitter and a high predictability for this kind of
architecture [RW14].

As a result of this analysis, we will next estimate the communication times
dependent on the message size. The dashed curve of Fig. 2.12 on the previous
page shows communication times for nbyte which are calculated according to
the following formula:

tcomm(n) = o+ n× ttransfer = 204 cycles+ 9.3 cycles/byte× n byte (2.1)

For the observed ping-pong communication scheme an upper limit for uni-
directional communication throughput can be calculated if the round-trip
times are divided by two. For large values of n the overhead is negligible and
the maximum throughput is about 114 MB/s for a minimum distance between
communicating tiles on the mesh. If an increasing communication distance
is integrated as an additional parameter to Eq. (2.1) this influences only the
factor n. The detailed measurements of the multi-line ping-pong benchmark
corresponds to the numbers of Table 2.1 and the factor rises to 12.3 cycles/byte
for a maximum communication distance of the SCC of 8, which results in a
maximum throughput of 87 MB/s.

36

2.3 Communication Model

64 128 256 512 1024 2048

103

104

comm. size [Byte]

la
te

n
cy

[c
y
cl

es
]

tcomm(n)

Figure 2.12: Multiline pingpong

For small messages, a major part of the overall latency consists of the syn-
chronization overhead. In the subsequent part of this section, the overhead of
using flags for synchronization purposes is analytically derived and quantified.

2.3.4 Quantify synchronization overhead

The preferred location of a flag value is on-chip memory, because reads and
writes to flags are latency sensitive operations. Moreover, continuously reads
to remote memory locations stresses the interconnect. In Section 2.2.4, differ-
ent cache memory configurations have been described, which can be used for
a flag. If consistency of a synchronization flag has to be explicitly controlled,
the cost of a flag access is directly dependent of the configuration. Resulting
costs of reading and writing flags influence the overall communication per-
formance. The cost of a flag access has a major impact to the design of a
complex communication protocol and the expected throughput.

37

Chapter 2 Many-core Systems

The time top(d) for the read and the write of a value to a distributed shared
memory location can be calculated with the following formulas:

twrite(d) = tmpb(d) + tflush

tread(d) = tmpb(d) + tinvalidate
(2.2)

Those latencies can be defined as functions of the parameter d, according
to the communication distance in hops. Obviously, the distance is 0, for a
flag located in the local buffer.5

The terms tflush and tinvalidate are dependent on the memory configuration.
Assuming MPBT data for the SCC, the cost of data invalidation is constant
1 cycle, whereas the flush operation is dependent on the content of the write-
combining buffer. For the SCC, the write-combining buffer holds exactly
one cache-line of 32 B and writing the last byte flushes the buffer implicitly.
Because an operation to flush the write-combining buffer explicitly is missing,
only implicit flushing is possible through a write operation to another memory
location with MPB tag.

A technique to minimize the synchronization overhead is discussed in the
next paragraph, with different memory configurations for on-chip memory
access.

Optimization

According to the different modes of addressing shared memory for a x86
based many-core, that are described in Section 2.2.4, a direct influence on the
latency of memory operations is expected.

For a shared memory access in write through configuration and with MPBT
option, the write-combining buffer as well as the first level cache is used for
acceleration. The costs of a blocking flush operation of the write-combining
buffer depends on its state, which can be full, partly filled or empty. A
flush operation can either be triggered by a special instruction, or by filling
the buffer with dummy data and thereby flush the buffer in an implicit way.
Whereas the first method method requires an extension of the instruction set,
the second method only requires information on the architecture, such as size
and behavior of the write-combining buffer.

5For the SCC the maximum distance between two tiles is 8.

38

2.3 Communication Model

Regarding the SCC architecture, the state of the buffer is relevant to predict
the cost of a flush operation, due to the behavior of the write-combining
buffer. If the buffer, which holds a single cache-line, is partly filled, each
byte is written independently to target memory location. This behavior leads
to a maximum number of 31 memory access as a result of an implicit flush
operation, which is relevant for latency sensitive operations.

Due to the missing coherency, caching does not represent a benefit for a flag
access if a remote memory location can be accessed in an explicit way. The
main problem is not the cost of invalidation to force the reload of a flag value,
but the flush operation of the write-combining buffer, for the investigated
scenario. We propose uncacheable mapping without MPBT configuration to
minimize the costs of flag-write operations. A side effect of this optimization is
that write operations to flags can pass buffered write operations, for example
a write to the communication buffer.

As a consequence, the communication protocol has to ensure that data is
written through to memory. This can be done by selectively flushing the write-
combining buffer. Additionally, the receiver has to ensure that the date is
present, for instance polling on the last cache-line for a canary value. Another
way to overcome the described issue is a blocking behavior of a flush operation
of the write-combining buffer. Dependent on the size of the mentioned buffer
this blocking time tflush can become significant.

With a bypass of the write-combining buffer for latency sensitive transfers,
the described optimization can reduce the synchronization overhead of the
SCC up to a factor of two. For RCCE family, we have implemented this
optimization, the so called bypass flags, by mapping the LMB in different
memory configurations. Influence of this optimization to point-to-point and
collective communication for the Intel SCC is presented in the next chapter.

2.3.5 Contention

For the efficient design of synchronization methods, especially of central syn-
chronization points, it is important to quantify the cost of contention. Con-
tention can be defined as a competition for shared resources by parallel units
of execution. In the context of this work, typical examples for shared resources
are: processor caches, main memory, and i/o ports. Common examples for
parallel units of execution are: threads and processes.

Studies have shown that, for cache-coherent systems, a contended shared-
memory location mainly stresses the coherency management [Cha+05]. Here,

39

Chapter 2 Many-core Systems

the cache-coherency controller represents a bottleneck, as a central instance
that controls concurrent accesses. Further assuming that this limiting factor
is released for many-cores with multiple coherency domains, the access to on-
chip memory can partly be handled in an explicit way. This alternative way
of accessing low-latency remote memory, will have an impact on the design
of synchronization methods. The assumption is that memory contention and
resulting network congestion can harm scalability. One important task is
to quantify the resulting overhead for a given architecture to achieve good
algorithmic performance. For instance methods which are based on central
synchronization points can cause contention. Figure 2.13 compares the access
pattern of a central synchronization point between a central location and a
corner location of a mesh interconnect.

(a) center location

tile with

dual core

central syn-

chronization

point

(b) corner location

Figure 2.13: Access pattern of a central synchronization point. Arrows illus-
trate a reading access from a processor core to a central synchro-
nization point.

For low latency operations, the access pattern is of significant importance
for architectures that follow the network-on-chip paradigm. A common effect
is a linear rising latency because of a larger node distance. Moreover, the
routing policy can directly influence the latency of a memory access

The cost model for contention, which is derived in this section, takes at-
tributes of the interconnect into account and is based on the following as-
sumptions:

• Symmetric tile frequencies, which implies an identical request and ser-
vice rate for each tile

40

2.3 Communication Model

• 2D mesh interconnect without congestion control

• Static routing algorithm between the tiles (x-y routing)

• Routers provide FIFO queues to store incoming flits

• Routers implement a round-robin scheduling to select the next flit which
is forwarded to a neighboring router

Up to this point, conflicting memory accesses have not been taken into
account. If we want to model such an effect, we have to quantify the number
of outstanding memory requests per tile and decide if the network or the
target memory location is a bottleneck. As memory requests are an attribute
of the basic core architecture, we devise a simple formula to calculate the
number of memory requests per row.

memory requests

row
=
tiles

row
× cores

tile
× memory requests

core
(2.3)

For instance, the Intel SCC has a memory-request-per-core ratio of 1 due to
its P54C basic core architecture.

The routing algorithm is also of major importance to derive a contention
model. In the scope of this work, we assume that a static x-y routing policy is
used to forward flits. Moreover, we assume that if a router is blocked, flits are
stored in a buffer. For these buffers, we further assume that the administration
of pending flits is handled according to a First In, First Out (FIFO) policy.

First, we assume that the local memory buffer is saturated, which is a valid
assumption for this communication scenario. Consequently, the accumulated
bandwidth of all accessing tiles is equal to the local MPB bandwidth, which
can be normalized to 1.

nx∑
x=0

ny∑
y=0

bx,y = bLMB = 1 (2.4)

If the condition is met, that the accumulated request rate of all tiles is
sufficient to saturate one port, the available bandwidth per router can be
divided by the number of incoming ports, due to the round robin scheduling
of incoming flits. If this condition is fulfilled, the available bandwidth per
tile can be calculated by subsequently dividing the bandwidth by i starting
at the router, which is directly connected to target on-chip memory location.

41

Chapter 2 Many-core Systems

Here, i stands for the number of saturated incoming ports of each router.
Furthermore, the assumption is valid that tiles which are connected in the
same row share the available bandwidth, if a static x-y routing is used. In
this communication scenario, the average latency of a memory request can
now be calculated by the inverse of the memory bandwidth.

The factor of rising memory latencies, as a result of contention, is illustrated
in Fig. 2.14, exemplarily for a 6 × 4 2D mesh with 2 cores per tile.

5

18

5 4 4 3 3 2 2 1 1

5

12

18

5 4 4 3 3 2 2 1 1

5

6

12

5 4 4 3 3 2 2 1 1

5

6

5 4 4 3 3 2 2 1 1

group 1

group 2

group 3 router

central synchro-
nization point

parallel
connections

mesh

Figure 2.14: Contention and concurrency groups resulting of a hotspot on a
2D mesh with x-y routing. Figure shows the Intel SCC as an
example with one active core per tile.

We assume that target on-chip memory is located in a corner of the mesh,
which represents the worst case scenario. The numbers of active links are
labeled for each router, which means outstanding requests at a certain point
in time. The color of each router port indicates the expected degree of con-
tention, with white for low contention and dark gray for high contention. The
result for the given architecture is an unfair sharing of available bandwidth,
when the accumulated request rate of the computing cores is higher than the
service rate of target memory, This means that target memory location is
saturated.

As a result, spinning cores can be categorized into concurrency groups
according to its priority, in the case of a static routing algorithm. Of course
this mapping of cores to concurrency groups depends on the remote memory
location. For instance in case of x-y routing and if the on-chip memory is

42

2.3 Communication Model

located in the corner of the mesh, all cores that share one row have the same
priority.

For a representative dataset, 5000 data points have been recorded, for an
explicit memory access of each core. Results are presented as classic box
plots [MTL78], which is briefly described in the following paragraph.

The median is an upper bound of exactly 50 % of all measurements. In other
words, this value divides a set of samples by two, so that 50 % of samples are
higher and 50 % of samples are lower than the median. Each data set has
a lower and upper quartile, which represents an equivalent border for 25
respectively 75 percent of the measurements. In a box plot, the quartiles are
the upper and lower end of the boxes, while the median represents the line that
separates the box. The distance between quartile and median is multiplied by
a specific factor, commonly 1.5, to obtain the maximum length of a whisker.
A whisker spans an interval for all other values outside the quartiles. Data
points which are outside this interval, are marked as outliners.

The two diagrams in Fig. 2.15 show the latencies for two different com-
munication distances. The nearest communication distance (1 hop) is plotted
in Fig. 2.15a and the largest communication distance (8 hops) is plotted in
Fig. 2.15b. The diagram shows the memory latencies, on the y-axis, in rela-
tion to the number of cores that access on-chip memory in parallel, on the
x-axis.

2 4 8 16 32 48
50

100

150

200

core count

la
te

n
cy

[c
y
cl

es
]

(a) near

2 4 8 16 32 48
50

200

1,000

2,000

core count

la
te

n
cy

[c
y
cl

es
]

(b) far

Figure 2.15: Latencies of on-chip memory access under contention

A significant result of the experiments is the fact that tiles are grouped
into domains which do not necessarily depend on their absolute distance to

43

Chapter 2 Many-core Systems

the memory location. Our experiments have shown, that the tiles of the Intel
SCC have to be grouped according to their y-coordinate on the mesh.

In the next paragraph, the effect of mesh distance to fairness of central
busy-wait synchronization point is analyzed.

2.3.6 Back-off with Feedback

Smai and Thorelli have targeted congestion in networks through the avoidance
of bandwidth saturation by choosing an appropriate timeout, a so called back-
off [ST98]. An exponential function is often used as a good approximation
to calculate parameters of a back-off function used in networks [KSM05].
The combination of predictability and low-latencies of an on-chip network
generates further potential for optimization.

A low memory abstraction for many-core processors implies an explicit
access to on-chip memories. Especially for architectures with a memory-
access path that crosses the network interconnect, memory contention can
cause network congestion. In general, the load on the interconnection network
is dependent on the number of outstanding requests at a certain point in time.
Furthermore, it is assumed for the analysis of the Intel SCC that only a back
pressure mechanism is applied to control the number of outstanding requests.

The routing algorithm and the existence of buffers to temporarily store
packets at a router are additional attributes of an on-chip interconnect that
can influence the occurrence of network congestion. For the SCC, two out-
standing memory requests can exist per tile. The routers have FIFO buffers
and virtual channel support.

As a result, according to the definition of concurrency groups in Sec-
tion 2.3.5 an appropriate back-off can be derived to realize busy waiting to
a remote memory location. As mentioned before, the basic approach is to
overcome contention of a single synchronization point, for instance resulting
of a spin-lock or a barrier which uses a central counter.

44

2.4 Conclusion

2.4 Conclusion

In this chapter we describe and analyze the basic components of a x86-based
many-core architecture, which follows a network-on-chip paradigm. This in-
cludes an overview on memory organization, processor core and network in-
terconnect, with a focus on their interaction.

The basic organization of this work is bottom-up. The structure is based
on a layered approach of memory abstraction for a many-core processor. This
chapter covers the basic communication layer, which is used in the remainder
of this work as a hardware-abstraction layer. In order to predict the costs
of on-chip communication, we have developed a communication model for a
cluster-on-a-chip. The research-processor SCC by Intel is used as an example
to derive parameters and demonstrate the applicability of the communication
model in practice. The development of such a model represents a key contri-
bution to explore the limits of a processor architecture without full chip cache
coherence in terms of communication performance.

Moreover, we quantify the costs of contention and identify consequences
resulting from explicit on-chip memory access. To overcome limitations of a
given many-core architecture, we propose a quantified back-off with feedback
to realize central synchronization points. The insights of this low-level analysis
can further be used to develop efficient communication methods.

45

3
Communication and
Synchronization

“A communications disruption could mean
only one thing: invasion” [Star99]

For a many-core architecture that implements a network-on-chip processor
with many small computing cores, programming in various abstraction levels
from application to system software development has a tremendous demand
for effective communication and synchronization.

Figure 3.1: Example of a collective-communication pattern for a 6 × 4 mesh

The focus of this chapter is the design and implementation of a low-level
communication and synchronization interface for tiled processor architectures.
This interface targets especially processors which follow a many-core design
approach, including software controlled on-chip memory or even configurable
coherence domains per chip.

47

Chapter 3 Communication and Synchronization

In this chapter, a communication model is used to explore the limits for such
architectures. Different communication patterns are analyzed, for example as
illustrated in Fig. 3.1 on the previous page. As a result of this analysis, we
have developed and analyzed alternative communication methods for non-
coherent memory coupled clusters with software controlled on-chip memory.
In addition to that, we use the communication model to predict different
protocols for point-to-point communication and derive optimizations.

At RWTH Aachen University, we have developed with iRCCE a low-level
communication library for the Intel SCC. In this chapter, its feasibility is
demonstrated and its performance is evaluated with the use of micro-bench-
marks. Results of the NPB application benchmarks are discussed in the fol-
lowing chapter.

The main difference of Rock Creek Communication Environment (RCCE)
family1 compared to existing interfaces and libraries for many-core systems is
a resource aware communication design for direct on-chip message passing. If
future processor architectures provide remote memory access to software con-
trolled on-chip memory for low-latency communication, the word remote will
no longer be related to a physical distributed memory location and message
passing will become an even more attractive option for on-chip communica-
tion. My contribution to the work which is presented in this chapter are in
particular the following points:

• Specification and analysis of a communication model for a low-level
communication environment.

• Development of sophisticated point-to-point communication that achieves
low overhead.

• Implementation of classic software techniques to hide latencies.

• Optimization of synchronization constructs for the Intel SCC.

The approach of implementing memory coherence in software as covered
in the next chapter, has a strong demand for a low-level interface, such as
iRCCE. Resulting requirements of this specific application are a low latency
for messages between coherence domains and the option for asynchronous
communication.

1Including RCCE and its extensions iRCCE, RCCE comm, . . .

48

Organization of this Chapter

The main concept of this chapter has been first presented in our paper:
“A Fast Inter-Kernel Communication and Synchronization Layer for Metal-
SVM” [Reb+11]. A further development of this concept, especially regarding
the analysis of different communication schemes for a cluster-on-a-chip pro-
cessor and the extension of an existing research system has been published
in: “Connecting the Cloud: Transparent and Flexible Communication for a
Cluster of Intel SCCs” [Reb+12a].

Both concepts have been further developed as presented in this dissertation.
This includes the interaction of communication layers, which is illustrated in
Fig. 3.2 whereas the focus of this chapter on RCCE family is highlighted.

native application or library

RCCE iRCCE

basic communication layer

gory interface: put, get, . . .

send, recv, . . . isend, irecv, . . .
non-gory interface:

cluster-on-a-chip hardware

low-level operations: read, write, flush, invalidate . . .

Figure 3.2: Focus of this chapter in relation to the investigated layered com-
munication structure

This chapter is structured as follows: First, related work to the devel-
opment of a low-latency communication infrastructure is summarized. The
second section of this chapter summarizes and analyzes hardware and soft-
ware extensions for an experimental many-core system. This includes support
of atomic operations for the SCC. and an extension of its research framework
to emulate a cluster-on-a-chip with more cores.

The third section of this chapter focusses on an extension of the low-level
communication environment RCCE. This work is based on the integration of

49

Chapter 3 Communication and Synchronization

iRCCE [Cla+13b], a non-blocking and low-latency communication and syn-
chronization layer that features a fully asynchronous mailbox-system, to a
bare-metal framework of the Intel SCC [Reb+11].

The fourth section covers optimizations of message passing buffers, such
as a dynamic allocation scheme, to enable low latency, high throughput and
scalability.

Last section of this chapter covers the implementation of high performance
synchronization constructs, in terms of low latency and scalability. Some of
the presented results, which are discussed in the second part of this chapter,
have been published in our previous work [Reb+12c]. Also, this previous
publication covers the analysis of the impact of a high performance on-chip
mesh interconnect to common busy-wait synchronization methods.

3.1 Related Work

Computing nodes, which are commonly coupled by a dedicated high-perfor-
mance interconnect, are called compute cluster, often shortened to cluster.
In the common understanding, a cluster consists of a set of loosely or tightly
coupled computer systems, that execute the same application. Dependent
on the programming model, a communication interface is typically used to
abstract hardware details of a specific fabric interconnect, such as Infiniband,
PCIe or Ethernet.

An unconventional cluster is a cluster system which consist of components
that have not been developed or not intentionally designed for a use in high-
performance computing (HPC). One example is the use of small in-order
processor cores to build many-core processors with a computing power be-
yond 1 TFLOP/s. A cluster consisting of processors that provide scratchpad
memory, can also be seen as an unconventional cluster, because explicit ac-
cess to on-chip memory has not been established in the x86-based processor
landscape. The SCC is a research processor which can be categorized as a
distributed shared memory system. It waives full chip cache coherence and
provides hardware support for on-chip message passing. Today, from an HPC
perspective such a system can be seen as an unconventional cluster.

For conventional clusters, that consist of nodes with multi-core processors
which are connected by a dedicated high-performance interconnect, the estab-
lished parallel programming model is message passing. This model is based on
the assumption that hardware-distributed memory is not shared by default

50

3.1 Related Work

and that communication is handled explicitly. Besides pure message pass-
ing, hybrid models exist that combine message-passing and shared-memory
programming models to explore node-level parallelism.

MPI is a de-facto standard for message passing in HPC, by defining a broad
set of communication functions, including classic two-sided communication
(send and receive) and one-sided communication (put and get) behavior.
As a full featured API, MPI supports a diverse range of parallel workloads
and programming models. The interface and its application is described in
one of the subsequent paragraphs in more detail.

Besides MPI, a broad range of low-level communication interfaces exist,
which are not necessarily independent of a specific vendor or designed with
a specific hardware in mind, especially for embedded systems. Nevertheless,
existing low-level APIs typically provide an abstraction of communication-
device details.

With MCAPI [MC11], the Multicore Association defines a portable API
for message passing to abstract communication and synchronization for dis-
tributed embedded systems with closely coupled cores. A two-sided commu-
nication interface is specified, which includes support for different communi-
cation channels.

GASnet [Bon02] and ARMCI [Nie+06] are based on the approach of a
one-sided communication interface. Both approaches assume native direct
memory access (DMA), which is supported by network specific drivers or
globally addressable shared memory.

Symmetric Communications InterFace (SCIF) defines an API, which exists
in two programming styles and has intentionally been developed for communi-
cation within an Intel platform between Xeon processor (host) and Xeon Phi
coprocessor (device). Dependent on the programming space, such as kernel
and user space, specific functionality is provided [SCIF14].

RCCE as a light-weight communication layer has been developed by Intel
Labs for their many-core research processor SCC [MvW11]. The related com-
munication interface and its reference implementation, both called RCCE, is
described in Section 3.1.2.

In addition to that, RCCE family names the original communication en-
vironment and its extensions iRCCE and RCCE comm [Cla+13b; Cha10],
which have been developed by members of the MARC community [MARC]. In
the scope of this dissertation, the term RCCE family will be used to describe
the general communication concept independent of a concrete implementa-
tion.

51

Chapter 3 Communication and Synchronization

OpenSHMEM [Poo+11] is a standard for SHMEM libraries, which shares
similarities to the RCCE family. This standard targets the issue that each ven-
dor provides a slightly different shared memory programming library. How-
ever, optimizations have been applied with a specific hardware in mind, such
as the Cray MPP systems.

SISCI names an API by Dolphin, which creates a software infrastructure for
programming of clusters with shared memory interconnects, with PCIe as the
latest hardware-generation base. Another API in this scope is Shared Mem-
ory Interface (SMI) [DSB99], which has been developed at RWTH Aachen
University for SCI [SCI93].

3.1.1 Message Passing Interface

Message Passing Interface (MPI) is a well established and widely used stan-
dard for programming distributed memory systems, in a way that communi-
cation has to be explicitly handled. For instance, communication in paral-
lel programs can be explicitly expressed with message passing between pro-
cesses. Specifically, communication consists of moving data from one process
to another through cooperative operations. Message Passing Interface itself
does not represent a programming model and is not limited to one However
as the name suggests, it primarily addresses the message-passing parallel-
programming model.

MPI-1.0 has been released in 1994 [MPI94]. The further development has
followed the concept of extensions, such that MPI-2 mostly represents a su-
perset of MPI-1. At the state of this work, the most recent version of the
Standard is 3.0, which has been released in September 2012.

MPI supports the SPMD programming paradigm, which is a prevalent and
easy-to-use parallel programming paradigm where multiple processes execute
a single program [GLS94]. These processes communicate by means of an MPI
communication library.

Communication can be categorized if communication parameters are two
sided specified by involved processes, both on sender and receiver side. Since
version 2.5 MPI extends communication functions by so called one sided com-
munication, whereas parameters are specified one-sided.

Different libraries exist that implement the MPI standard. Widely used
MPI implementations are for instance OpenMPI and MPICH, besides vendor
specific implementations. Some behavior is implementation specific, such as
the support of low-level API’s or network interconnects of a specific vendor.

52

3.1 Related Work

3.1.2 RCCE

RCCE (pronounced: rocky) is a communication environment which has been
developed by Intel Labs for the SCC (codename: Rock Creek), to support
many-core software research [MvW11]. The abbreviation RCCE stands for
Rock Creek Communication Environment, and is used in synonym for a com-
munication interface, as well as the reference implementation of a communi-
cation library [vWMH11].

The communication library follows the SPMD paradigm, where a single
RCCE process is started on each processor core of the Intel SCC. Because the
concept of a small communication layer does not specify sharing of an address
space, RCCE uses the abstract term Unit of Execution (UE), which describes
an entity that changes the program counter. UEs can represent processes or
threads that are executed in parallel, with the common attribute that each
UE has its unique rank.

For communication between UEs and their synchronization, RCCE provides
two APIs, gory and non-gory. In contrast to the gory interface, which enables
direct on-chip memory access with related put and get functions, the non-
gory interface abstracts direct access to software-controlled on-chip memory.
The connection between both interfaces has been introduced in Chapter 2.
The gory interface represents a subset of the basic communication layer, that
has been described in an abstract way.

The environment is applicable for a many-core system with software-con-
trolled on-chip memory and multiple coherency domains. In the context of
the SCC, these on-chip memory regions are called Local Memory Buffers
(LMBs) and partly used as Message Passing Buffers (MPBs) for inter-core
communication. Figure 3.3, which can be found on the next page, illustrates
the memory architecture of the Intel SCC as used by RCCE.

The RCCE library implements a simple communication protocol for low-
latency point-to-point communication. For the realization of blocking two-
sided communication with the Message Passing Buffers, a local put, remote
get communication scheme is used. The reference implementation of RCCE
is limited to this communication scheme, whereas for its extension iRCCE
alternative schemes are provided.

The default scheme of RCCE implies that the MPB of the sender is used
to transfer a message, which simplifies the coordination of access. The RCCE
library implements a flag-based synchronization scheme, that relies on atomic
read and write capabilities of the SCC. In its nature as an x86-based system,

53

Chapter 3 Communication and Synchronization

Shared off-chip Memory

corefirst level
cache

last level
cache

Private
Memory

Shared on-chip Memory

flag bypass+:

on-chip memory:

off-chip memory:

legend

Figure 3.3: Memory architecture of the Intel SCC as used by RCCE [Mat+10]
and extended by iRCCE+ (optional)

the SCC architecture supports atomic updates on byte (B), half-word (2 B),
word (4 B) granularity to data which is not MPB tagged. For MPB tagged
data, a write combining buffer extends this support of atomic updates to
cache-line (32 B) granularity. Due to this hardware feature the default flag
size of RCCE is 32 B.

With version 1.1, RCCE introduces a software workaround to explicitly
flush the write-combining buffer of the SCC, which enables flag access with
a smaller granularity (1 B). This shrink of flag size has the main advantage
that more space of the LMB is left for the MPB. In contrast to the described
options with lock-less flag access, RCCE provides a third option which locks
access to synchronization flags. This option decreases the communication
throughput by 10 to 20 % because it increases the synchronization overhead.
This is a result of a reduction of the flag size to a single bit [Mat+10].

The interaction between the communication functions RCCE_send() and
RCCE_recv() are described in the following, if the default protocol is used.
First, the sender puts the message to its local MPB. Second, the sender tog-
gles a flag at receivers side to indicate the event. Finally, the sender waits
at a synchronization point until the receiver indicates the completion of the
pending message-copy operation to its private memory. This implements a
two-copy communication scheme, because a message is copied from a private
to a shared buffer and back to a private buffer.

Figure 3.4 shows a first estimation of on-chip communication latency be-
tween two tiles for the SCC, according to Howard et al. [How+11].

54

3.1 Related Work

256 1 k 4 k 16 k 64 k 256 k
10−1

100

101

102

103

3.5x latency im-

provement

Communication Size [B]

L
a
te

n
cy

[µ
s]

DRAM
linear RCCE limit
simple protocol
RCCE measurements

Figure 3.4: Communication performance of RCCE on the Intel SCC

55

Chapter 3 Communication and Synchronization

We assume a different latency gap, of 3.5x, between the on-chip SRAM
and the off-chip DRAM to compare the effective theoretical communication
performance with the communication performance of RCCE in practice. This
lower latency gap of on-chip and off-chip memory is more realistic due to
a hardware bug of the SCC hardware, which prevents a bypassing of the
interconnect for local tile memory access. In fact, this bug degrades the
point-to-point communication performance and has to be considered for a
comparison to the theoretical communication performance of the Intel SCC.

The diagram holds measurements of the common ping-pong application for
the communication library RCCE on the SCC2. Our calculation of the theo-
retical throughput is based on the assumption of a simplified communication
protocol for message passing. The on-chip SRAM is used for a data transfer
for messages with up to 8 kB, and the off-chip DRAM is used to transfer the
remainder of a larger message. Compared to this modeling of communication,
RCCE uses the message passing buffer also for a transfer of larger messages
by separating the message into chunks of buffer size.

The black line shows estimated memory latency, whereas the dashed line
illustrates the MPB latencies for small messages below 16 kB and the latencies
for larger messages, which are transferred according to the described proto-
col. For small messages below 512 B the latencies of RCCE are higher than
the estimation of memory latencies, because of the synchronization and pro-
tocol overhead. If software pipelining is used, such as in the given example,
for messages above 32 kB the latencies are smaller than the simple reference
communication protocol. Later in this chapter, the communication perfor-
mance of RCCE is described and analyzed in more detail. However, this brief
comparison already uncovers the overhead of the communication environment
on the one hand and on the other hand the potential for optimization.

3.2 vSCC: Extending a Research Platform

vSCC architecture3 consists of hardware and software components, that ex-
tend the functionality of the Intel SCC research system. In contrast to a
research environment based on hardware components off-the-shelf (COTS),

2For this comparison we selected the highest core/mesh/memory frequency of
800/1600/1600 MHz

3v stands for virtual extension which provides additional functionality to the Intel Single
Chip-cloud Computer

56

3.2 vSCC: Extending a Research Platform

the SCC research system provides flexibility to modify the architecture and
thereby explore low-level engineering aspects for many-core software. The
first extension as presented in this section has been developed by Intel Labs,
whereas the second extension has been developed by RWTH Aachen Univer-
sity in cooperation with Intel Labs [Reb+12a].

Figure 3.5 illustrates the topology of vSCC as an example of five tightly
coupled SCC devices.

virtual ex-
tension

through PCIe

SCC 0

SCC 1
SCC 2

SCC 3

SCC 4

core id: 0-47

core id: 48-95

core id: 96-143

core id: 144-191

core id: 192-239

Figure 3.5: Topology of vSCC, which consist in the illustration of five devices.
Each device represents an SCC with 48 cores and resulting 240
physical core ids for vSCC

The host system of the SCCs is directly connected to the on-chip intercon-
nect of the device via its system interface. The intended use of this direct
on-chip connection between device and host system was to setup and to debug
the device.

As the basic architecture of the SCC is 32 bit based, each core can only
address 4 GB of memory. Due to the fact that the size of the main memory is
32 to 64 GB, the cores need additional functionality to address the physical
memory of the many-core system. Such a functionality has been implemented

57

Chapter 3 Communication and Synchronization

by another indirection in hardware, named Lookup Tables (LUTs), in addition
to paging. The LUT indirection is programmable and creates the flexibility
to address remote memory in a transparent way.

Our method is to redirect this way the access to a certain amount of each
core’s physical address space via the host system. As a result, the host sys-
tem can directly respond to memory requests of the cores. This technique
introduces a higher latency, because it adds the host system to the critical
communication path, but it creates further possibilities, such as tightly con-
necting two devices.

The approach of using the LUT indirection level to customize the physi-
cal address space of the many-core system is similar to extensions of SCC’s
system interface. Upon version 1.4.0, sccKit provides a set of Atomic Incre-
ment Counter (2 × 48 = 96 AIC), that emulates atomic operations with a
proprietary interface, which is detailed in the subsequent paragraph.

3.2.1 Global Atomic Operations

As a workaround for the missing support of system-wide atomic operations
by the instruction set, the SCC research platform provides a set of on-chip
synchronization register. Specific register emulate atomic operations for the
cores of the SCC, thereby that each core can atomically change the value of
a shared counter.

The access to atomic operations works as described in the following: A
synchronization register is triggered by reading and writing a machine word
to a specific memory location. The synchronization register handles resulting
memory request independently of the processor core and modifies an internal
value, which mimics execution of an atomic operation. This implementation
of atomic operation represents a limitation compared to atomic functionality
which is provided by common shared-memory architectures. Hereby, various
operations such as atomic increment or compare exchange up to machine word
size are provided with the LOCK prefix. In contrast to that flexibility the syntax
of test-and-set register does not provide a read access without a possible
changed value. Another restriction is the limited amount of synchronization
registers and software controlled on-die memory.

However, to determine the value of atomic operations for a tiled many-core
architecture the chosen implementation of atomic operations with synchro-
nization register is essential. For the Intel SCC, additional synchronization
register have been integrated to the Rocky Lake system FPGA, because it is

58

3.2 vSCC: Extending a Research Platform

directly connected to the on-chip mesh network. As a result of this extension,
shared counters can be realized whereas each counter is composed of two syn-
chronization register, initialization and increment, and can be controlled as
follows.

• A write to the initialization register loads a 32 bit value to the counter

• A read to the same address simply returns the current value of the
counter

• A read to the increment register executes a post-increment operation
atomically on the counter value

• A write to the same address similar decrements the counter value

The basic approach of the described workaround is that memory locations
are mapped to specific operations. For instance, access to a specific address
performs an atomic add of x to an internal value, as result of a read and
returns the incremented value. Consequently, atomic operations can be sup-
ported for a processor architecture that uses simple load and store operations
to transfer data through a packet based network.

Dependent on the location of accessing core, latencies without contention
to off-chip synchronization resources are about three to five times higher than
on-chip register. If contention is taken into account, our measurements have
shown that a straight forward busy-wait implementation of a central off-chip
synchronization point is not possible for the SCC [Reb+12c]. The design
and implementation of related synchronization constructs is described in Sec-
tion 3.5, for instance the use of a quantified back-off to relax contention and
realize a shared counter based barrier.

3.2.2 Increasing the Core Count

An important contribution of adding functionality to the SCC research plat-
form has been developed at RWTH Aachen University in cooperation with
Intel Labs. The approach to virtually extend SCC’s on-chip network to ex-
plore its scalability has been first proposed by Gries et al. as an extension
of the system FPGA [Gri+11]. Due to several limitations of the research
platform, this extension has not be realized. We have followed a similar ap-
proach and developed extensions of the host system driver functionality to
transparently connect multiple coprocessor many-core systems [Reb+12a].

59

Chapter 3 Communication and Synchronization

Our full working prototype enables the operation of a tightly connected
cluster of cluster-on-a-chip processors, which is able to run a RCCE session
with up to 240 cores. The setup consists of 5 SCC devices that are connected
to a single host [Reb+15].

First, we achieved excellent scalability of SCC’s architecture for up to 96
cores with several modifications. To reach this goal an alternative communi-
cation scheme and protocol extensions have been developed for iRCCE, which
are described in Section 3.4. Due to hardware limitations of the SCC research
system, we had to give up transparent emulation of more than two tightly
coupled processors. As a result of this extension, the host driver can provide
additional functionality, such as routing memory requests to a remote desti-
nation or adding new instructions that are controlled through read and write
requests.

For the basic communication between two SCC cores, hardware support for
message passing is provided. We use this support to accelerate inter processor
communication and develop further communication extensions to hide latency.
Resulting achievements that provide additional functionality through system
software extensions are described in the next chapter.

Results

The ping-pong application has been used, to demonstrate the applicability
and restrictions of the vSCC prototype. Regarding the scalability of the new
research environment, performance measurements of floating-point-intensive
applications are presented in the next chapter.

The default communication scheme of the RCCE family turned out to be a
real performance issue for tightly coupled inter-device communication. Main
reason for this performance issue is the fact that the remote communication
path consists of read operations. As the SCC’s design lacks a DMA con-
troller, a communication with software-controlled on-chip memory is mapped
to machine operations that target a remote memory location.

With our prototype, such a memory operation is routed through the host
system, which can significantly increase its cost in terms of latency. Here, the
important attribute of a read operation is that the requested data has to be
available before the acknowledge can be generated.

For vSCC, the cost of a memory operation mainly depends on the distance
of the component, which generates the acknowledge. In the described config-
uration it is generated by the communication task, which is running on the

60

3.2 vSCC: Extending a Research Platform

host. As a result, costs for a read, in terms of latency, are about two times
higher than the costs for a write, because a write acknowledge can be immedi-
ately generated by the communication task. The option of the SCC research
system to generate automatic-write acknowledges on the device magnifies this
gap between remote read and write access.4

Because the memory subsystem of P54C can only handle one outstanding
request, the time to acknowledge memory operations is directly connected
to throughput of inter-device communication. With a change of the commu-
nication scheme to remote-put, the throughput for inter-device communica-
tion can be significantly increased from around 1 MB/s up to a maximum of
37.17 MB/s.

The main reason for this significant improvement is the fact that multi-
ple write requests can be on-the-fly. We see a direct correlation between the
fast acknowledge of write operations and high inter-device communication
throughput, due to the fact that the in-order cores of the SCC, with a simple
memory hierarchy and small write-combining buffers, are not good in hiding
memory latency. As a consequence, the possibility to generate on-board au-
tomatic write acknowledgements leads to highest throughput for vSCC. The
maximum throughput which has been achieved by our emulation with 25.7 %
of native on-chip communication.

All in all, we have shown that the latency of inter-device communication
is effectively hidden due to low-level pipelining of a message-passing payload
transfer. Figure 3.6 holds throughput results for the common ping-pong ap-
plication with a focus on on-chip and off-chip communication.

To obtain these measurements, the amount of data that is transferred in
each iteration is divided by the round-trip times. For each message size the
ping-pong pattern is repeated multiple times and its average is used to calcu-
late the throughput. The focus of our measurements is on small to medium
message sizes between 1 B and 256 kB. We have chosen this specific range
because of the cache size of a single SCC core. If a message is larger than
the last level cache, access to the off-chip memory represents a bottleneck for
the throughput and the application results will not give more insights on the
on-chip communication performance.

4The option to generate automatic write acknowledgments by the system interface has
been identified as a source of transmission errors for the SCC with a high load on the
interconnect. In the default configuration the option is switched off.

61

Chapter 3 Communication and Synchronization

1 4 16 64 256 1 k 4 k 16 k 64 k 256 k
0

50

100

150

Size [B]

T
h

ro
u

g
h

p
u

t
[M

B
/s

]
remote-put (on-chip)

local-put (on-chip)

remote-put (extern)

local-put (extern)

Figure 3.6: Communication throughput for different communication schemes
of iRCCE on vSCC: on-chip vs. extern (MCPC routed)

The results show, that for on-chip communication, remote get is the pre-
ferred communication scheme, whereas for a larger communication distance
remote put provides a better performance.

3.3 iRCCE: Extending Rock Creek Communication
Environment

iRCCE (pronounced: irocky) has been developed at RWTH Aachen Univer-
sity as an extension to RCCE, to support a light-weight non-blocking com-
munication environment for the SCC [Cla+13b]. The main intention for its

62

3.3 iRCCE: Extending Rock Creek Communication Environment

development has been to overcome limitations regarding the functionality of
RCCE.5

RCCE’s non-gory interface, which abstracts on-chip communication, is lim-
ited to blocking communication by means of cooperative functions. Classic
send and recv function pairs are provided for message passing between UEs
to enable a blocking communication.

In 2010, version 1.0 of iRCCE has been released as an extension to RCCE
version 1.0.13 [MvW11]. Version 2.0 has been published in 2013, which in-
cludes support of SCC’s extended synchronization functionality. All published
versions of iRCCE extend the namespace of RCCE and do not change its ba-
sic functionality, such as on-chip memory allocation and access. The main
advantage of this naming convention is a reuse of the hardware abstraction
of the SCC. Additionally, the further development of RCCE and iRCCE is
more or less independent.

Especially regarding its communication performance, the main features of
iRCCE are highlighted in the following list:

• improved memcopy (iRCCE 1.0)

• pipelining (iRCCE 1.0)

• non-blocking communication (iRCCE 1.0)

• asynchronous communication6

• tagged flags (iRCCE 2.0)

• alternative communication schemes7

• bypass flags7

The impact of our optimizations to point-to-point communication can be
observed if the different throughput results of the ping-pong application are
compared. We use the simple ping-pong benchmark in this chapter to qualify
protocol optimizations and present synthetic-application benchmark results
in the next chapter.

5The integration of iRCCE to MetalSVM as inter-kernel communication layer is discussed
in the next chapter.

6This feature is part of MetalSVM iRCCE
7This feature is not part of a release version.

63

Chapter 3 Communication and Synchronization

The different graphs of Fig. 3.7 indicate the impact of iRCCE’s main fea-
tures to the communication performance. If all optimizations are enabled, we
see the highest throughput over all message sizes. In detail, the features, which
can be used independently of each other, are: improved memory-copy, pipelin-
ing as a protocol optimization and finally bypass flags. We have discussed, in
Section 2.3.4, the option bypass flags to decrease the synchronization overhead
of the RCCE family.

1 4 16 64 256 1 k 4 k 16 k 64 k 256 k 1 M
0

25

50

75

100

125

150

175

Pipeline Threshold

L1 Cache Size

L2 Cache Size

Message Size [B]

T
h

ro
u

g
h

p
u

t
[M

B
/
s]

standard RCCE

improved memcopy

pipelined protocol

bypass flags

Figure 3.7: Comparison of RCCE point-to-point communication performance
to optional features of iRCCE

vSCC support

A version of iRCCE with extended functionality has been developed at the
RWTH Aachen University to improve the support of vSCC. This version

64

3.3 iRCCE: Extending Rock Creek Communication Environment

also includes additional inquiring functions, which are beneficial for a tightly
coupled cluster with heterogenous interconnect.

The existing inquiring functions, RCCE_ue() and RCCE_num_ues(), return the
current rank of a UE or respectively the total number of ranks of a session.
Similar to this behavior, iRCCE_dev() and iRCCE_num_devs(), return the id of
current device and the total number of devices, that a session is currently
using. Additionally, RCCE_num_ues_dev() returns the number of active cores
per device. These five additional functions provide enough information, for
each UE to determine the position within a hierarchical physical setup of
vSCC. As a result, applications can take the hierarchy of a cluster of cluster-
on-a-chip processors into account [Reb+12a].

3.3.1 Communication Model

In this paragraph, a communication model for RCCE family is derived, which
can be used to predict its costs for point-to-point communication.8

The model requires architecture specific numbers as input, which are shared-
buffer latencies and private-cache characteristics, such as its size and band-
width. For the SCC, three categories of private data access have been iden-
tified, whereas costs differ in one order of magnitude, specifically first level
cache, second level cache, and main memory.

Kielmann et. al describe in their work, Fast Measurement of LogP Parame-
ters for Message Passing Platforms [KBV00], a method to derive the param-
eters of the LogP model family through a simple message passing application.
A client-server application is available for MPI to derive the parameters for
the LogGP communication model.9 The application consists of two processes,
an active measurement process so called server and a passive mirror process
so called client, whereas the terms active and passive indicate the role for the
benchmark.

For LogP, the overhead (o) defines the time when a processor is busy in
sending or receiving messages. A simple modification of the classic LogP
model is to distinguish between send overhead os and receive overhead or of
each message. The gap g for the given communication scenario is equal to
the sending overhead os, because RCCE uses active waiting to indicate that

8This work has not been previously published.
9The application uses message passing through send and receive functions, a port to native

RCCE was relatively simple.

65

Chapter 3 Communication and Synchronization

a message has been completely handled on receiver’s side. This is a typical
result for hardware without DMA facilities.

For small messages (below 16 kB) the copy operation to a local MPB (os-
or) and the waiting time for completion, represent a significant part of the
entire communication process. If a message is larger than 8 kB, it does not
fit into the message passing buffer of the SCC any more. The communica-
tion protocol can split the message into chunks that fit into the MPB and
successively transfer these chunks. If software pipelining is used to interleave
basic one-sided operations, which are used to transfer the message, the gap
(os−or) becomes smaller compared to the total communication time because
continuous copy operations are used to transfer the message payload.

Another effect that degrades communication throughput of larger messages
is that the private buffer does no longer fit into private caches of the com-
municating processors. Consequently, the private buffer starts to become a
bottleneck.

Williams et. al assume in their work, “Roofline: An insightful visual perfor-
mance model for multicore architectures” [WWP09], that for the foreseeable
future, off-chip memory bandwidth will often be the constraining resource
in system performance. Roofline is a simple model, which relates processor
performance to off-chip memory traffic. The result is a model for the perfor-
mance of computer systems which predicts dependent on the computational
intensity of applications an upper limit with the memory bandwidth and the
peak-computing performance. The communication of a cluster-on-a-chip ar-
chitecture can be described, similar to this approach.

Instead of using the term computational intensity, we use the term com-
munication intensity, which describes the ratio of on-chip communication per
memory transaction. Following the concept of different memory subsystems
(on-chip and off-chip) that limit communication in combination with LogGP,
creates a model which can be effectively used to estimate point-to-point com-
munication with RCCE.

Figure 3.8 compares the predicted performance to the measured perfor-
mance for point-to-point communication between two neighboring tiles. For
small messages (below 8 kB) a LogGP model without modifications is accu-
rate for the estimation of communication time. As long as the private buffer
completely fits into the first level cache, the shared buffer access is a bot-
tleneck, which leads to an exact prediction of the communication time. For
a prediction of messages above 8 kB, a linear slope has to be introduced to
take the limitation of private buffer access into account. For message sizes

66

3.3 iRCCE: Extending Rock Creek Communication Environment

102 103 104 105
10−6

10−5

10−4

10−3

L1 cachesize
2

= 8 kB

L2 cachesize
2

= 128 kB

Message size [byte]

L
a
te

n
cy

[s
ec

o
n

d
]

RCCE send

linear

LogP

g(32) +G×min(x− 32, B)

Figure 3.8: Communication model for RCCE point-to-point communication
without pipelining

between 8 kB and 128 kB, the two private buffers, send and receive, fit into
the Level 2 Cache. In this scenario, private buffer access can be served by the
cache memory, if we assume a warm cache. The estimated communication
latencies can be shown as a graph with a linear slope, because of the constant
bandwidth of memory which represents the bottleneck for a given message
size in the ping-pong scenario. For messages with a size larger that 128 kB
the private buffer does no longer fit entirely into the L2 cache. As a result
memory requests are served by the next level of the memory hierarchy with a
lower bandwidth. In the diagram of Fig. 3.8 this effect is shown thereby the
graph has the same gradient but a different offset.

In the diagram of Fig. 3.7 on Page 64, which shows ping-pong results for
the SCC, this effect manifests in plateaus of the graphs that plot the commu-
nication throughput of RCCE.

67

Chapter 3 Communication and Synchronization

3.3.2 Communication Modes

Cooperative communication functions, that are used by message passing ap-
plications, typically consist of communication and synchronization elements.
Different communication modes can be distinguished for point-to-point com-
munication. In the context of many-core systems, important attributes of
communication are in general: blocking or non-blocking, synchronous or asyn-
chronous, and buffered or unbuffered. The attributes are defined next and
briefly described, to categorize the protocol optimizations which are discussed
in the following.

Blocking communication behavior can be defined, in a way that a sending
process remains within the communication function until communication is
completed. A blocking communication interface prevents interleaving of co-
operating function calls, which includes an explicit communication and an
implicit synchronization.

Similar to the definition of blocking communication, asynchronous commu-
nication can be defined according to the chronological order of basic opera-
tions. In particular, the sender can complete the send operation independent
of receiver’s communication progress.

Buffered and unbuffered communication modes differ, as their names sug-
gest, if an intermediate buffer is used to transfer data. For instance, if a
sender can not immediately complete a non-blocking communication, it has
to copy data to a local buffer which is typically managed by the communica-
tion library. This additional copy operation can increase the communication
latency.

For a many-core system, every kind of asynchronous communication re-
quires a management of the communication progress. For example, signals
are a common mean to pass the information that an event has occurred and
thereby indicate the arrival of a message. Either interrupts can be used to
signal the event of an incoming message or a background thread can handle
incoming messages.

The RCCE communication library has been designed for a use without op-
erating system support. Specific design concept targets a light-weight com-
munication environment as well as bare-metal execution of RCCE applica-
tions. However, support for asynchronous control is not available for this
environment, such as multithreading and active-message functionality. Ac-
tive messages are a concept to execute functions remotely, which needs some
support by the runtime or the operating system.

68

3.4 Message Passing Buffer

A

B

tcs

tcr
t0

start sending a message

post a receive request

(a) Buffered and Asynchronous

A

B

twr

t0

a send transaction

start receiving a message

(b) Blocking and Synchronous

Figure 3.9: Comparison of two communication mode examples (Figure based
on [Cla+12])

3.4 Message Passing Buffer

The new communication concept of the Intel SCC is based on direct access
to low-latency and high-bandwidth memory. This memory is allocated as a
message passing buffer in a distributed manner and used for on-chip commu-
nication with explicitly controlled consistency. In any case, such a message
passing buffer is a scarce resource because, it has to be placed in memory that
is located close to each processor core. For the realization of message passing,
a communication protocol is required that specifies the allocation of buffers,
their coordination and accessing schemes.

RCCE is a light-weight communication environment that uses busy-waiting
to indicate the arrival of messages. This strategy avoids dependencies on the
operating system, so that a bare metal execution of RCCE applications can
be natively supported.

For the realization of point-to-point communication, RCCE allocates a ded-
icated communication buffer for each rank. As implemented by the reference
implementation, a single threaded execution of RCCE processes simplifies the
allocation of message passing buffers and the access to these buffers for each
core of a many-core system. For a communication protocol, this attribute
represents a mutual exclusion of access to software controlled on-chip mem-

69

Chapter 3 Communication and Synchronization

ory, for example by the sender and the receiver of a message. By removing
this limit, we expect a positive effect for the communication performance.

Towards the realization of message passing in an efficient manner, we dis-
cuss alternative methods for a coordination of software-controlled on-chip
memories and their allocation schemes. In this context, efficiency is defined
as a high throughput, low latency and resource awareness. Consequently, new
communication protocols are described in this chapter that extend the RCCE
family. In fact, the presented work is based on detailed analysis and resulting
optimizations, which have been discussed in Chapter 2.

The term Message Passing Buffer (MPB) has been established as a com-
mon term to describe the part of the LMB, which is used for point-to-point
communication [Mat+10; Gri+11; CRK11; Cla+11]. MPB also describes the
memory concept which is implemented by RCCE. However, many related
publications use the term MPB to describe the software controlled on-chip
memory of the SCC. This is not exactly the same because RCCE has several
restrictions regarding allocation and access of on-chip memory regions. Be-
cause in this dissertation alternatives to this concept are discussed, the term
MPB is only used to describe the allocation of on-chip memory as a commu-
nication buffer in combination with SCC new cache memory configuration as
described in Section 2.2.4 of Chapter 2.

If software-controlled on-chip memory is used as a buffer for message pass-
ing, a coordination scheme for this buffer is mandatory. This assumption
is also valid for a protocol which enable data transfer between sender and
receiver. A common abstraction for this scenario of concurrency is a clas-
sic single producer, single consumer problem, when the sender of a message
represents a producer and the receiver represents a consumer [Tan07].

For a more efficient transfer of large messages compared to RCCE, the
communication extension iRCCE uses a classic software pipelining. Here, the
buffer is split into multiple regions that are controlled separately for read and
write access, even if the message could be transferred en bloc. This technique
targets at interleaving local memory-buffer access and thereby increase the
communication performance. A static pipeline threshold10 of 4 kB has been
experimentally derived as a good value for the given configuration [Cla+13b].

However, this limit depends on the size of the MPB and costs of read and
write operations to the on-chip memory location. If optimizations, such as a

10Pipeline threshold defines a message size. Larger messages are not transferred en-block
but split into smaller parts and transferred continuously

70

3.4 Message Passing Buffer

bypass of all caches for flag access, are applied to the basic communication
layer, a finer granularity can become more attractive. In this section the use
of classic software techniques, such as the implementation of a ring buffer,
is discussed and a communication model is derived. For a given many-core
architecture, we specify parameters to analyze the communication in detail.

3.4.1 Communication Schemes

The use of software-controlled on-chip memory as a communication buffer
for message passing gives the possibility of different communication schemes.
For the investigated communication environment, two basic communication
schemes are possible, which can be distinguished by the location of the shared
buffer. Either data is put in the local MPB of the sender or of the receiver.
Both schemes are possible but require a different synchronization of the MPB.

Figure 3.10 illustrates the access scheme of the two alternative communica-
tion schemes, local put and remote put. On the left hand side of the diagram,
the communication buffer is local to the sender, which implies a local put
of data for the sender. Consequently, the receiver gets the message from a
remote memory location.

core core

MPB MPB

put get

(a) local-put, remote-get

core core

MPB MPB

put get

(b) remote-put, local-get

Figure 3.10: Comparison of on-chip Communication Schemes

Our analysis underlines, that a local-put, remote-get (lprg) communication
scheme, or short local put, is well suited for low-latency on-chip communi-
cation. It is no surprise that the basic communication protocol of RCCE
is based on this communication scheme. For point-to-point communication
through software-controlled on-chip memory, several advantages are resulting.
The fact that write operations of each core can be limited to its local commu-
nication buffer simplifies the synchronization. Another advantage of local put

71

Chapter 3 Communication and Synchronization

is that RCCE API specifies a non-blocking probe functionality, which means
a receiver can determine if a message is pending or not without further sender
invocation. This functionality is guaranteed by local put, because a receiver
can probe for an outstanding message by accessing the local communication
buffer of the sender.

The virtual extension of a many-core interconnect, as described in Sec-
tion 3.2.2, generates the possibility to access on-chip memory that is located
on another processor the same way as local on-chip memory. As a result,
RCCE family can be used for on-chip and remote processor communication
on the SCC platform. To support a session with multiple virtual devices,
iRCCE extends the communication ranks in a linear way. By porting iRCCE
to the vSCC architecture, it turned out that the maximum throughput is
limited to 1 MB/s. The main reason for this poor performance is the combi-
nation of default local put communication scheme and transparent routing of
remote packages. Here, a message transfer is realized by copying its payload
from remote shared to private buffer, which results in remote read operations.
Since the latency of this operation has a direct influence to the throughput,
the remote communication path degrades the performance.

In general, the acknowledge of a read operation can not be generated before
the requested data is available. This behavior is different for a write oper-
ation, where the acknowledgement can be immediately generated, because
no additional information is necessary. A processor core that follows the
network-on-chip paradigm with multiple outstanding memory requests repre-
sents an alternative solution for this general problem. However, dependent
on the routing policy, additional support may be necessary for such a core to
guarantee the strict ordering of memory operations.

The use of a remote-put, local-get (rplg) communication scheme, or short
remote put represents an option to improve inter-device communication per-
formance for the Intel SCC. This alternative scheme changes the remote mem-
ory access from read to write, respectively get to put in terms of the one-sided
communication system. A drawback of this scheme is that it creates a mul-
tiple writer scenario, so that a core has to pass exclusive write access to its
local communication buffer. This requires additional synchronization which
is not needed for local put, because write access for each UE is restricted to
the local buffer plus dedicated flags. Consequently, an exchange of the com-
munication scheme from local put to remote put requires modifications to the
communication protocol.

72

3.4 Message Passing Buffer

In the following, we propose a new protocol for the alternative communi-
cation scheme, which recovers non-blocking probe functionality. In order to
realize this new protocol, we introduce probe flags as described in a subse-
quent paragraph.

3.4.2 Flags

In general, attributes of busy wait synchronization are well understood, and
have been intensively discovered in research and practice. The main advantage
of busy waiting is a low latency. Disadvantages are a wasting of CPU cycles,
especially if a short spinning time can not be guaranteed and the potential
of unfairness regarding the order of request grants and resulting starvation.
Such an issue clearly depends on the specific implementation. Alternatives
to busy waiting, are operating system or runtime supported synchronization
primitives that typically introduce a certain administration overhead. How-
ever, a common combination is busy waiting and blocking schemes to achieve
best performance.

Shared variables are named flags, which hold a binary value to indicate if
an event has occurred. By default, RCCE uses two flags, sent and recv, to
control the access to the Message Passing Buffer for each rank of a session
for the realization of point-to-point communication. Collective operations,
such as a low-level barrier implementation can introduce additional flags. In
the following, other kind of flags are described which are necessary for the
implementation of an alternative communication scheme.

Probe Flags

A use of alternative communication schemes (e.g. remote put) can break
direct access to the Local Memory Buffer to initiate a send operation. If mul-
tiple senders can access a shared buffer, the receiver has to grant access. For
local put, which is used as a default by RCCE’s communication protocol, two
flags per rank are sufficient to coordinate access to the MPB, as illustrated in
Fig. 3.11. Changing the scheme contradicts a non-blocking probe functional-
ity. A behavior which is specified by RCCE, because it is potentially required
by communication environments that use RCCE for hardware abstraction and
implement a higher level communication, such as MPI.

We have developed a new communication protocol, to reconstruct the non-
blocking probe functionality of RCCE. If n is the total number of ranks, n−1

73

Chapter 3 Communication and Synchronization

additional flags are necessary for each rank to realize probe flags. Obviously,
this solution introduces another synchronization step with additional over-
head, as illustrated in Fig. 3.11. Tagged flags, which are described in the
subsequent paragraph, represent an option to recover low latency for small
messages.

sender receiver

p
u

t

lo
ca

l

signalsent flag

remote get

signal

rea
dy

fla
g

(a) local put/remote get

with probe flag

sender receiver
signalprobe flag

signal

rea
dy

fla
g

remote put

signalsent flag

g
et

lo
ca

l

(b) remote put/local get

Figure 3.11: Timely behavior of Communication Protocols [Reb+12a]

Tagged Flags

Piggyback messages are used by many tools in the scope of MPI in a certain
variety [SBdS08]. Messages are extended in a transparent fashion on top of
a communication library to transfer additional information. Tagged flags is
a feature that was introduced by iRCCE version 2.0 to provide low latency
for small messages. The basic idea of this feature is to pack a flag value with
a small message payload in a piggyback fashion up to a certain granularity
that can be atomically transferred [Reb+12a].

74

3.4 Message Passing Buffer

Regarding communication schemes, this low-level approach can be catego-
rized as a combination of remote put for small messages and another com-
munication scheme, such as local put for medium to large messages. For the
SCC, the maximum size of a small message, that a core can atomically write
to, is equal to the size of a cache-line minus the size of a sent flag. Conse-
quently, our optimization affects messages with a size of 32 B minus 1 bit to
4 B, dependent on the configuration.

As previously mentioned, the use of tagged flags represents an optimization
especially in combination with probe flags. Here, the remote put communi-
cation scheme requires an additional synchronization step, with a negative
impact on the latency of small messages.

3.4.3 Dynamic Buffer Allocation

RCCE family is based on the concept of a symmetric allocation scheme, which
implements a symmetric memory model for the Local Memory Buffer. In this
context, symmetric memory model means that all operations which allocate
on-chip memory are executed as a collective operation. This implies a limi-
tation to a static communication buffer, both in size and offset [vWMH11].

In this paragraph, we discuss an optimization that targets a higher point-
to-point communication throughput by interleaving basic put and get opera-
tions to a communication buffer, for even smaller messages than the pipeline
threshold of iRCCE (4 kB). The concept is a combination of pipelining mem-
ory copy operations and the coordination of concurrent accesses to the shared
buffer. In order to realize this concept, we first introduce a dynamic allocation
scheme which contradicts the symmetric memory model of RCCE. A dynamic
allocation of a message passing buffer provides advantages regarding the use
of on-chip memory, which represents a limited hardware resource. However,
the dynamic handling of access to on-chip memory will introduce additional
overhead, which prevents a general optimization for all message sizes.

The default communication protocol of RCCE is based on the combination
of a static MPB allocation and mutual exclusion of shared buffer access. The
start of a communication buffer and its size are fixed after initialization for
all UEs. This simplifies the communication protocol, as concurrent access to
the MPB is excluded and the location of a remote communication buffer can
easily be derived.

Data transfer through blocking communication functions represents a com-
munication scenario, where sender and receiver actively participate in the

75

Chapter 3 Communication and Synchronization

communication progress. Assuming such a communication scenario, the new
communication protocol is based on the organization of shared on-chip mem-
ory as a circular buffer. This represents an alternative dynamic allocation
scheme, as the available on-chip shared memory is divided into slots, where
each slot can represent the start or the end of communication buffers. Since
circular buffers exist in different implementations, the chosen implementation
that suits the given architecture controls concurrent read and write access by
storing two pointer that mark the begin and the end of target buffer.

Figure 3.12 illustrates the allocation of on-chip memory with read and write
pointers, which are located in on-chip memory. For the chosen implementa-
tion, an element is inserted at write position of the ring buffer and the element
one slot after read position can be removed if the buffer is not empty. A dis-
advantage of this implementation is that only n− 1 elements can be used for
communication if the buffer has a size of n. If the element size is relatively
small compared to the buffer size, this overhead is negligible.

. . . readwrite slot slot slot slot slot slot slot . . .

local MPBremote MPB

filled slots

empty slot empty slot

Figure 3.12: Dynamic on-chip memory allocation scheme for a ring buffer (re-
mote put)

For a given architecture without atomic operations to on-chip memory, a
major advantage of the chosen buffer implementation is the fact that a full
buffer can be distinguished from an empty buffer by a simple pointer compar-
ison. The size of these pointers defines the number of elements which can be
managed. For example, a byte pointer can address 256 elements. With a slot
size of 32 B which corresponds to the size of a cache-line, a communication
buffer of 8 kB can be managed.

Latencies of reads and writes to shared memory have a direct influence on
the communication performance of our new dynamic buffer allocation scheme.

76

3.4 Message Passing Buffer

Especially, low latencies of read and write operations to shared pointers are
essential, because they control the buffer access. Consequently, we use the
bypass flag option, as described in Section 2.3.4, to access shared pointers.
Nevertheless, a tradeoff exists between inserting and removing large chunks
of data and interleaving copy operations to on-chip memory.

If parameters are chosen appropriately, our new protocol will lead to promis-
ing results because of its flexibility. In the next paragraph, this assumption is
verified with a comparison of estimated communication times to experimental
results.

3.4.4 Results

Due to the predictability of single access latencies, a simple formula can be
used to predict the throughput T for a specific message size x and a certain
granularity n of access to the ring buffer. The term t∆(n) of Eq. (3.1) includes
the protocol overhead and the transfer time for a single copy operation from
private to shared memory or vice versa.

T (x, n) =
x/n

(x/n + 1) × t∆(n)
(3.1)

The protocol overhead consists of synchronization-and-coordination opera-
tions to control ring-buffer access. This overhead can be calculated by com-
paring a value of x to the black curve, where the message size is equal to
the access granularity of the ring buffer. At this point, the new protocol is
equivalent to the simple RCCE protocol.

Table 3.1: Transfer time related to message sizes for the Intel SCC without
synchronization overhead

n [B] 64 128 256 512 1024
t∆ − o [µs] 6.59 5.72 5.17 4.88 4.76

Table 3.1 holds the parameters for the Intel SCC, which have been used
to predict the point-to-point communication throughput. The values can be
calculated by the reciprocal value of the required time to transfer n byte en-
bloc, from a cached private memory region to target on-chip memory region.

77

Chapter 3 Communication and Synchronization

If the communication distance rises, only the parameters have to be adjusted
to predict the communication throughput.

Once again, we use the ping-pong application as a benchmark for the new
communication protocol.

Figure 3.13 compares the throughput of a ring buffer, as described in the
last paragraph, that is used for a communication with different element sizes.
For a comparison of the absolute results, the throughput is plotted over the
message size.11 For the measurements, single byte pointers are used to mark
the begin and the end of available data regions, with a maximum size of 4 kB.
We raised the chunk size of transferred data from 64 B to 1024 B and plotted
the measured throughput as dots.

64 128 256 512 1 k 2 k 4 k 8 k
0

50

100

150

200

Message Size [B]

T
h

ro
u

g
h

p
u

t
[M

B
/
s]

64 B granularity

128 B granularity

256 B granularity

512 B granularity

1 kB granularity

4 kB serial gory put + get

Figure 3.13: Estimated (dashed lines) vs. measured (dots) throughput for the
ring buffer implementation with different granularities. Results
are compared to serial data transfer (black line).

11core frequency: 533 MHz, MPB size: 4 kB

78

3.5 Synchronization Constructs

The black curve in Fig. 3.13 depicts the throughput of a two-copy operation
data transfer without synchronization overhead. This curve represents an
upper bound, because it leaves out protocol overhead and represents only
time spend for effective communication. Consequently, a message of xB is
copied en-bloc from private into shared and back to private memory. The
described curve ends at 4 kB, because a maximum MPB size of 4 kB has been
selected for the benchmark.

According to the described method, the communication throughput can
be calculated by using the formula from Eq. (3.1). The calculated through-
put is plotted in Fig. 3.13 as dashed lines. The resulting throughput of the
experiment is plotted for characteristic message sizes as dots.

By comparing both results, it turned out that the predictability of the
communication throughput is very accurate. Deviations can be explained
by the algorithm which has been used to handle the transfer of data. An
operation on cache-line granularity enables a more dynamic interaction, so
that a rank does not have to wait until the complete slot is filled, to read out
data, or until a slot is cleared, to write data.

It is shown, that a redesign of the basic message-passing-buffer concept
reveals the full communication performance of a cluster-on-a-chip processor
with software controlled on-chip memory. In order to realize a dynamic allo-
cation scheme, optimization for flag based synchronization has been applied
and alternative communication schemes for the Local Memory Buffer have
been evaluated in this section.

3.5 Synchronization Constructs

From the objective of a runtime or communication library, synchronization
constructs consist of shared data structures and cooperative operations, which
can be used for the coordination of Units of Execution (UEs). UEs describe
in this context an abstract entity of parallelly executed code on multiple
cores, which can be easily mapped to threads or processes. In this section,
we detail different barrier implementations, which are based on the hardware
synchronization support of a many-core processor.

In 1990, Anderson motivates the fundamental need for hardware support
of busy-wait mutual exclusion on shared memory multiprocessors [And90].
Consequently, he presents spin-lock alternatives to increase scalability, for in-
stance by the use of a back-off policy. Previously, Lamport discovered that

79

Chapter 3 Communication and Synchronization

pure software mutual exclusion is quite expensive for memory coupled clus-
ters [Lam87]. Graunke and Thakkar proposed queuing-based locking algo-
rithms for cache coherent systems instead of simple test and set locks [GT90].
Their experiments have shown that the strategy of spinning on different cache-
lines outperforms a centralized approach.

Following this fundamental work, low-latency synchronization methods,
which make use of hardware synchronization support of the Intel SCC are
described in this section. Specifically, efficient lock and barrier implementa-
tions are derived, which represent examples for synchronization constructs.

A barrier is a collective operation, which specifies a synchronization point
for a certain number of UEs, so called groups. At least one point in time
exists when all members of a group have reached the same point in parallel
execution.

Critical sections are defined as a section of code, which can only be ex-
ecuted by a single process or thread at certain point in time. A technique
to protect a critical section is mutual exclusion, which can be realized by
the lock synchronization construct. A common implementation of a lock is
a spin-lock, which represents a typical example for a central synchronization
point and is widely used for shared memory systems. According to its name,
the implementation is based on a busy waiting technique.

Parallel programs which follow the message passing paradigm rarely use
barriers, since message passing implies an implicit synchronization. However,
communication interfaces such as MPI (and RCCE) support a barrier func-
tion.

The described synchronization constructs have an important part in shared-
memory programming, such as the fork-join programming model. Different
levels of abstraction are available for multi-threading shared memory pro-
gramming, either the programmer controls explicit creation of threads or
choses a runtime assisted environment. POSIX is a standard which defines a
portable interface for operating systems. Part of the related family of IEEE
standards is an interface for parallel programming with threads in C program-
ming language: pthreads12. Through an explicit start and end of parallel
threads, a programming model such a fork-join can be easily implemented. A
higher level of abstraction represents the de facto standard in shared memory
programming: OpenMP.

12IEEE Std 1003.1c-1995

80

3.5 Synchronization Constructs

OpenMP introduces constructs and clauses to enable the creation of paral-
lel shared-memory programs. Pragmas are used to give hints to the compiler,
which uses a runtime to create a parallel application. Many of these constructs
imply a barrier [CJvP07]. One example is the parallel for construct with-
out no wait clause.

The design of scalable and low-latency synchronization algorithm for many-
core systems is essential for achieving a high application performance. The
implementation of a synchronization method has to take hardware character-
istic of processor architectures into account. Especially, if central synchro-
nization points exist, a negative effect on the scalability of algorithms can
be resulting. Related research questions are, if fairness depends on the loca-
tion of the remote memory location and does the characteristic of the on-chip
interconnect influence latencies of memory requests.

3.5.1 Lock

For a classic distributed shared memory system, a classic spin-lock on hard-
ware distributed memory is rather uncommon. This picture can change, as-
suming a low latency of distributed shared memory, that can be a result of
target on-chip memory locations. If non-coherent memory coupled cores have
access to hardware support for atomic operations such as test-and-set, the
implementation of a spin-lock is straight forward. A drawback of this imple-
mentation is remote spinning and the possibility of high contention, because
many cores on a single chip access a central synchronization point. For pro-
cessor architectures with direct on-chip memory access, each read of a shared
lock value is a direct access to a remote memory location.

Methods that increase scalability of locks exist, such as ticket locks, which
can also guarantee a combination of FIFO ordering and busy waiting [MS91].
Additionally, if the meta information of a critical section is taken into ac-
count, such as the number of readers and writers of shared elements, read-
copy update (RCU) is a method that can increase performance of locking
significantly [McK+01].

Our approach is the use of a spin-lock to analyze the fairness of direct on-
chip memory access for a processor which implements the network-on-chip
paradigm. Therefore, a shared global counter is used in combination with a
back-off function to emulate unified access times. If the interconnect provides
predictable latencies without contention, we can use the unified global counter
from Section 2.2 to record the total order of locks.

81

Chapter 3 Communication and Synchronization

Listing 3.1: Spin-lock application

1 #include <time.h>

2 #define NUM_CORES 48

3 volatile unsigned long * synch_reg_addr[NUM_CORES];

4

5 acquire_lock(int id) {while(!Test_and_Set(synch_reg_addr[id]));}

6

7 release_lock(int id) {*synch_reg_addr[id] = 1;}

8

9 void main() {

10 unsigned int nsec=100;

11 for(int i=0; i<100;i++){

12 acquire_lock(0);

13 delay(nsec);

14 release_lock(0);

15 }

16 }

Our implementation does not target a fair distribution of critical sections,
moreover the goal its to verify the derived cost model for contention and
analyze the behavior of a central synchronization point for the Intel SCC.
Listing 3.1 holds the source code of a micro-application, which has been used
to study such a behavior.

The implementation of a spin-lock through test-and-set registers creates a
central synchronization point. For the SCC, an atomic test-and-set operation
has a specific address synch reg addr because it is implemented by a memory
mapped register. Listing 3.1 shows a draft for the acquire and release

functions, that are necessary to implement a lock.

The application generates a hot-spot, because a spin-lock is used to pro-
tect a critical section with a certain contention in a coarse-grained way. Our
benchmark consists of continuous execution of critical sections with a con-
stant length, which can be found very similar in the EPCC micro bench-
marks [Bul99].

An example how critical sections could be chronologically ordered is illus-
trated in Fig. 3.14 on Page 83. A unified global counter, as described in Sec-
tion 2.2.5, has been used to trace the total order of critical sections. As part

82

3.5 Synchronization Constructs

of a critical section, a shared counter is incremented, whereas the length of a
critical section is independent of the communication distance to the counter.

Core 0:

Core 1:

Core 2:

Core 3:

lock

1 5

wait lock

3 7

wait lock

4 8

wait lock

2 6

Figure 3.14: Example of using a lock to protect a critical section. The figure
visualizes the chronological order, which is not previously defined
for the given example.

For a central access pattern, target on-chip memory location can be located
in a corner of the mesh interconnect as the worst case.13 The scattered plot
from Fig. 3.15 visualizes the measured order of critical sections. Each core has
executed the critical section one hundred times, which leads to the execution
of 4800 critical sections in total. Since each core has recorded the counter
value for each access, the fairness of a busy-wait synchronization method
with a central synchronization point can be classified.

Our experimental results verify the impact of the location to the fairness
of a remote memory access. According to the described contention model for
the Intel SCC in the previous chapter, a direct link between the location of
a tile and the priority of accesses to a central synchronization point becomes
visible.

Each core has a higher priority of access, which is located in a same row
with the highly contended memory location. Related to the specific algorithm,
cores with id 0 to 11, nearly pass around the lock during the first iterations.
Not before this group of cores has finished continuously requesting the lock,
another core, which is located on a row with a distance of 2, will get the lock
with a higher probability.

13Here the lower left tile on SCC’s mesh with core id: 0 and 1 has been chosen, cf. Fig. 2.6

83

Chapter 3 Communication and Synchronization

1 1,200 2,400 3,600 4,800

0

6

12

18

24

30

36

42
47

iteration

co
re

id

Figure 3.15: Iteration scattering of critical sections with 100 iterations per
core [Reb+12c]

A classic strategy to avoid contention is the distribution of resources. In or-
der to realize a distribution of on-chip synchronization resources, we compare
a central spin-lock implementation to a tournament lock [GT90]. A tour-
nament lock consists of multiple locks, which are accessed in a well defined
order with the graphical representation of a tree. For the implementation of a
tournament lock, multiple synchronization register are used to build an n-ary
locking tree. The diagram in Fig. 3.16 compares measurements for a simple
spin-lock to a tournament lock based on a binary tree with a depth of two.

Because three register are necessary to build a locking tree with a depth of
2, the maximum contention is reduced by a factor of 2. One lesson learned
from the previous experiment is that cores are preferably assigned to locks
sharing their y-coordinate.14 As a first step, in the presented example each
core contends for the assigned group lock and, as a second step, for the global
lock to acquire the tournament lock. Accordingly, the locks are released in
reverse order to release the tournament lock.

14This assignment clearly depends on the routing algorithm of the on-chip interconnect.

84

3.5 Synchronization Constructs

1 4 8 12 16 32 48
0

50

100

150

200

cores

la
te

n
cy

[µ
s]

simple
tournament

Figure 3.16: Scalability of spin-lock implementations [Reb+12c]

For a comparison, both spin-lock implementations have been used to protect
a critical section with an increasing number of cores, which generates a high
contention. Here the critical section is empty which generates a maximum
contention, in contrast to the evaluation, where the total order of critical
sections have been recorded. Thus, a core which has performed one thousand
timed iterations, stops the timing but continues to request the lock to generate
noise for the remaining cores. The plotted values from Fig. 3.16 are maximum
times for an average of one million iterations to acquire and to release a lock.

The experimental results show a linear increasing runtime for the spin-lock
application up to a core count of 24. This is an expected behavior, because of
the linear characteristics of the synchronization algorithm. A further increase
of the core count leads to a constant latency of 19 µs for the tournament lock,
because the synchronization primitive limits the concurrency at this point,
whereas the latency of a simple spin-lock grows quadratically.

The observed behavior of both synchronization primitives can be described
by simple functions, which have been added to the diagram of Fig. 3.16 as
dashed curves. The function ls(n) of Eq. (3.2) can be used to calculate the

85

Chapter 3 Communication and Synchronization

latency of the simple spin-lock under high contention with n cores that tries
to get the lock.

ls(n) =

{
n · 0.8 µs if n < 24

19 µs if 24 <= n
(3.2)

Equation (3.2) holds the function lt(n), which describes the latency of the
tree lock under high contention with equal parameters.

lt(n) =

{
n · 0.4 µs if n < 24

n4.5 · 5 ns if 24 <= n
(3.3)

The locking path for the simple spin-lock is minimal and consists of two
synchronization register accesses. With a depth of two, the locking path for
the tournament lock consists of four synchronization register accesses, which
results in a higher latency up to a core count of 28. Because of high-register
latencies, contention of more than 42 cores have to be considered with caution.
Due to the fact that cores can starve under high contention, exact values are
of little importance.

3.5.2 Barrier

A barrier is a synchronization construct, which is commonly defined as a point,
that can not be proceeded until all units of execution of a group specified by
the construct have reached it. The access from a programmers perspective
is either possible with explicit cooperative communication function calls or
by implicit use of directives, that are used for instance to control a fork-join
programming model.

Focussing on the implementation of a barrier, most algorithm can be log-
ically separated into two phases. Thus, the single execution of a barrier,
commonly termed as sequence, can be logically separated into a gather and a
release phase for most algorithms. Whereas gather consists of collecting the
information that each participant has reached the barrier. The information
that all units have reached the barrier is distributed as release. Obviously,
this separation is dependent on specific implementation and implementation
exist, where both phases are merged, such as a butterfly barrier [Bro86]. List-
ing 3.2 shows a simplified template for the implementation of a barrier, which
is used in this section to detail different algorithms. All specific methods are
presented as extensions for this code snippet.

86

3.5 Synchronization Constructs

1 #include "RCCE_lib.h"

2 #include "iRCCE_atomic.h"

3 #include "iRCCE_barrier.h"

4 /* part of communicator for barrier specific information: */

5 typedef struct{

6 int n;

7 int id;

8 /* implementation specific data */

9 int master;

10 /* ... */

11 } barrier_t;

12 void gather(barrier_t *);

13 void release(barrier_t *);

14

15 /* initialization encapsulated in RCCE_init() */

16 void iRCCE_barrier_init(barrier_t * b) {

17 b=malloc(sizeof(barrier_t));

18 b->n = RCCE_num_ues();

19 b->id = RCCE_ue();

20 b->master = 0;

21 /* ... */

22 }

23

24 void iRCCE_barrier(barrier_t* b) {

25 gather(b);

26 release(b);

27 }

Listing 3.2: Code snippet of iRCCE barrier implementation

For example, we have implemented an SMP-like barrier based on a shared
counter for the SCC. Another implementation of a barrier on the SCC is
based on atomic operations to on-chip memory in combination with a linear
lookup [Reb+11].

In contrast to these barrier variants, that use atomic operations for its
effective implementation, the reference barrier of RCCE library only relies on
atomic load and store operations to on-chip memory [MvW11]. Listing 3.3
gives an overview on the available synchronization support of the Intel SCC,
which is supported by iRCCE version 2.0.

The main contribution of this section is the evaluation of classic synchro-
nization algorithms for a many-core system without cache coherence. This
includes the analysis of communication patterns to get a deeper understand-

87

Chapter 3 Communication and Synchronization

1 /* ... */

2 /* ptr to local memory buffer */

3 extern type * RCCE_comm_buffer;

4 /* map on-chip memory twice (uncached) */

5 extern type * RCCE_flag_buffer;

6 // helper operation to calculate remote virtual flag address:

7 #define synch_buffer(lo,id) \

8 (lo-RCCE_comm_buffer[RCCE_IAM]+RCCE_flag_buffer[id]);

9 // atomic test-and-set operation to on-chip location:

10 type atomic_test_and_set(type * ptr, int id);

11 // atomic write in ptr (on-chip location) at id:

12 void atomic_store_n(type * ptr, int id, type val);

13 // atomic read in ptr (on-chip location) at id:

14 type atomic_load_n(type * ptr, int id, type val);

15 // atomic add in ptr at id and return previous value:

16 type atomic_fetch_add(type * ptr, int id, type val);

17 /* ... */

Listing 3.3: part of iRCCE atomic.h

ing of such an architecture. Specific attributes, such as the combination of
software-controlled on-chip memory and a low latency on-chip interconnect,
results in a predictability, which can be used for optimizations. Moreover, our
experiments can be used to verify the communication model, which has been
developed in this chapter.

In general, different attributes exist, that categorize the performance of
a barrier implementation. Often micro-benchmarks are a good estimation,
however a negative impact to the runtime of a specific application can not
be excluded, especially if techniques such as remote spinning are used that
can pollute a many-core interconnect. Arenstorf and Jordan discovered in
1989, that different situations have the demand for different implementations
in order to achieve best performance [AJ89]. For a performance analysis, a
comparison of the scalability and latency of selected barrier implementations
is presented later in this section.

Table 3.2 compares different barrier implementations in terms of complexity
in runtime and resources.

88

3.5 Synchronization Constructs

Table 3.2: Comparison of different Barrier implementations

release gather hardware spinning
linear O(n) O(n) 2 flags remote/local
linear (fat) O(n) O(n) n flags local
k-ary tree O(log n) O(log n) (2 × k) flags local
centralized O(n) O(n) 2 shared counter remote

Linear Barrier

The RCCE library holds a simple barrier that implements a master-follower
approach. For this straight forward implementation, which is based on flags,
UE with rank 0 is the master and all other ranks are followers. Listing 3.4
holds a simplified version of the barrier in C, which can be logically sepa-
rated into a gather and a release phase. The complexity of this linear barrier
implementation in terms of latency and on-chip memory consumption holds
Table 3.2.

Two functions that abstract on-chip memory access are used to handle flag
based synchronization, with wait_flag and post_flag. Both functions receive
two parameters, first the location of target MPB and second the address of a
local flag. Function post_flag sets a flag, for instance by writing a value that
corresponds to set (e. g. 0x01) to target on-chip memory location. Function
wait_flag realizes a simple loop that continuously reads the given memory
location until the value is non-zero.

In the first part of the barrier, the master checks gather flags in a round-
robin order, which are located remote to the master and present for each rank.
Next the master sets another remote flag at each other rank, the so called
release flag, to release the followers by distributing the event that all cores
have entered the barrier.

The elapsed times for the barrier implementation clearly show linear char-
acteristics, which is a disadvantage in terms of scalability. Major advantage of
the described method is a low on-chip memory footprint. Due to the fact that
common message-passing based applications rarely use the barrier operation
in a critical code path for synchronization purpose, the described implemen-
tation has been used as a reference for RCCE.

One optimization, which we have developed for the vSCC architecture, is
changing the access pattern of the described linear barrier to local spinning.

89

Chapter 3 Communication and Synchronization

Listing 3.4: Linear Barrier algorithm in C

1 /* -- Extends Listing 3.2: -- */

2 /* line 8: */

3 t_vcharp gather_flag;

4 t_vcharp release_flag;

5 /* line 16: */

6 b->gather_flag = RCCE_malloc(sizeof(char));

7 b->release_flag = RCCE_malloc(sizeof(char));

8 /* -------------------------- */

9 void wait_flag(t_vcharp l, int i) {while(atomic_load_n(l,i)!=0);}

10 void post_flag(t_vcharp l, int i) {atomic_store_n(l,i,1);}

11

12 void gather(barrier_t * b) {

13 if (b->id == b->master) { // master:

14 for(int i=0;i<(b->n);i++)

15 if(i != b->master) wait_flag(b->gather_flag,i);

16 } else { // follower:

17 post_flag(b->gather_flag, b->id);

18 }

19 }

20

21 void release(barrier_t * b) {

22 if(b->id == b->master) { // master:

23 for(int i=0;i<(b->n);i++)

24 if(i != master) post_flag(b->release,i);

25 } else { // follower:

26 wait_flag(b->release, b->id);

27 }

28 }

Listing 3.4: Linear Barrier algorithm in C

90

3.5 Synchronization Constructs

In detail, the gather phase of the reference implementation is problematic
because it relies on reads to remote on-chip memory.

Especially for vSCC, a better option is a local placement of gather flags.
This alternative allocation of gather flags changes the access pattern to local
read but creates a higher on-chip memory footprint. We name this variant
fat-barrier, because n flags are allocated instead of 2.

Chaotic Linear Barrier

Next, we discuss a new barrier algorithm that provides dynamic mapping of
cores to on-chip synchronization resources. A requirement for the realization
of dynamic mapping is a support of atomic test-and-set operation to on-chip
memory. For the Intel SCC a general support of atomic operations to on-chip
memory is missing. For our implementation, as described in Section 2.2.5,
the emulation of selected atomic operations with synchronization register has
been used.

Besides the implementation of a spin-lock, the presence of atomic test-and-
set operations to on-chip memory locations enables a dynamic distribution
of flags. We have investigated such a technique for the implementation of
a chaotic linear barrier for the Intel SCC [Reb+11]. A fixed number of n
test-and-set register is allocated15 and initialized in an unset status.

This barrier algorithm can also be split into a gather and a release phase.
First, each UE performs a linear search for a free spinning location, which
means a shared variable in an unset status. In order to realize this, each UE
performs a read operation on the synchronization register in a defined order,
for instance according to the core ids from 0 to n. Between gather and release
phase all UEs are spinning on a dedicated on-chip memory location except
for the last incoming UE.

As a result of the read access, which is needed to perform an acquire oper-
ation, the value of target synchronization register changes its status to set.

The UE, which sees n−1 flags in set state, becomes the master and releases
the first waiter, which is the UE spinning on the flag at first position. This
UE releases the second waiter and so on, until all UEs have been released
in linear way. Here the ordering is important, to avoid trespassing of UEs.
Listing 3.5 shows the implementation of the chaotic linear barrier.

15n is equal to the size of a RCCE session

91

Chapter 3 Communication and Synchronization

1 /* -- Extends Listing 3.2: -- */

2 /* line 8: */

3 t_vcharp flag;

4 /* line 16: */

5 b->flag = RCCE_malloc(sizeof(char));

6 /* -------------------------- */

7

8 // perform linear search for first available flag

9 void gather(barrier_t * b){

10 int step=0;

11 while(atomic_test_and_set(b->flag,step)) ++step;

12 b->master = step; /* mark position */

13 }

14

15 // release followers in a chain:

16 void release(barrier_t * b){

17 if(b->master == (b->n)-1){

18 atomic_store_n(b->flag,0,0);

19 } else {

20 while(atomic_load_n(b->flag,b->master) != 0);

21 atomic_store_n(b->flag,(b->master)+1,0);

22 }

23 }

Listing 3.5: Chaotic barrier algorithm in C

Central Barrier

For hardware distributed memory, the support of atomic fetch-and-add oper-
ations such as atomic increment can be used for the realization of a shared
counter. A classic central barrier algorithm, which is based on two shared
counter, has been proposed more than 20 years in the past by Lubachevsky
[Lub90].

Implementation of this classic centralized barrier algorithm is possible, be-
cause the subsequently added hardware synchronization support of the Intel
SCC research system emulates atomic increment operation to on-chip mem-
ory [Reb+12c]. Specific implementation uses two hardware counters, which
are located off-chip. A control of these counters is realized with memory
mapped registers, as described in Section 3.2.1.

According to Lubachevsky, to indicate its arrival, each UE increments
target-shared-counter. Next, the last UE, which has incremented the counter

92

3.5 Synchronization Constructs

triggers a reset, while all other UEs are busy waiting for the reset. Target
shared counter has to be exchanged according to Lubachevsky between even
and odd sequences to avoid trespassing of UEs.

Off-chip synchronization resources, which are memory-mapped accessible
have to be carefully used in combination with busy waiting, on a cluster-
on-a-chip architecture without contention management. The access pattern
of the release phase generates a request rate that cannot be served by the
system interface FPGA, where the off-chip synchronization resources are lo-
cated. According to the contention model of Chapter 2, a starvation of cores
on the mesh with a lower access priority is resulting of the straight forward
implementation of the Lubachevsky barrier. The consequence is a limited ap-
plicability of the emulation of atomic increment operations to on-chip memory
location.

We propose a back-off, which represents a common method to relax the
contention problem resulting of a central synchronization point [Reb+12c], as
an adequate solution for the described issue [GT90; MS91].

First barrier implementation introduces an exponential back-off for the re-
lease cycle of the previously described central barrier implementation. This
method significantly reduces the contention and already leads to promising
results. Listing 3.6 holds source code for the resulting barrier implementation,
which is based on a simple interface for atomic operations, such as specified
by Listing 3.3. If hardware does not support the atomic increment operation,
such as the SCC, this functionality has to be emulated. This emulation in-
fluences the back-off function delay() which can be suited for a given access
pattern and specific latency, whereas the use of a quantified back-off leads to
a significant reduction of contention.

Another method for the realization of a barrier implementation, which is
based on a shared counter for the SCC, is the combination of the central
gather phase from Listing 3.6 with a distributed release phase from Listing 3.4.
Here, the linear method of the reference barrier implementation is used for the
release cycle to avoid a high contention on the AIR. A better performance for
a group size of more than 8 threads can be achieved, compared to the chaotic
linear barrier implementation. A further advantage is that only one hardware
synchronization register is allocated for this first AIR barrier implementation,
but an additional flag is introduced.

93

Chapter 3 Communication and Synchronization

1 /* -- Extends Listing 3.2: -- */

2 /* line 8: */

3 int * counter;

4 int phase; // helper variable toggles between even and odd phases

5 /* line 16: */

6 b->phase = 0;

7

8 void gather(barrier_t * b) {

9 if (atomic_fetch_add(b->counter,b->phase,1) == (b->n)-1) b->master = 1;

10 }

11

12 int release(barrier_t * b) {

13 if (master) atomic_store(b->counter, phase, 0);

14 else while(atomic_load(b->counter, phase)!=0){delay();}

15 b->phase = !(b->phase);

16 }

Listing 3.6: Atomic-increment barrier algorithm in C

3.5.3 Results

We use a micro benchmark to evaluate presented barrier implementations
regarding their scalability. Figure 3.17 shows results for the Intel SCC, with
average runtimes for each barrier variant for an increasing core size.

To enable a fair comparison of all barrier implementations, which are based
on the special hardware synchronization support of the SCC, we use the
reference barrier implementation of RCCE with a bypass-flag-optimization.
As presented in Section 2.3.4, this optimization avoids a flush of the write-
combining buffer for each write operation to a remote-flag value. A speedup
of about 2x is resulting for the simple master-follower reference implementa-
tion, because the linear release phase which includes write access to remote
on-chip memory is the dominant part of the overall runtime.

In detail, we can observe a stronger effect of a raising communication dis-
tance for the linear flag reference implementation compared to the chaotic
linear barrier for an increasing core count. As more cores are added, the
communication distance to the master raises inevitably on the 2D mesh.
This effect strongly depends on the underlying communication topology. Our
measurements show that both barrier implementations scale linearly with the
number of cores. However, with a utilization of different access patterns and
hardware-synchronization means, the linear slope could be strongly reduced.

94

3.5 Synchronization Constructs

An even better performance for a larger count of UEs can be achieved
by using a tree-based communication pattern with a static mapping. In the
diagram this implementation is named tree flag, whereas a classic 2-ary tree
algorithm with 2 successors per node provides logarithmic scalability and
outperforms the linear variant for more than 8 participating UEs.

The plotted orange curve from Fig. 3.17 shows that the runtime of a chaotic
linear barrier is in the same order than the reference implementation. A major
drawback of this algorithm is a remote spinning to on-chip memory. Addition-
ally, the dynamic allocation scheme requires atomic test-and-set operations
to on-chip memory.

The red curve from Fig. 3.17 shows the elapsed time for a barrier operation
in average that targets a central counter. Here, delay has been introduced
which is iteratively increased to realize busy-waiting with exponential back-
off.

2 4 8 16 32 48
0

5

10

15

20

25

cores

la
te

n
cy

[µ
s]

linear flag

central counter + exp. back-off

central counter + quant. back-off

tree flag

chaotic linear

Figure 3.17: Scalability of selected barrier Implementations

95

Chapter 3 Communication and Synchronization

Surprisingly, a significantly speedup can be achieved for the SCC platform
with a barrier implementation according to Lubachevsky. The back-off barrier
variants with a shared counter perform fast across the board, despite the fact
that the counter is located off-chip, with a result that the latencies to the
counter are 3 times higher than the access to a flag. Nevertheless, compared to
the linear reference implementation, a speedup of up to 4.5 x can be achieved
for the implementation of a central synchronization construct.

The results of our experiments from Section 3.5.1 have demonstrated, that
a high contention is problematic for the SCC upon a certain core count
(cf. Fig. 3.16). We detected, that remote spinning of more than 30 cores
to a single off-chip synchronization register can lead to starvation of cores
with a large distance to the physical location (cf. Fig. 2.6).

Consequently, the use of a back-off is essential for the barrier implementa-
tion based on a central counter and on remote-read operations. It enables a
certain flexibility, so that a random number or the predictability of intercon-
nect latencies can be taken into account for a back-off calculation. In order
to explore these effects, we have implemented and compared two variants.
The red curve from Fig. 3.17 represents an exponential back-off with a base
of two and optimized upper and lower bounds for each number of cores. This
means a maximum and minimum back-off is derived from the group size of
the barrier. The black curve is resulting of a back-off function, which only
takes the communications distance and degree of concurrency into account.
Degree of concurrency means in this context, how many cores concurrently
access the central synchronization point.

96

3.6 Conclusion

3.6 Conclusion

In the previous Chapter 2, we have presented a communication model for
many-core processors with non-coherent memory coupled cores. We have de-
rived a basic communication model for this kind of architecture. With differ-
ent micro benchmarks, we have demonstrated the predictability of point-to-
point communication and verified the communication model. In this context,
we were able to analyze low-level communication for specific schemes of the
many-core research vehicle. In detail, our communication model is useful to
analyze different access patterns to software controlled on-chip memory. It
can be used to explore limits of Intel’s SCC many-core processor architecture
that waives full chip cache coherence and includes architectural support for
on-chip message passing.

Uncontrolled concurrent access can cause memory contention which de-
grades performance. The communication model has been extended to predict
on-chip memory contention, dependent on the routing mechanism of an on-
chip interconnect.

In this chapter, the development of a communication-and-synchronization
interface for a cluster-on-a-chip processor has been described. It is shown,
that effective communication can be realized by means of a light-weight com-
munication layer. Therefore, two goals have been reached: optimization of
the existing functionality and its extension, such as the analysis of alternative
communication schemes and extension of communication protocols.

We specify a new interface for the Intel SCC as an extension of a basic
communication environment. Another goal was to overcome limitations of an
existing communication environment that prevents a non-blocking communi-
cation, which is a requirement for the use as an inter-kernel communication
layer. Moreover, synchronization constructs as well as point-to-point commu-
nication has been optimized. We have shown that atomic operations are one
important mean for the implementation of dynamic allocation schemes for on-
chip memory and low-latency communication functions. In addition to that,
we have successfully introduced relaxation techniques, such as a quantified
back-off, to prevent starvation of cores resulting of central synchronization
points.

97

4
System Software and Application

“You should also be inspired to create
your own hypervisor, using your own
pets as logo.” [Rus07]

The role of system software for the many-core area is currently an open
question, especially regarding operating system support for future processor
architectures. In this context a large number of important challenges exist,
such as the scalability of software design as well as energy efficient control for
thousands of cores per chip, towards EXASCALE computing.

The focus of this chapter is integration of a small inter-kernel communica-
tion and synchronization layer to a bare metal framework and analysis of its
overhead. In Chapter 3 of this dissertation, a spin lock was used to verify a
contention model for a many-core architecture with on-chip networks.

traditional OSes Multikernel

Shared State
BKL

Finer-
grained
locking

Cluster
objects
partitioning

Distributed
state replica
maintenance

Figure 4.1: Locking granularity in operating systems

In general, locking is a method to protect concurrent access to shared re-
sources, such as shared memory regions. An example are internal structures of

99

Chapter 4 System Software and Application

an operating system (OS) with concurrent access as a result of multithreading
support.

Figure 4.1 illustrates the locking granularity of operating systems. In gen-
eral, internal representation such as states and management structures are
shared along parallel execution units to handle allocation of resources. Either
implicit or explicit coordination from big kernel lock to replicated states is
an option for the design of operating system kernel. For a uni-core processor
with local data it would be sufficient to disable interrupts and thereby avoid
a preemption within a critical section. If the number of cores grows, for in-
stance as a result of many-core technology, a scalable design becomes more
and more important.

Organization of this Chapter

The focus of this chapter is on system software support for the realization of
applications that follow established programming concepts.

We have discussed programming models for an architecture such as the In-
tel SCC in previous work [Cla+13a]. Additionally, in previous publications
we have presented MetalSVM and demonstrated its performance for the Intel
SCC, which represents a many-core architecture with 48 in-order computing
cores in the absence of cache coherence [Reb+12b]. First experiments with
weaker memory consistency models are presented in our previous work for the
SCC [Lan+12b]. To further analyze the scalability and effective communica-
tion in the absence of cache coherence, we have designed a virtual extension
of the SCC’s on-chip interconnect [Reb+12a]. This includes transparent ac-
cess to the communication library and additional functionality with software
emulation of system software extensions, such as a DMA controller and addi-
tional synchronization register. We name this architecture vSCC, because it
consists of multiple SCC processors, which can be used as a cluster-on-a-chip
architecture.

My contribution to the work which is presented in this chapter include:

• Development of the vSCC concept

• Contribution to a bare-metal framework for the Intel SCC [Reb+12b]

• Contribution to the implementation of a low-level communication and
synchronization layer [Reb+11]

100

4.1 Related Work

native application or library

RCCE iRCCE

basic communication layer

gory interface: put, get, . . .

send, recv, . . . isend, irecv, . . .
non-gory interface:

cluster-on-a-chip hardware

low-level operations: read, write, flush, invalidate . . .

native application or library

Figure 4.2: Focus of this chapter in relation to the investigated layered com-
munication structure

Software extensions that emulate hardware support for communication and
synchronization, for instance hide off-chip communication latencies and real-
ize a working prototype with 240 cores based on the Intel SCC hardware
[Reb+15].

This chapter is organized as follows. The next section summarizes related
work on system software support, parallel programming and memory virtu-
alization for many-core systems.

Section 4.2 presents the basic concept of MetalSVM. Section 4.3 describes
the efficient implementation of a bare-metal hypervisor for the Intel SCC. Sec-
tion 4.4 shows results for NPB BT and LU synthetic application benchmarks
and Jacobi method kernel benchmark.

4.1 Related Work

Especially in the field of HPC, parallel applications do not run bare metal
on a computer system. Widely used operating systems, such as Linux, are
capable for multitasking and have been designed for different workloads, which
includes user interaction as well as applications that target a high throughput.
A certain jitter, also known as OS noise, can hardly be avoided for such a
design. For highly scalable systems, studies have shown that the use of a

101

Chapter 4 System Software and Application

general purpose operating system can have negative impact to the overall
system performance [Tsa+05]. Related research question is if special purpose
operating systems are appropriate choice to target those issues.

MetalSVM is based on a distributed kernel approach, which is comparable
to the barrelfish-multikernel approach [Bau+09]. However, the general design
approach is different, so that in this related work a microkernel is described
which targets a minimalistic functionality. We target the realization of a
specialized monolithic kernel, because the virtualization of a shared memory
machine is performance sensitive.

Helios is a research project that follows the concept of heterogeneous ker-
nels, for coordination and execution of tasks [Nig+09]. Fensch and Cintra
propose hardware support for remote cache access to maintain coherence of
a tiled processor architecture [FC08]. Corey’s concept is that applications
control the sharing of data resources [Boy+08]. For the realization of such
an approach, different abstractions are proposed that should be provided to
applications.

Hardware-and-software solutions – that implement a low-level inter device
communication for high performance interconnects – are related to our re-
search on vSCC. A classic hardware approach to accelerate communication
for a distributed memory system are special purpose processors. For instance,
the Intel Paragon has followed such a concept in the 90’s [Hoc94].

The reverse-acceleration approach targets the offload of communication
from throughput optimized cores to latency optimized computing cores, in-
stead of offloading compute intensive tasks to throughput optimized cores.
Our research vehicle vSCC shares this basic idea with the reverse-acceleration
approach [PLK09]. The reverse-acceleration approach has been successfully
applied as a work-around for the Xeon Phi coprocessor.

For example, a hardware limitation of Xeon-based host systems prevents
a good direct communication performance between two PCIe devices. The
solution for MPI-based applications is a proxy task that is running on the
host and acts as a message broker to the communication library [Pot+13].
This work follows a similar approach compared to our work regarding com-
munication offload, where the general goal is to accelerate communication of
many-core systems. However, our work differs, because we target a low-level
communication path on data transfer layer and extensions to systems software
instead of a modification of the communication library.

102

4.1 Related Work

4.1.1 Programming Models

Basically, parallel programming models rely on language extensions or run-
time libraries. From a system-software perspective, specific models can mainly
be categorized if the address space is shared, partly shared or distributed.
For example, MPI, OpenMP, and UPC fall into these categories, that are
distributed memory, shared memory, and partitioned memory [UPC05].

A common implementation are threads and processes, which are both typi-
cally handled by the operating system with the main difference that they share
an address space or not. Another distinction can be made if the communica-
tion and synchronization of parallel execution units is explicitly or implicitly
expressed. Classic message passing based programming models provide ex-
plicit communication and implicit synchronization.

The concept of shared memory parallelization is implicit communication
and explicit synchronization between threads. Related to our approach of
integrating a shared virtual memory management to a bare metal hypervisor,
different memory models are defined for parallel programming paradigms.

Abstraction of parallelism is an important task. A memory consistency
model, also called memory model, specifies behavior of memory regarding
read and write operations. Programming languages, that natively support
the concept of thread-based shared-memory parallelism, for instance Java 5.0
or C++11 specify a memory model. The challenge for a memory model is
that it should fit to the underlying hardware to avoid performance penalties.
For instance, sequential consistency represents the strongest definition, which
prevents optimization that shared-memory machines with multiple cores pro-
vide. Because sequential consistency assumes that a write operation to a
shared memory location has to be observed by each core in the same order.

Relaxing the total order of read and write memory operations in a memory
model leads to so called relaxed consistency models [AG96]. An example
for a relaxed consistency model is lazy release consistency, which has been
introduced by Keleher et al. [KCZ92].

The memory consistency model of OpenMP is an example of a relaxed con-
sistency model. Since version 2.5, a concrete specification of the OpenMP
memory model exists, instead of just describing case by case the behavior of
memory in specific parallel regions [HS08]. For example, the flush directive,
which can be used to control consistency in an explicit way, has lead to misun-
derstandings in the past, especially in combination with locks. Related issues
become more and more present if the coherence is controlled in software.

103

Chapter 4 System Software and Application

OpenMP is a widely used interface and can be seen as the de-facto standard
for Shared Memory Programming. Version 1.0 of OpenMP specifies a fork-
join model for FORTRAN (1997) and C/C++ (1998), which especially suites
loop parallelization. Parallelism of applications can be expressed through
compiler directives, which are added by pragmas. A compiler with OpenMP
support can use these pragmas to extend a program according to the spec-
ification. Main advantage of this expression of parallelism is the possibility
of incremental parallelization, because the absence of some pragmas can still
lead to correct parallel applications only with performance or scalability is-
sues on specific hardware. Moreover, if pragmas are ignored by a compiler
without support for OpenMP, it can create a serial version of the shared
memory parallel application. In addition to that, the generation of a parallel
application is based on a runtime which handles for instance the creation of
threads and the housekeeping of a thread pool. Explicit synchronization can
be expressed with OpenMP by constructs such as the critical or barrier

construct and functions such as a lock routine. Implicit synchronization rep-
resents in OpenMP for example a parallel region without a no-wait clause,
which implies a barrier.

OpenMP has been clearly designed for shared memory machines, also called
SMP systems. Version 4.0 of OpenMP has been released in 2013 and intro-
duces accelerator support. Here, copy clauses are for instance used to transfer
data between distributed memory regions. Therefore, dependencies are ex-
pressed to decide which data has to be copied from source to target and
vice versa. This creates potential to program machines consisting of multiple
coherency domains [OMP13].

In order to create the possibility of executing parallel programs on hardware
without shared memory, data dependencies in OpenMP have to be expressed
explicitly for a target region as part of a device construct. Main target of
these new constructs is the support of accelerator and coprocessor hardware,
however the offloading concept is not limited to this kind of hardware. A
device is an abstract unit that could also represent nodes of a symmetric
cluster or another coherency domain on a many-core processor without full-
chip cache coherence.

4.1.2 Virtualization

In general, virtualization is a technique, that describes the use of a software
that behaves like another hardware or software component. Regarding com-

104

4.1 Related Work

puter systems, virtualization is present in multiple areas, such as computer
hardware, networks or operating systems.

The configuration of a virtualized operating system consists of a host and a
guest system. The typical task of a hypervisor is the management of multiple
guests that share hardware resources by running on a single host. In such
a scenario, the interaction between the components is that each guest, as a
separate operating system instance, runs on top of a hypervisor. Dependent
on its classification, a type-1 hypervisor can run directly on the hardware,
which is also called bare-metal. A hypervisor that is classified as type-2 runs
on top of an operating system [Gol73].

Another distinction, that is commonly made, is how the guest operating
system executes privileged operations. The technique that a guest operating
system is aware of being executed on top of a hypervisor, is known as par-
avirtualization [WSG02]. Instead of directly executing a systemcall, the guest
traps a hypercall to execute privileged operations. This is a contrast to full
virtualization, which enables the execution of unmodified operating systems,
without such a support.

In this work, the virtualization of a shared memory system for an x86-based
many-core system within a paravirtualized environment is discussed. The goal
is a support of legacy shared-memory programs on hardware without cache
coherence in combination with message-passing applications which can run
close to bare-metal.

A common way for communication of systems with hardware distributed
memory is message passing. However, many applications show a strong bene-
fit using shared-memory programming model. Shared Virtual Memory (SVM)
is a classic concept to enable the shared memory programming model on DSM
systems. A cluster, that appears as an SMP system, is commonly called SVM
system.

Many implementations are realized as additional libraries or programming
language extensions. In this case, only parts of the program data will be
shared and a strict disjunction between private and shared memory is re-
quired. Intel’s Cluster OpenMP is a typical example of an SVM system.
First experiences with Intel Cluster OpenMP have been presented by Ter-
boven et al. [Ter+08]. It turned out that, the disjunction between private
and shared memory has side effects on traditional programming languages
like C/C++. For instance, if a data structure is located in the shared virtual
memory, the programmer has to guarantee that all pointers within this data

105

Chapter 4 System Software and Application

structure refer also to the shared memory. This restriction of the environment
prevents execution of existing OpenMP applications.

An important attribute of an SVM system is, that only the memory is vir-
tualized. Consequently, the access to other resources of distributed systems,
such as the file system, requires additional support. The integration of an
SVM system into a distributed operating system, in order to offer the view
of a unique SMP machine, increases the usability.

Since IVY [LH89], a lot of work has been done on SVM systems. Tread-
Marks [Kel+94] is an important SVM system, that Intel’s Cluster OpenMP
was based on. However, those systems are commonly based on traditional
message-passing oriented networks or use a RDMA (Remote Data Memory
Access) engine to access remote memory locations. Setup costs to program
RDMA engines are high and increase the overhead of using an SVM system.

The Scalable Coherent Interface (SCI) belongs to the memory-mapped net-
works and offers a transparent read and write access to remote memory
[SCI93]. This represents a similar basic communication concept to the In-
tel SCC architecture. In contrast to a cluster-on-a-chip architecture, that
waives full chip cache coherence, the SCI standard defines a cache coherency
protocol. This feature of SCI has never been realized by commercial hard-
ware because of the connection of the processor to the SCI network. Due to
the fact that PCI devices were used as network cards such a feature, which
needs processor internal information, such as the status of a cache-line, could
not be supported. The similar communication concept of SCI and SCC is
based on several processing units that are able to communicate transparently
over shared memory regions without the support of cache coherence. Both
share the attribute that the amount of low-latency remote memory is lim-
ited. For SCI, this low-latency memory is located on the network device. As
a result, the ratio of local to remote memory latencies differs significantly
between the two systems, because of the on-chip network and the on-chip
remotely addressable memory integration of the Intel SCC. To decrease this
ratio, with the SCC, the x86 processor architecture has been adapted to the
new communication concept.

Several projects have realized an SVM system on top of an SCI clus-
ter, however with limited usability due to the implementation at user level.
NOA [MP98] used SCI as fast message-passing interconnect and did not ex-
ploit the capabilities of a transparent remote-read-and-write memory access.

Another approach is the integration of an SVM system into virtual ma-
chines, for an easy application of common operating systems and development

106

4.2 Concept of MetalSVM

environments without changes. An example for a hypervisor-based SVM sys-
tem is vNUMA, that has been implemented for Intel Itanium processor ar-
chitecture [CH09]. One founder of vNUMA argues in: “Many-core Chips –
A Case for Virtual Shared Memory”, to extend this concept for Many-Core
Chips, based on the experiences with vNUMA. The basic idea is to provide
a flexible and scalable platform for shared memory programming with an ad-
ditional software layer. The proposed virtual shared memory system targets
an absence of contention, for example applications without lots of communi-
cation [Gam+99].

Regarding x86-based compute clusters, ScaleMP1 has developed the so-
called vSMP architecture, which enables cluster-wide coherent memory shar-
ing. This architecture implements a virtualization layer underneath the OS
that handles distributed memory accesses via InfiniBand based communica-
tion. Since both approaches implement an SVM system as a virtualization
layer besides hardware and operating system, they share similarities to the
MetalSVM approach.

The main difference between existing approaches and MetalSVM is their
limitation to established interconnect fabrics.

4.2 Concept of MetalSVM

MetalSVM is designed to support the new communication concept of the
SCC, which includes distinguished capabilities of transparent read and write
access to its global on-die and off-die distributed shared memory.

The project started in 2010 at RWTH Aachen University2 and targets the
implementation of a virtualization layer to a bare-metal hypervisor. The main
goal of this new hypervisor is software-controlled coherence for future many-
core systems. As a result, common operating systems – that combine SMP
and para-virtualization support – will be able to run on non-coherent memory
coupled cores in a transparent way. Figure 4.3 illustrates the basic concept
of MetalSVM.

In contrast to the mentioned SVM libraries, our SVM system targets the
integration to a small hypervisor, so that an operating system such as Linux is
able to run as a virtual machine on top of MetalSVM. Following this approach,
the effort in development and maintainability is cheaper compared to a new

1http://www.scalemp.com
2initially funded by Intel Labs Braunschweig

107

http://www.scalemp.com

Chapter 4 System Software and Application

Shared Memory Application

Para-virtualized Standard Linux

Hypervisor

Kernel Kernel
communication

layer
Kernel

Hardware

Kernel
communication

layer

Message-Passing Application

M
et
al
S
V
M

Figure 4.3: Basic Concept of MetalSVM

distributed operating system because of its unique view to the hardware in
contrast to all components of an operating system, such as the file system
and process management.

The SVM system of MetalSVM locates shared pages or write notices in
hardware-distributed shared-memory. As a result, each core can transparently
access shared data which suits a one-sided communication system. Memory
consistency can be controlled with a flexibility, so that changes can be commu-
nicated by small messages, which are sent by our inter-kernel communication
layer iRCCE.

Example of those changes is control of consistency on page granularity.
Regarding strong memory model each page can exactly have a single owner.
For a memory access that targets a page frame by a core which is not its
owner, an access violation occurs. A message is send to the owner, which
has to flush local cashes to recover memory consistency and delete its write
and read permissions. Next, the page access notification can be send to
the requesting core, which can set read and write permissions and retry the
memory access.

4.2.1 Motivation of MetalSVM

The focus in this section is the efficient implementation of a minimalistic
operating system kernel as a bare-metal hypervisor for a many-core processor.
Source, functionality, and the operation of our kernel, as well as the interaction

108

4.2 Concept of MetalSVM

with a communication layer is described in the following. Furthermore, the
boot procedure of the SCC is described in detail from reset to the starting
point of our light-weight operating system kernel. This procedure is performed
by a bare-metal framework, which is part of the MetalSVM project. Finally,
the performance of a paravirtualized Linux guest on the SCC hardware is
evaluated and results are shown for context switch latencies for Linux and
MetalSVM hosts.

The main difference to our approach is that vSMP and vNUMA explic-
itly use message-passing between the cluster nodes to transfer the content
of the page frames, whereas our SVM system can cope with direct access to
these page frames. In fact, we want to exploit the SVM system with SCC’s
distinguishing capabilities of transparent read-and-write access to the global
off-die shared memory. This feature will help to overcome a drawback of other
hypervisor-based approaches regarding fine granular operations. An evalua-
tion of ScaleMP’s vSMP – with synthetic kernel benchmarks as well as with
real-world applications – has shown that vSMP architecture can stand the
test if its distinct NUMA characteristic is taken into account [Sch+10].

The evaluation of vSMP has shown that the expensive synchronization is
a major drawback for this kind of architecture. We believe that especially
this drawback will not occur in the context of our solution for the SCC,
because MetalSVM provides better options to realize scalable synchronization
primitives.

4.2.2 Integration of iRCCE into MetalSVM

RCCE library has been designed as a light-weight communication library for
the SCC architecture. This implies the limitation to blocking communication,
which disqualifies its use as inter-kernel communication layer. For instance
circular dependencies, a common source of deadlocks for blocking communi-
cation, can not be excluded for such a communication scenario.

We have developed an extension – with iRCCE – that provides non-blocking
[Cla+13b] and asynchronous communication [Lan+12a]. An obvious way
for the realization of non-blocking communication functions are additional
threads, which handle communication in the background. As a result, the
application thread can immediately return from the communication function.
Although this approach seems to be quite convenient, it is not applicable in
bare-metal environments where a program runs without any operating system
support, including support for multithreading.

109

Chapter 4 System Software and Application

Another approach could be that the application triggers the communication
progress itself. Regarding the design of MetalSVM, each kernel, as a bare
metal application, can handle this task. For our implementation, a non-
blocking communication function returns a so called request handle, which
can be used to trigger its progress with push, test or wait functions.

In the context of MetalSVM, the communication progress is triggered at the
occurrence of interrupts, exceptions or system calls. The MetalSVM kernel
checks at these points, if a message is pending. In order to realize that,
all messages start with a header, which specifies its type and payload. The
definition of a message type is important, because this layer will be used to
send messages between the instances of the SVM system.

The maximum delay between sending and receiving a message header is as
large as a time slice, because at least after one time slice an interrupt will
trigger, which checks for incoming messages. MetalSVM allows the sender to
trigger a remote interrupt on the side of the receiver in order to reduce the
delay. This creates additional overhead, because the calculation on a remote
core would become unnecessarily interrupted. Nevertheless, for high priority
messages, we provide this option.

For communication between coherency domains, besides iRCCE, Metal-
SVM supports a TCP/IP stack, which is briefly described in the following
paragraph on device drivers.

4.3 Efficient implementation of a bare-metal
Hypervisor

The integration of an SVM management system influences the design of a hy-
pervisor kernel. In this section, we detail the implementation of such a kernel
including interrupt handler, device driver, file system, and the hypervisor.

As an application example the implementation of a light-weight operating
system kernel for the Intel SCC is discussed. For portability reasons, the
design of this kernel follows a classic concept, that divides the implementa-
tion into hardware dependent and independent parts. As a result, different
hardware architectures can be supported with less effort.

An existing interface from the Linux kernel was our choice for integration
to MetalSVM [Lan10]. If the interaction between host and guest is based on
a de-facto standard interface, a main advantage is that major changes to the

110

4.3 Efficient implementation of a bare-metal Hypervisor

Linux kernel code can be avoided. Paravirt-ops represents a well-established
interface to run Linux as a para-virtualized guest. This interface is part of the
standard Linux kernel and used, beside KVM [Kiv+07] and Xen [Bar+03],
for the realization of our approach.

Instead of integrating one of these complex hypervisors to MetalSVM, lguest
is a small hypervisor which provides all required features for the realization
of the MetalSVM project [Rus07]. Moreover it does not rely on hardware
virtualization support such as Intel VT-x, which does not exist for the SCC.

4.3.1 Bare metal framework

The main difference between Intel’s SCC research processor and other x86 pro-
cessors is a missing BIOS or equivalent firmware interface support. Moreover,
the SCC experimental platform has no stand-alone memory initialization.
The only possibility to boot an operating system or a bare-metal application
on the processor cores of the SCC is preloading their memory content into a
bootable state of its private memory regions. As described in Section 2.2, the
general system initialization works with a standard PC, which has a direct
access to memory and the configuration register of the SCC.

MetalSVM is Multiboot3 compliant. As a result, a standard boot loader
such as GRUB can boot MetalSVM on commodity x86 hardware. The boot
procedure of the SCC research platform is different and thus briefly described
in the remainder of this paragraph. In other words, the main task of our bare-
metal framework is to get the SCC experimental processor into a Multiboot
compliant state.

First, the reset pins of selected SCC cores are pulled which stops its ex-
ecution. Next, Lookup Table (LUT) are initialized and a separate memory
image is loaded to each memory controller of the SCC. As the SCC does
not provide a boot loader, our framework provides minimal assembler code
which is located at a hardwired address that the instruction pointer of each
core holds after reset. This code initializes the stack pointer and installs a
rudimentary Global Descriptor Table (GDT), which is a data structure that
x86 based architectures use to handle memory regions with different charac-
teristics, so called segments [Intel07]. The presence of this information is a
requirement, so that the setup routine can switch the processor from real to
protected mode and subsequently to 32 bit mode. As a final step, our routine

3http://www.gnu.org/software/grub/manual/multiboot/

111

http://www.gnu.org/software/grub/manual/multiboot/

Chapter 4 System Software and Application

jumps to the starting point of a bare metal application or respectively the
MetalSVM kernel.

MetalSVM uses ELF, which is the standard binary file format for Unix
systems which was not supported by SCC’s software stack sccKit. We used
GNU utility objcopy to generate a loadable, raw binary kernel file without
symbols and relocation information.

Composed to a single image with the provided sccKit tools are: The
startup routine (from real to protected mode) as previously described and
information, which are generally provided by the bootloader and the kernel
itself.

As a next step, a configuration file for the LUTs and one object file per
memory controller of the SCC platform can be created. Specific object files
can be loaded into the off-die memory of the SCC before releasing the reset
pins of the SCC cores.

Device Drivers

With QEMU 4, a generic and open source machine emulator and virtualizer
has been used for the development and for testing purposes. Through the
integration of a driver for the Realtek RTL8139 network chip, which is also
supported by QEMU as an emulated device, standard kernel components
could be tested in a simple way.

The communication between the SCC cores running MetalSVM is not lim-
ited to the iRCCE library and its mailbox extension. With the integration of
lwIP, a light-weight TCP/IP library, the flexibility is increased [Dun01]. Con-
sequently, BSD sockets are made available to user space applications to estab-
lish communication between the SCC cores and the MCPC. In previous work,
we have shown the performance gain of the resulting network layer [Lan+12a].

Beside other devices, the network capabilities of MetalSVM will be for-
warded from the guest operating system to the hypervisor through virtio.
Rusty Russell proposed virtio to create an efficient and well-maintained frame-
work for IO-virtualization of virtual devices commonly used by different hy-
pervisors [Rus08]. In our scenario, for instance the network capabilities of
MetalSVM are used as a backend by just forwarding the requests of the Linux
guest operating system to the hypervisor.

4http://www.qemu.org/

112

http://www.qemu.org/

4.3 Efficient implementation of a bare-metal Hypervisor

Interrupt Management

The SCC platform includes 48 cores that are based on P54C. As a second-
generation Pentium core, the P54C was the first processor which integrates a
local Advanced Programmable Interrupt Controller (APIC) on-chip. A local
APIC can be used to trigger the scheduler periodically by programming the
local timer interrupt. MetalSVM provides a simple priority-based round-robin
scheduler or can be configured in tick-less mode.

Interrupts are important for the SCC, because the architecture does not
use the traditional way to integrate I/O devices (IO-APIC) or to send inter-
processor interrupts (IPIs). Besides the timer interrupt, the local APIC pro-
vides two programmable local interrupts (LINT0 and LINT1). Therefore, a
core configuration register exists for each core of the SCC, which is mapped
to the address space of all cores. As a result, core x can trigger interrupts on
core y. By using this mechanism to trigger interrupts, the receiving core has
no information on the origin of the interrupt.

Since sccKit version 1.4.0, the System Interface of the SCC includes a
Global Interrupt Controller (GIC), which provides a more flexible way to
handle interrupts [SCC11]. If interrupts are triggered by the GIC, the re-
ceiving core is able to determine the origin of this interrupt, which was not
possible in the previous configuration. MetalSVM uses the GIC especially for
inter-core communication with a mailbox system [Lan+12b]. Here, the inter-
rupt source is important, because otherwise all mailboxes have to be checked
if an interrupt occurs.

File system

MetalSVM has an elementary inode file system with the intention to use a
volatile ramdisk which can be manipulated at runtime. As the SCC system
does not provide large amount of non-volatile storage, a file system is limited
in use.

Moreover, the integration of a C library extends the usage of MetalSVM,
such as a support of bare-metal message-passing applications. We have chosen
newlib5 which is a C library designed for embedded systems, because it meets
the requirements of streamline intel architecture based cores, such as the
SCC cores. This C library represents a restricted implementation, which is
optimized in terms of memory footprint and performance. Related attributes

5http://sourceware.org/newlib/

113

http://sourceware.org/newlib/

Chapter 4 System Software and Application

that a single many-core processor core can share with embedded processor
architectures are: in-order execution, a moderate frequency and relatively
small caches.

Scheduler

The presented hypervisor has different requirements than the scheduling meth-
ods, that modern operating systems implement. We intend to handle only
a couple of tasks with a predictable ratio, interaction, and static priorities.
Examples of those tasks are: daemon tasks that realize communication in the
background and monitoring tasks that count occurring page faults and trace
changes of ownership.

A simple but fast algorithm has been applied to manage tasks. The sched-
uler keeps an array with as many items as priority steps exist. Per priority
there is one linked list of tasks waiting for execution. Between timeslices the
scheduler appends the previous task to the end of its priority list and selects
the head of the current processed priority level list for execution.

The small set of implemented priorities in MetalSVM arises potential for
optimizations. One optimization is already implemented in the networking
layer. Network packet traffic is handled by a special kernel task with flexible
priority. This way it is possible to balance between high network throughput
and overall system latency.

4.3.2 Many-core Virtualization

A first prototype which implements an SVM system to a bare metal hypervisor
has been previously published [Lan+12a]. Additionally, we have published
further optimizations of the prototype and first experiments with relaxed
consistency models [Lan+12b]. In the subsequent paragraph overhead of our
bare-metal framework is evaluated and in the remainder of this chapter the
scalability of its light-weight communication layer is analyzed.

4.3.3 Hypervisor Performance

For the realization of a transparent Shared Virtual Memory environment
within a para-virtualized environment, the hypervisor has a major impact
on the overall system performance. If the hypervisor introduces a significant

114

4.3 Efficient implementation of a bare-metal Hypervisor

overhead, this can degrade performance of the guest operating system espe-
cially regarding memory management, context switch and process handling.

Measurements of three representative latencies identify a reduction of lguest’s
virtualization overhead in combination with MetalSVM. The context switch
from guest to host execution is performed for each hypercall and at the ma-
jority of interrupts. Moreover, page faults of a guest application can involve
up to three guest-host roundtrips.

Table 4.1: Benchmark results for the Intel SCC platform (Linux 2.6.38.3)

Benchmark
Hypervisor Ratio

MSVM
LinuxLinux MetalSVM

Host-guest context switch 2 042 2 113 103 %

Page fault 918 679 867 676 94 %

getpid() 191 191 100 %

fork() 3 216 767 3 101 387 96 %

vfork() 220 317 236 207 107 %

pthread_create() 16 256 988 10 883 839 67 %

Values in processor ticks

To quantify the overhead of our environment, we present latencies of se-
lected system calls, such as getpid, fork, vfork, and pthread create, in
Table 4.1. Because of its low net execution time and due to the fact that
it does not involve a host-guest switch, getpid indicates the overhead of a
system call. To measure the elapsed time, for the creation of a task and the
copy operation of a whole page directory of the original task, we used fork

and vfork. For the execution time of pthread create a significant difference
between Linux and MetalSVM can be observed. This effect can be explained
by the coarse granularity of the current timer implementation of MetalSVM.

Context Switch Latency

In this section, the advantages of a bare-metal framework for MetalSVM are
discussed. To quantify the overhead of our implementation for the Intel SCC,

115

Chapter 4 System Software and Application

we compare the context-switch latencies of MetalSVM to sccLinux. In addi-
tion to that, we compare the lguest implementation of MetalSVM and Linux
2.6.38.3. For the benchmark results which are presented in this section, a
single instance of the host operating system is running on a single core of the
SCC platform6.

0 500 1,000

2

4

6

8

10

12

14

16

18

iteration

10
3

ti
ck

s

Linux 2.6.38.3
MetalSVM

MetalSVM tickless

Figure 4.4: Scheduling overhead of MetalSVM [Reb+12b]

To measure the context switch latency, two tasks are running in such an
environment with a high priority. Each task periodically reads the time stamp
counter in a loop and records the difference between subsequent counter val-
ues. Gaps in a specific range indicate the latency of a context switch. Specifi-
cally the gap has to be lower than a time-slice and the interrupt handler. The
method is similar to the classic hourglass benchmark [Reg02].

Figure 4.4 shows benchmark results for context-switch latencies of Linux
and MetalSVM. Specific values of Linux have a minimum around 6400 pro-

6core/mesh/memory frequency: 533 MHz/800 MHz/800 MHz

116

4.4 Application Examples

cessor cycles, whereas the distribution of latencies has a certain noise which
has no clear signature and changes from time to time.

In contrast to the latencies of MetalSVM, which have a high predictability
with a minimal context switch latency of around 2100 processor cycles. In
terms of predictability, the diagram shows a second level of around 5000 ticks
for the context switch latencies of MetalSVM with a regular pattern. This
effect can be explained by a background task of the network driver, which
becomes periodically active.

The results show that our self-developed operating-system kernel achieves
a significant reduction of overhead. This is an advantage, if the execution
of system software is in the critical path, such as the access of a parallel
application to a memory region with software-controlled coherence. However,
the accumulated overhead reduction, which is a result of the lower context
switch latencies, is negligible and can not motivate the bare metal execution
of applications in general, because its disadvantages outweight. Nevertheless,
the high predictability of our light-weight execution environment is a main
advantage regarding the scalability of architectures with many tightly-coupled
processor cores.

Moreover, our framework has a simple code-base which is easy to under-
stand, to modify and also to validate.

4.4 Application Examples

In this section, floating-point-intensive benchmark results are discussed to
explore attributes of Intel SCC’s new communication concept. First, experi-
mental results of a common solver, that represents a class of so called stencil
codes, is analyzed. Second, a set of synthetic applications is used to demon-
strate the effect of our optimizations to the RCCE family.

4.4.1 Jacobi

The Jacobi method is a prototype for stencil-based iterative methods in nu-
merical analysis and simulation [HW11]. For instance, it can be used to sim-
ulate the distribution of temperature or pressure by solving the discretized
diffusion equation on a rectangular lattice subject to Dirichlet boundary con-
ditions. The C code in Listing 4.1 shows a simplified sequential version of the
Jacobi method. The implementation consists of two loops that iterate over all

117

Chapter 4 System Software and Application

1 /* ... */

2 for(int j=1;j<N-1;j++){

3 for(int i=1,i<N-1;i++){

4 v[i][j] = 0.25*(u[i-1][j]+u[i+1][j]+u[i][j-1]+u[i][j+1]);

5 }

6 }

7 memcpy(u,v,N*N*sizeof(double));

8 /* ... */

Listing 4.1: Code snippet of a five point stencil

columns and rows of two dimensional arrays, u and v in the given example.
Figure 4.5 illustrates the data access of the algorithm, when a new value is
written to a data point of the array v, after reading four surrounding data
points from the array u. Between two iterations, the values of both arrays
must be replaced to avoid a mix of old and new values for the stencil calcu-
lation. As a first sequential optimization, the data transfer from the näıve
version can be replaced by just exchanging the indices.

We compare two parallel programming models, shared memory and message
passing with domain decomposition for the SCC which can be supported by
MetalSVM.

The two dimensional space is statically divided into disjunct parts whereas
access to neighboring cells, in this case stripes, is read only. Main differ-
ence between both version is the exchange of data at the boundaries and the
coordination of parallel execution.

For the message passing version, only data elements at the boundaries,
so called ghost cells, have to be exchanged. RCCE provides send and receive
functions to handle explicit data transfer. The restriction of RCCE to blocking
communication is appropriate for the given communication scenario.

For the shared-memory version, a valid solution for the coordination of
threads is adding a barrier between iterations. This eliminates data depen-
dencies between two iterations, because an overlapping of iterations is avoided,
which could be a result of parallel execution without synchronization.

Figure 4.6 on Page 120 shows the results for the iterative Jacobi solver,
which is discussed in this section with a problem size of 1024 × 512 elements
of double precision floating point values.

The comparison of both versions of this simple application example illus-
trates the importance of the memory abstraction for a many-core system

118

4.4 Application Examples

v

u

ui−1,j

0.25

ui+1,j

0.25

ui,j−1

0.25

ui,j+1

0.25

Figure 4.5: Stencil example: Heat Distribution Problem [Lan+12b]

without hardware support for cache coherency. For a small core count up
to 16 cores, the shared memory version has a lower runtime, which means a
higher application performance in terms of floating point operations, with a
constant offset.

For a larger core-count with up to 48 cores, the local data, which means
stripes of the matrices, fit into the Level 2 Cache of the SCC for the message
passing variant. As a result, the runtime decreases significantly resulting in a
super-linear scalability for the chosen application. Consequently, the message-
passing variant outperforms the shared memory variant upon a certain core
count. Adding more and more cores to the parallel application changes the
ratio of local and remote access to the shared memory region, which means
data from previous and current iteration, thereby that explicit data exchange
of shared data and working on local data becomes more attractive.

This effect underlines the advantage of software controlled coherency, be-
cause system software can be adapted also during runtime to a given applica-
tion. In addition to that, legacy shared-memory applications can be supported
by many-core hardware without full-chip cache coherence.

The task of the SVM system is to manage the ownership of shared memory
regions. In strong consistency mode, read and write access are performed
exclusively to each page. This is contrary to lazy-release consistency, where
replicated states can exist of each page as long as a synchronization point is

119

Chapter 4 System Software and Application

reached. For the investigated implementation of the Jacobi method, we used
a strict alignment of matrix rows on page granularity (4 kB).

1 2 4 8 16 32 48
101

102

103

cores

ru
n
ti

m
e

[s
]

message passing
shared memory

Figure 4.6: Jacobi strong scaling results

Experiments with strong and relaxed consistency models have been pre-
sented in the related work. These results are promising and demonstrate the
low overhead of our SVM system [Lan+12b], but are beyond the scope of
this dissertation. Due to the underlying memory access pattern, for the re-
sults which are presented here, minor differences are resulting from different
consistency models.

The benchmark results of our bare-metal framework are limited to a core
count of 48, which is the maximum core count of the SCC. Higher scalability
of these tests to vSCC give no further insights because of its implementa-
tion details. The communication task, which is part of vSCC, is integrated
to the host driver. This implementation is highly flexible, but the latency

120

4.4 Application Examples

is only predictable within certain bounds [RW14]. It introduces additional
sources of OS jitter and as a result our bare-metal framework can not show
its advantages.

In the next paragraph, results for a common synthetic application bench-
mark are discussed. We will use a combination of iRCCE and sccLinux for
these measurements.

4.4.2 NPB

Mattson et al. [Mat+10] have ported the MPI versions of BT and LU pseudo
programs from NAS Parallel Benchmark (NPB) suite [Bai+91] to native
RCCE. Both applications mimic computation and communication of com-
putational fluid dynamics applications. We have used these floating point
intensive applications to benchmark our vSCC prototype and optimizations
of iRCCE.

Figure 4.7 shows absolute performance-results of BT and LU in class C
problem size (162 × 162 × 162). This problem size is suitable for the vSCC
with 240 cores, as each core has a peak performance of 533 MFLOP/s.

Here, strong scaling behavior is analyzed which means that a fixed problem
size is computed by an increasing number of cores. Despite the fact that
absolute performance counts for the SCC are of minor relevance, the peak
performance of our system with 225 cores is about 120 GFLOP/s in total.
Moreover, the scalability of the new communication concept is important for
different communication patterns, which are evaluated in the following. Due
to the applied work distribution method and communication pattern, the
application can only handle a number of processes, which is a square number.
Consequently, 225 represents the maximum configuration for BT.

Similar restrictions apply to LU, where the number of cores has to be
equal to a power of two, which results in a maximum of 128 processes. Peak
performance for vSCC with 128 cores is about 68 GFLOP/s in total.

Two synthetic applications, also called real world kernel, have been inves-
tigated because of their different communication pattern. Figure 4.8 holds
BT and LU results for the Intel SCC research system7 for different problem
sizes. The real world LU kernel uses many small messages for communication,
in contrast to BT which uses few large messages for communication. As the

7core/mesh/memory frequency: 533 MHz/800 MHz/800 MHz

121

Chapter 4 System Software and Application

16 49 81 121 169 225
0

2,000

4,000

6,000

8,000

number of participating cores

[M
F

L
O

P
/
s]

BT

LU

Linear Scalability

Figure 4.7: NPB BT and LU strong scaling performance results

overall amount of communication grows O(n2) and the computation grows
O(n3), we see an increasing performance for an increasing problem size.

All in all, an excellent scalability can be achieved with our optimizations,
that additionally hide a high latency communication path in an effective way.
These results demonstrate a connection between communication overhead and
system performance for the investigated floating point intensive parallel pro-
grams with different communication patterns.

The NPB BT application uses a communication pattern which is based
on locality. Message-passing applications need an appropriate placement of
processes to nodes of a cluster to achieve a good performance, especially for
heterogenous networks. In other words, applications should prefer connections
with high throughput for communication. This basic assumption is also true
for a cluster-on-a-chip processor such as the Intel SCC, where processes are
mapped to cores.

122

4.4 Application Examples

1 4 9 16 25 36

200

400

600

800

1,000

1,200

1,400

cores

[M
F

L
O

P
/
s]

class W

class A

class B

class C

(a) BT

1 2 4 8 16 32

100

200

300

400

500

600

cores

[M
F

L
O

P
/
s]

class W

class A

class B

class C

(b) LU

Figure 4.8: NPB BT and LU for different problem sizes

123

Chapter 4 System Software and Application

Figure 4.9 visualizes the total communication amount exemplarily for a
scenario with 64 cores of BT, to further detail the advantages of the vSCC
prototype. Every filled square of the diagram indicates a communication
between two ranks (x is sender and y receiver), whereas dark means high
and light means low communication traffic. We had to instrument the RCCE
reference implementation to record the amount of transferred data. This
instrumentation was necessary because support for performance analysis tools
is not intended. For inter-device communication such a functionality could
be integrated to the host driver.

However, the obtained information gives further details to the communica-
tion pattern of the parallel application. We see a major part in communication
of neighboring ranks.

0 15 31 47 63

0

15

31

47

63

sender id

re
ce

iv
er

id

0

50

100

150

200

co
m

m
.

tr
affi

c
[M

B
]

Inter
Device
Comm.

Figure 4.9: NPB BT (class C) communication traffic of 64 cores [Reb+15]

124

4.5 Conclusion

4.5 Conclusion

In the previous chapter of this work, we discussed alternative communication
schemes for direct on-chip memory access and developed new communication
protocols for this kind of many-core systems. Promising micro benchmark
results on the Intel SCC were a result of our optimizations, which underlines
the potential of predictable data movement for network-on-chip based sys-
tems. In order to estimate communication performance, effects to on-chip
synchronization and contention to the new communication concept have been
modeled in the previous chapter. This analysis creates foundation for an-
alytical methods to derive the limits of a cluster-on-a-chip architecture, so
that the communication model can be directly verified by using experimental
hardware.

In this chapter, we present the MetalSVM project, which targets a flexible
support of different memory models through the virtualization of a many-core
memory system in the absence of hardware cache coherence.

In this context of evaluating system-software support for future many-core
systems, the efficient implementation of a bare-metal hypervisor for a x86-
based many-core architecture is described in detail. We compare message
passing and shared memory version of a stencil code, to quantify the over-
head of our approach and demonstrate the scalability. Results show that
applications without sharing data and those with controlled contention can
create great benefit for such an architecture.

Moreover, we were able to identify important attributes of a system with
configurable cache coherency and hardware support for on-chip memory and
propose extensions. Our extensions have been implemented in system soft-
ware and lead to a full working prototype of a many-core processor with 240
tightly coupled cores. This prototype consists of a multi-chip package of SCCs,
whereas its proprietary on-chip protocol is routed through the host system of
the many-core devices. A requirement of this method was the connection of
multiple SCCs to a single host.

Application as well as micro benchmark results have demonstrated the qual-
ity of our realization and verified the scalability of the new communication
extensions. For the virtual extension, we are able to recover 25 % of effec-
tive on-chip communication throughput, despite the fact that the latency for
both communication paths differs by 100 x for each on-chip packet. Moreover,
our new research environment can be used as a guideline for similar future
projects.

125

5
Conclusion

Many-core technology will be a prominent aspect of future architectures aimed
to meet the rising demand for computational performance of scientific appli-
cations. Accordingly, the reduction of architectural overhead is important
to design efficient and scalable microprocessors with thousands of cores per
chip. Scaling current micro processor design will result in a growing chip
complexity. Given the current state of the art, it is doubtful whether estab-
lished concepts can address this challenge. Communication will become even
more important, especially for a processor with thousands of cores within a
given power budget per chip. Thus to achieve efficient communication, un-
conventional methods such as waiving memory abstraction should be taken
into account.

This outlook represents a fundamental change for Intel Architecture, which
has become prevalent in the field of high-performance computing. On the
one hand, the shared-memory paradigm is well-established for programming
generations of multi-core processors that commonly implement hardware-
coherent caches. On the other hand, basic techniques for communication
and synchronization, which also imply runtime systems and programming
libraries, are based on this hardware support.

As a result of architectural changes, the implementation of new communi-
cation concepts raises a key challenge for system software in the many-core
era. In this context, jitter has been identified as a source of negative influ-
ence on communication performance that can further harm scalability. As
a consequence, predictability is an important attribute to develop for soft-

127

Chapter 5 Conclusion

ware optimizations such as new communication concepts and sophisticated
communication protocols for future processors.

The goal of this dissertation is to explore efficient communication for many-
core systems in the absence of full-chip cache coherence. In order to fulfill this
task, a new communication concept has been analyzed in detail for x86-based
cores.

In the second chapter, hardware requirements are defined that are needed
for a general implementation of new communication concepts. The basic
structure of this work is bottom-up concerning many-core hardware, soft-
ware abstraction and applications. The focus of the third chapter is a small
communication layer for a cluster-on-a-chip architecture that includes com-
munication protocols and synchronization aspects. The fourth chapter covers
system software support for these architectures and presents application re-
sults that demonstrate the quality of our implementation.

The key contributions of this work can be summarized as follows:

• We have developed communication models for different communica-
tion patterns for software controlled on-chip memory of network-on-
chip many-core architectures. This development includes the analy-
sis and optimization of synchronization primitives based on central-
ized algorithms, distributed algorithms, and a combination of both. In
addition, point-to-point-communication patterns as well as collective-
communication patterns have been analyzed and optimized.

• We have designed and implemented a low-level message-passing in-
terface that supports different communication schemes for hardware-
distributed low-latency memory and sophisticated communication pro-
tocols. These have been optimized by the use of our communication
models.

• We have evaluated extensions for x86-based many-core architectures
to accelerate hardware support for message passing and have realized
concepts for hiding memory latency. This enables further scalability
of a cluster-on-a-chip, which has been verified by the realization of a
virtual extension for network-on-chip based processors.

In the next section, the methods that have been used to achieve these goals
are summarized. The subsequent section concludes the results section.

128

5.1 Methods

5.1 Methods

The SCC experimental architecture is the first example of an Intel micropro-
cessor that provides shared but non-coherent on-chip memory. It represents
a hybrid many-core architecture, according to a common classification of par-
allel programming paradigms in terms of pure shared-memory or message-
passing support. Consequently, both models can be enabled. This fact makes
it possible to explore different consistency models for data replication and
sophisticated communication protocols.

To achieve the lowest overhead for a detailed analysis of different com-
munication schemes and a high predictability of software controlled com-
munication, we have developed a bare metal framework for the Intel SCC.
Regarding network-on-chip-based architectures, memory contention and net-
work congestion can limit scalability. Memory location becomes essential if
access is controlled in an explicit way. Classic optimization techniques used
to overcome this issue are discussed. For instance, a back off with feedback
is successfully used to realize central synchronization points that outperform
classic synchronization algorithms on hardware-distributed shared memory.
This detailed analysis shows that a careful design of synchronization methods
and their access pattern is essential to effective communication.

In Chapter 4, system-software support and the results of synthetic appli-
cation benchmarks are discussed. This support includes extensions to new
communication concepts of explicit and on-chip data movement. Specifically,
the communication-offload approach is implemented to create a tightly cou-
pled multi-chip many-core processor, In this way, the flexibility of the SCC
research system is used to virtually expand the on-chip interconnect.

The realization of these extensions creates with vSCC an innovative re-
search environment for network-on-chip-based many-core processors. One
major achievement of vSCC is a virtual extension of the on-chip interconnect,
which results in a full working prototype with 120 tiles and 240 cores. Our
setup demonstrates the scalability of Intel SCC’s cluster-on-a-chip architec-
ture. Moreover, we have presented the design and implementation of a virtual
direct memory access (vDMA) controller, which enables a reevaluation of the
SCC’s communication concept. This additional support has been integrated
to the low-level communication library iRCCE.

Explicit access to hardware-distributed on-chip memory enables a certain
flexibility. In Chapter 3, the design and implementation of a low-latency
communication-and-synchronization layer for future many-core systems is pre-

129

Chapter 5 Conclusion

sented. Mapping a message-passing interface to a one-sided communication
system represents a classic approach. As a result, a two-sided communication
protocol uses on-chip memory as an internal buffer. An important task re-
garding such a protocol is to qualify dynamic allocation schemes for on-chip
memory locations. Here, the new communication concept provides the flexi-
bility of remote-put, remote-get or all-local communication. This includes the
analysis of different communication schemes, which become an option because
of the low-latency remote-memory access.

The realization of fast and hardware-based low-level synchronization prim-
itives is discussed in the second part of this chapter. Synchronization algo-
rithms based on atomic operations to shared-memory locations are compared
to classic flag-based variants. As a result of modeling communication, we
have analytically derived optimizations for implementations of barrier-and-
lock constructs for the Intel SCC. Required parameters can be calculated
with low-level timing analysis, which has also been used to get a better un-
derstanding of the new communication concepts.

In Chapter 2, basic attributes of a tiled x86-based many-core architecture
are summarized and related to this work. Moreover, the realization of a
hardware abstraction is discussed and a communication model is developed
for software-controlled on-chip memory.

5.2 Results

In summary, implementation of the SCC research vehicle has been of great
value for many-core software research. Besides the simulation and emulation
of future processor architectures, new insights for low-level software engineer-
ing are resulting from such experimental hardware.

One important attribute of extensions is flexible mapping of core addresses
to system addresses for the research chip, which is based on Intel Architecture.
The combination with a low-memory abstraction results in explicit on-chip
memory access and enables analysis of different communication and synchro-
nization schemes. Our extensions lead to a full working prototype with 240
tightly connected cores based on x86. Consequently, existing low level com-
munication libraries can be used without changes to the interface to realize
a virtual on-chip communication between tiles that are not located on a sin-
gle chip. Only minor modifications to the hardware abstraction layer – such

130

5.2 Results

as mapping the on-chip memory of additional tiles – were needed to address
more than 48 cores.

In addition to that, with iRCCE we have proposed communication-and-
synchronization extensions to a basic communication interface. Rather than
being limited to blocking communication, our first set of extensions enables
non-blocking communication without the need for additional operating-system
support. Further extensions enable parallel applications to use hierarchy-
aware communication patterns and to achieve best performance – especially
with respect to collective communication – by exposing locality to the pro-
grammer. These extensions are part of iRCCE with vSCC support.

A third set of extensions covers the synchronization support of a light-
weight communication environment. Hardware-supported synchronization
methods have been analyzed in detail to further increase the functionality
of iRCCE. The scalability of synchronization methods based on hardware
support, such as atomic operation and software controlled on-chip memory,
can be significantly increased.

Our installation uncovers scalability issues of a static and of a symmetric
allocation scheme for software-controlled on-chip memory. Consequently, we
develop alternatives and analytically derived optimal patterns for explicit on-
chip memory access. Our study shows how synchronization primitives can
be exemplarily realized for the SCC by means of hardware features such as
atomic operations. In this context, barrier algorithms for shared memory
have been ported and optimized for the synchronization support of the SCC.

Busy-wait synchronization methods lead to promising results if the charac-
teristics of the underlying communication interconnect is taken into account.
An evaluation of the hardware synchronization support of a cluster-on-a-chip
architecture is presented in the second chapter of this work. This evalua-
tion verifies issues common to busy-wait synchronization techniques on future
many-core architectures regarding fairness and scalability. It has been shown
that our approach is advantageous especially in highly contended situations.

The experiments presented here show massive improvements through com-
mon optimizations such as an exponential back-off or the use of multiple
hardware synchronization primitives. Scalability of a single synchronization
point can be increased by structuring the physical resources in a hierarchical
way. Obviously, this is a trade-off between an optimal scalability, and alloca-
tion of synchronization registers as resources are scarce. If the implementation
of mechanisms is carefully chosen, the use of hardware support for synchro-
nization constructs, such as a barrier, leads to promising results. Especially

131

Chapter 5 Conclusion

for highly-contended locks, an exponential back-off algorithm can lead to an
excellent scalability compared to a straight forward implementation.

This study addresses the amount of contention control that is needed for
NoC many-core architectures that run specific applications. Moreover, we
develop concepts to explore the limits for different communication patterns
on this kind of architecture.

Our many-core communication environment follows a layered approach. As
a result, specific components such as the hardware-abstraction layer have to be
re-implemented to support future architectures. An example of a future many-
core architecture, which shares characteristic attributes, is Intel’s Knights
Landing (KNL) with 72 cores and a 2D mesh. A main difference between KNL
and the experimental SCC processor is the basic core architecture. Another
difference is that KNL implements full-chip cache coherence but provides
stacked memory, called MCDRAM, with high bandwidth and low latency
[Mor]. Access to this kind of memory will be configurable, such that it can be
controlled by software. A configuration which may be changed at reboot of
the system, comparable to the cluster-on-die (CoD) technology, is available
for processors with more than 10 cores based on Haswell microarchitecture.
In fact, the cluster-on-die feature is used to term multiple NUMA domains on
a single processor die, in contrast to a cluster-on-a-chip that includes a loss
of full-chip cache-coherence. Nevertheless, it is an example of the importance
of memory access to increasing chip complexity.

In this dissertation, communication models have been developed for ab-
stract many-core architectures that follow the NoC paradigm. As a result,
communication methods which are based on these models will be applicable
for future many-core architectures. To enable a reuse of methods, we specify a
small set of parameters that can be determined by simple micro-benchmarks
and can thus be easily adjusted.

132

List of Abbreviations

AIR Atomic Increment Register . 30

API application programming interface . 53

APIC Advanced Programmable Interrupt Controller 113

CFD computational fluid dynamics. .121

CISC Complex Instruction Set Computer . 12

CoC cluster-on-a-chip . 5

CoD cluster-on-die .132

COTS components off-the-shelf . 56

CPU central processing unit . 15

DMA direct memory access . 51

DSM distributed shared memory . 11

FIFO First In, First Out . 41

FPGA field-programmable gate array . 22

FSB front-side bus .19

GDT Global Descriptor Table . 111

GIC Global Interrupt Controller . 113

HPC high-performance computing. .50

IPI inter-processor interrupt . 113

KNL Knights Landing. .20

L1 Level 1 Cache . 22

L2 Level 2 Cache . 23

LLC Last Level Cache . 17

LMB Local Memory Buffer . 23

133

Chapter 5 Conclusion

lprg local-put, remote-get . 71

LUT Lookup Table . 24

MARC Many-core Applications Research Community.20

MC memory controller . 21

MCPC Management Console PC . 21

MIC Many Integrated Core . 19

MIU Mesh Interconnect Unit. .22

MMU Memory Management Unit . 26

MPB Message Passing Buffer . 23

MPBT Message Passing Buffer Tagged . 27

MPI Message Passing Interface . 52

NoC network-on-chip . 12

NPB NAS Parallel Benchmark . 121

NUMA non-uniform memory access . 17

OS operating system . 100

PCIe Peripheral Component Interconnect Express . 21

QPI QuickPath Interconnect . 19

RCCE Rock Creek Communication Environment. .48

RISC Reduced Instruction Set Computer . 12

rplg remote-put, local-get . 72

SCC Single-chip Cloud Computer . 20

SCI Scalable Coherent Interface . 106

SCIF Symmetric Communications InterFace . 51

SIF System Interface .22

SMP symmetric multiprocessor . 17

SPMD Single Program Multiple Data . 52

SVM Shared Virtual Memory. .4

TLB Translation Look aside Buffer. .26

TSR Test and Set Register . 30

134

5.2 Results

UE Unit of Execution . 53

vDMA virtual direct memory access . 129

vSCC virtual Single-chip Cloud Computer . 100

135

References

[AG96] S. V. Adve and K. Gharachorloo. “Shared memory consistency
models: a tutorial”. In: Computer 29.12 (1996), pp. 66–76.

[AJ89] N. S. Arenstorf and H. F. Jordan. “Comparing barrier algo-
rithms”. In: Parallel Computing 12.2 (1989), pp. 157–170. doi:
10.1016/0167-8191(89)90050-1.

[And90] T. E. Anderson. “The performance of spin lock alternatives
for shared-memory multiprocessors”. In: IEEE Transactions on
Parallel and Distributed Systems 1.1 (Jan. 1990), pp. 6–16. doi:
10.1109/71.80120.

[Bai+91] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, R.
Fatoohi, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon,
V. Venkatakrishnan, and S. Weeratunga. “The NAS Parallel
Benchmarks”. In: Intl. Journal of Supercomputer Applications
5.3 (1991), pp. 66–73.

[Ban+02] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Mar-
wedel. “Scratchpad Memory: Design Alternative for Cache On-
chip Memory in Embedded Systems”. In: Proceedings of the
Tenth International Symposium on Hardware/Software Code-
sign. CODES ’02. Estes Park, Colorado, 2002, pp. 73–78. isbn:
1-58113-542-4. doi: 10.1145/774789.774805.

[Bar+03] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. “Xen and the art
of virtualization”. In: SIGOPS Operating Systems Review 37.5
(2003), pp. 164–177.

[Bau+09] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S.
Peter, T. Roscoe, A. Schüpbach, and A. Singhania. “The Mul-
tikernel: A New OS Architecture for Scalable Multicore Sys-
tems”. In: Proceedings of the ACM SIGOPS 22nd Symposium
on Operating Systems Principles. SOSP ’09. Big Sky, Montana,

137

http://dx.doi.org/10.1016/0167-8191(89)90050-1
http://dx.doi.org/10.1109/71.80120
http://dx.doi.org/10.1145/774789.774805

References

USA, 2009, pp. 29–44. isbn: 978-1-60558-752-3. doi: 10.1145/
1629575.1629579.

[Bel+08] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung,
J. MacKay, M. Reif, L. Bao, J. Brown, M. Mattina, C.-C. Miao,
C. Ramey, D. Wentzlaff, W. Anderson, E. Berger, N. Fairbanks,
D. Khan, F. Montenegro, J. Stickney, and J. Zook. “TILE64 -
Processor: A 64-Core SoC with Mesh Interconnect”. In: IEEE
International Solid-State Circuits Conference, ISSCC 2008. Di-
gest of Technical Papers. Feb. 2008, pp. 88–598. doi: 10.1109/
ISSCC.2008.4523070.

[Bon02] D. Bonachea. GASNet Specification. University of California at
Berkeley. 2002.

[Bor07] S. Borkar. “Thousand Core Chips: A Technology Perspective”.
In: Proceedings of the 44th Annual Design Automation Confer-
ence. DAC’07. San Diego, California, 2007, pp. 746–749. isbn:
978-1-59593-627-1. doi: 10.1145/1278480.1278667.

[Boy+08] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek, R.
Morris, A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang, and
Z. Zhang. “Corey: An Operating System for Many Cores”. In:
Proceedings of the 8th USENIX Conference on Operating Sys-
tems Design and Implementation. OSDI’08. San Diego, Califor-
nia, 2008, pp. 43–57. url: http://dl.acm.org/citation.cfm?
id=1855741.1855745.

[Bro86] E. D. Brooks. “The butterfly barrier”. In: International Jour-
nal of Parallel Programming 15.4 (1986), pp. 295–307. doi: 10.
1007/BF01407877.

[BS93] W. J. Bolosky and M. L. Scott. “False Sharing and Its Ef-
fect on Shared Memory Performance”. In: USENIX Systems on
USENIX Experiences with Distributed and Multiprocessor Sys-
tems. Vol. 4. Sedms’93. San Diego, California, 1993. url: http:
//dl.acm.org/citation.cfm?id=1295480.1295483.

[Bul99] J. M. Bull. “Measuring Synchronisation and Scheduling Over-
heads in OpenMP”. In: Proceedings of the 1st European Work-
shop on OpenMP. Lund, Sweden, Oct. 1999, pp. 99–105.

138

http://dx.doi.org/10.1145/1629575.1629579
http://dx.doi.org/10.1145/1629575.1629579
http://dx.doi.org/10.1109/ISSCC.2008.4523070
http://dx.doi.org/10.1109/ISSCC.2008.4523070
http://dx.doi.org/10.1145/1278480.1278667
http://dl.acm.org/citation.cfm?id=1855741.1855745
http://dl.acm.org/citation.cfm?id=1855741.1855745
http://dx.doi.org/10.1007/BF01407877
http://dx.doi.org/10.1007/BF01407877
http://dl.acm.org/citation.cfm?id=1295480.1295483
http://dl.acm.org/citation.cfm?id=1295480.1295483

References

[CH09] M. Chapman and G. Heiser. “vNUMA: A Virtual Shared-
memory Multiprocessor”. In: Proceedings of the 2009 Confer-
ence on USENIX Annual Technical Conference. USENIX’09.
San Diego, California, 2009, pp. 349–362. url: http://dl.acm.
org/citation.cfm?id=1855807.1855809.

[Cha+05] D. Chandra, F. Guo, S. Kim, and Y. Solihin. “Predicting inter-
thread cache contention on a chip multi-processor architec-
ture”. In: Proceedings of the 11th International Symposium on
High-Performance Computer Architecture. HPCA-11. Feb. 2005,
pp. 340–351. doi: 10.1109/HPCA.2005.27.

[Cha10] E. Chan. RCCE comm: a Collective Library for the Intel Single-
chip Cloud Computer. Sept. 2010. url: https://communities.
intel.com/servlet/JiveServlet/previewBody/5663-102-

1-8763/RCCE_comm_02.pdf (visited on 01/20/2015).

[CJvP07] B. Chapman, G. Jost, and R. van der Pas. Using OpenMP:
Portable Shared Memory Parallel Programming. Portable Shared
Memory Parallel Programming. Vol. 10. The MIT Press, 2007.
isbn: 978-0-26-253302-7.

[Cla+11] C. Clauss, S. Lankes, P. Reble, and T. Bemmerl. “Evaluation
and Improvements of Programming Models for the Intel SCC
Many-core Processor”. In: Proceedings of the 2011 International
Conference on High Performance Computing and Simulation.
HPCS. Istanbul, Turkey, July 2011, pp. 525–532. doi: 10.1109/
HPCSim.2011.5999870.

[Cla+12] C. Clauss, S. Pickartz, S. Lankes, and T. Bemmerl. “Hierarchy-
Aware Message-Passing in the Upcoming Many-Core Era”. In:
Grid Computing – Technology and Applications, Widespread
Coverage and New Horizons. 2012, pp. 151–178. isbn: 978-953-
51-0604-3. url: http : / / www . intechopen . com / articles /

show/title/hierarchy-aware-message-passing-in-the-

upcoming-many-core-era.

[Cla+13a] C. Clauss, S. Lankes, P. Reble, and T. Bemmerl. “New sys-
tem software for parallel programming models on the Intel SCC
many-core processor”. In: Concurrency and Computation: Prac-
tice and Experience (2013). doi: 10.1002/cpe.3033.

139

http://dl.acm.org/citation.cfm?id=1855807.1855809
http://dl.acm.org/citation.cfm?id=1855807.1855809
http://dx.doi.org/10.1109/HPCA.2005.27
https://communities.intel.com/servlet/JiveServlet/previewBody/5663-102-1-8763/RCCE_comm_02.pdf
https://communities.intel.com/servlet/JiveServlet/previewBody/5663-102-1-8763/RCCE_comm_02.pdf
https://communities.intel.com/servlet/JiveServlet/previewBody/5663-102-1-8763/RCCE_comm_02.pdf
http://dx.doi.org/10.1109/HPCSim.2011.5999870
http://dx.doi.org/10.1109/HPCSim.2011.5999870
http://www.intechopen.com/articles/show/title/hierarchy-aware-message-passing-in-the-upcoming-many-core-era
http://www.intechopen.com/articles/show/title/hierarchy-aware-message-passing-in-the-upcoming-many-core-era
http://www.intechopen.com/articles/show/title/hierarchy-aware-message-passing-in-the-upcoming-many-core-era
http://dx.doi.org/10.1002/cpe.3033

References

[Cla+13b] C. Clauss, S. Lankes, P. Reble, J. Galowicz, S. Pickartz, and
T. Bemmerl. iRCCE: A Non-blocking Communication Exten-
sion to the RCCE Communication Library for the Intel Single-
Chip Cloud Computer. Users Guide and API Manual. Ver-
sion 2.0. RWTH Aachen University, Mar. 2013. url: https:

/ / communities . intel . com / docs / DOC - 6003 (visited on
01/20/2015).

[CRK11] I. A. Comprés Ureña, M. Riepen, and M. Konow. “RCKMPI –
Lightweight MPI Implementation for Intel’s Single-chip Cloud
Computer (SCC)”. In: Recent Advances in the Message Passing
Interface. Vol. 6960. Lecture Notes in Computer Science. 2011,
pp. 208–217. isbn: 978-3-642-24448-3. doi: 10.1007/978-3-
642-24449-0_24.

[CS06] J. Chang and G. S. Sohi. “Cooperative Caching for Chip Mul-
tiprocessors”. In: SIGARCH Comput. Archit. News 34.2 (May
2006), pp. 264–276. doi: 10.1145/1150019.1136509.

[Cul+93] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E.
Santos, R. Subramonian, and T. von Eicken. “LogP: Towards a
Realistic Model of Parallel Computation”. In: SIGPLAN Not.
28.7 (July 1993), pp. 1–12. doi: 10.1145/173284.155333.

[Dal92] W. Dally. “Virtual-channel flow control”. In: IEEE Transactions
on Parallel and Distributed Systems 3.2 (Mar. 1992), pp. 194–
205. doi: 10.1109/71.127260.

[Day+14] B. K. Daya, C.-H. O. Chen, S. Subramanian, W.-C. Kwon, S.
Park, T. Krishna, J. Holt, A. P. Chandrakasan, and L.-S. Peh.
“SCORPIO: A 36-Core Research Chip Demonstrating Snoopy
Coherence on a Scalable Mesh NoC with In-Network Ordering”.
In: Proceedings of the 41st International Symposium on Com-
puter Architecture, ISCA 2014. Minneapolis, MN, USA, July
2014. doi: 978-1-4799-4394-4/14.

[Don+11] J. Dongarra, P. Beckman, T. Moore, P. Aerts, G. Aloisio, J.-C.
Andre, D. Barkai, J.-Y. Berthou, T. Boku, B. Braunschweig, F.
Cappello, B. Chapman, X. Chi, A. Choudhary, S. Dosanjh, T.
Dunning, S. Fiore, A. Geist, B. Gropp, R. Harrison, M. Hereld,
M. Heroux, A. Hoisie, K. Hotta, Z. Jin, Y. Ishikawa, F. John-
son, S. Kale, R. Kenway, D. Keyes, B. Kramer, J. Labarta, A.

140

https://communities.intel.com/docs/DOC-6003
https://communities.intel.com/docs/DOC-6003
http://dx.doi.org/10.1007/978-3-642-24449-0_24
http://dx.doi.org/10.1007/978-3-642-24449-0_24
http://dx.doi.org/10.1145/1150019.1136509
http://dx.doi.org/10.1145/173284.155333
http://dx.doi.org/10.1109/71.127260
http://dx.doi.org/978-1-4799-4394-4/14

References

Lichnewsky, T. Lippert, B. Lucas, B. Maccabe, S. Matsuoka,
P. Messina, P. Michielse, B. Mohr, M. S. Müller, W. E. Nagel,
H. Nakashima, M. E. Papka, D. Reed, M. Sato, E. Seidel, J.
Shalf, D. Skinner, M. Snir, T. Sterling, R. Stevens, F. Streitz,
B. Sugar, S. Sumimoto, W. Tang, J. Taylor, R. Thakur, A. Tre-
fethen, M. Valero, A. van der Steen, J. Vetter, P. Williams, R.
Wisniewski, and K. Yelick. “The International Exascale Soft-
ware Project roadmap”. In: International Journal of High Per-
formance Computing Applications 25.1 (2011), pp. 3–60. doi:
10.1177/1094342010391989.

[Dre07] U. Drepper. What every programmer should know about memory.
Nov. 2007. url: http://lwn.net/Articles/250967/ (visited
on 01/20/2015).

[DSB99] M. Dormanns, K. Scholtyssik, and T. Bemmerl. “A Shared Mem-
ory Programming Interface for SCI Clusters”. In: SCI: Scalable
Coherent Interface. Vol. 1734. Lecture Notes in Computer Sci-
ence. 1999, pp. 281–290. isbn: 978-3-540-66696-7. doi: 10.1007/
10704208_22.

[DT04] W. J. Dally and B. Towles. Principles and Practices of Intercon-
nection Networks. Morgan Kaufmann, 2004. isbn: 0-12-200751-
4.

[Dun01] A. Dunkels. Design and Implementation of the lwIP TCP/IP
Stack. Swedish Institute of Computer Science, 2001.

[Esm+11] H. Esmaeilzadeh, E. Blem, R. St.Amant, K. Sankaralingam,
and D. Burger. “Dark silicon and the end of multicore scaling”.
In: Proceedings of the 38th Annual International Symposium on
Computer Architecture. ISCA. June 2011, pp. 365–376.

[Esm+13] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and
D. Burger. “Power Challenges May End the Multicore Era”. In:
Commun. ACM 56.2 (Feb. 2013), pp. 93–102. doi: 10.1145/
2408776.2408797.

[FAV97] M. I. Frank, A. Agarwal, and M. K. Vernon. “LoPC: Model-
ing Contention in Parallel Algorithms”. In: SIGPLAN Not. 32.7
(June 1997), pp. 276–287. doi: 10.1145/263767.263803.

141

http://dx.doi.org/10.1177/1094342010391989
http://lwn.net/Articles/250967/
http://dx.doi.org/10.1007/10704208_22
http://dx.doi.org/10.1007/10704208_22
http://dx.doi.org/10.1145/2408776.2408797
http://dx.doi.org/10.1145/2408776.2408797
http://dx.doi.org/10.1145/263767.263803

References

[FC08] C. Fensch and M. Cintra. “An OS-based alternative to full hard-
ware coherence on tiled CMPs”. In: Proceedings of 14th Interna-
tional Symposium on High Performance Computer Architecture.
HPCA ’08. Feb. 2008, pp. 355–366. doi: 10.1109/HPCA.2008.
4658652.

[Gam+99] B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm. “Tornado:
Maximizing Locality and Concurrency in a Shared Memory
Multiprocessor Operating System”. In: Proceedings of the Third
Symposium on Operating Systems Design and Implementation.
OSDI ’99. New Orleans, Louisiana, USA, 1999, pp. 87–100.
isbn: 1-880446-39-1. url: http://dl.acm.org/citation.cfm?
id=296806.296814.

[GLS94] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable
Parallel Programming with the Message-passing Interface. Cam-
bridge, MA, USA: MIT Press, 1994. isbn: 0-262-57104-8.

[Gol73] R. P. Goldberg. “Architectural Principles for Virtual Computer
Systems”. PhD thesis. Harvard University, 1973.

[gop12] Interview with James Reinders. Sept. 2012. url: http : / /

goparallel . sourceforge . net / ask - james - reinders -

multicore-vs-manycore/ (visited on 01/20/2015).

[Gri+11] M. Gries, U. Hoffmann, M. Konow, and M. Riepen. “SCC: A
Flexible Architecture for Many-Core Platform Research”. In:
Computing in Science & Engineering 13.6 (Nov. 2011), pp. 79–
83. doi: 10.1109/MCSE.2011.109.

[GT90] G. Graunke and S. Thakkar. “Synchronization algorithms for
shared-memory multiprocessors”. In: Computer 23.6 (June
1990), pp. 60–69. doi: 10.1109/2.55501.

[HM08] M. Hill and M. Marty. “Amdahl’s Law in the Multicore Era”.
In: Computer 41.7 (July 2008), pp. 33–38. doi: 10.1109/MC.
2008.209.

[Hoc94] R. W. Hockney. “The Communication Challenge for MPP: Intel
Paragon and Meiko CS-2”. In: Parallel Computing 20.3 (Mar.
1994), pp. 389–398. doi: 10.1016/S0167-8191(06)80021-9.

142

http://dx.doi.org/10.1109/HPCA.2008.4658652
http://dx.doi.org/10.1109/HPCA.2008.4658652
http://dl.acm.org/citation.cfm?id=296806.296814
http://dl.acm.org/citation.cfm?id=296806.296814
http://goparallel.sourceforge.net/ask-james-reinders-multicore-vs-manycore/
http://goparallel.sourceforge.net/ask-james-reinders-multicore-vs-manycore/
http://goparallel.sourceforge.net/ask-james-reinders-multicore-vs-manycore/
http://dx.doi.org/10.1109/MCSE.2011.109
http://dx.doi.org/10.1109/2.55501
http://dx.doi.org/10.1109/MC.2008.209
http://dx.doi.org/10.1109/MC.2008.209
http://dx.doi.org/10.1016/S0167-8191(06)80021-9

References

[Hoe+05] T. Hoefler, L. Cerquetti, T. Mehlan, F. Mietke, and W. Rehm.
“A Practical Approach to the Rating of Barrier Algorithms Us-
ing the LogP Model and Open MPI”. In: 41st International Con-
ference on Parallel Processing Workshops. 2005, pp. 562–569.
isbn: 0-7695-2381-1. doi: 10.1109/ICPPW.2005.14.

[Hof05] H. Hofstee. “Power efficient processor architecture and the
cell processor”. In: 11th International Symposium on High-
Performance Computer Architecture. HPCA-11. Feb. 2005,
pp. 258–262. doi: 10.1109/HPCA.2005.26.

[How+11] J. Howard, S. Dighe, S. Vangal, G. Ruhl, N. Borkar, S. Jain,
V. Erraguntla, M. Konow, M. Riepen, M. Gries, G. Droege, T.
Lund-Larsen, S. Steibl, S. Borkar, V. De, and R. van der Wi-
jngaart. “A 48-Core IA-32 Processor in 45 nm CMOS Using
On-Die Message-Passing and DVFS for Performance and Power
Scaling”. In: IEEE Journal of Solid-State Circuits 46.1 (Jan.
2011), pp. 173–183. doi: 10.1109/JSSC.2010.2079450.

[HP12] J. L. Hennessy and D. A. Patterson. Computer Architecture.
5th ed. A quantitative approach. Morgan Kaufmann, 2012. isbn:
978-0-12-383872-8.

[HS08] J. P. Hoeflinger and B. R. D. Supinski. “The OpenMP mem-
ory model”. In: OpenMP Shared Memory Parallel Programming.
Lecture Notes in Computer Science. Eugene, OR, USA, 2008,
pp. 167–177. isbn: 978-3-540-68554-8. doi: 10.1007/978-3-
540-68555-5_14.

[HW11] G. Hager and G. Wellein. Introduction to High Performance
Computing for Scientists and Engineers. New York, NY, USA:
CRC Press, 2011. isbn: 978-1-4398-1192-4.

[Intel06] From a Few Cores to Many: A Tera-scale Computing Research
Overview. White Paper. Intel Corporation, 2006. url: http:

/ / www . intel . com / content / dam / www / public / us / en /

documents/technology-briefs/intel-labs-tera-scale-

research-paper.pdf (visited on 01/20/2015).

[Intel07] Intel 64 and IA-32 Architectures Software Developer’s Manual.
Intel Corporation. Aug. 2007.

143

http://dx.doi.org/10.1109/ICPPW.2005.14
http://dx.doi.org/10.1109/HPCA.2005.26
http://dx.doi.org/10.1109/JSSC.2010.2079450
http://dx.doi.org/10.1007/978-3-540-68555-5_14
http://dx.doi.org/10.1007/978-3-540-68555-5_14
http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/intel-labs-tera-scale-research-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/intel-labs-tera-scale-research-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/intel-labs-tera-scale-research-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/intel-labs-tera-scale-research-paper.pdf

References

[Intel95] Pentium Processor Family Developer’s Manual. Architecture
and Programming Manual. Intel Corporation. 1995. isbn: 1-
55512-195-0.

[Juc+04] G. Juckeland, S. Börner, M. Kluge, S. Kölling, W. E. Nagel, S.
Pflüger, H. Röding, S. Seidl, T. William, and R. Wloch. “Ben-
chIT - Performance measurement and comparison for scientific
applications”. In: Advances in Parallel Computing 13 (2004),
pp. 501–508.

[KBV00] T. Kielmann, H. Bal, and K. Verstoep. “Fast Measurement of
LogP Parameters for Message Passing Platforms”. In: Parallel
and Distributed Processing. Vol. 1800. Lecture Notes in Com-
puter Science. 2000, pp. 1176–1183. isbn: 978-3-540-67442-9.
doi: 10.1007/3-540-45591-4_162.

[KCZ92] P. Keleher, A. L. Cox, and W. Zwaenepoel. “Lazy Release
Consistency for Software Distributed Shared Memory”. In:
SIGARCH Comput. Archit. News 20.2 (Apr. 1992), pp. 13–
21. doi: 10.1145/146628.139676.

[Kel+94] P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel.
“TreadMarks: Distributed Shared Memory on Standard Work-
stations and Operating Systems”. In: Proceedings of the USENIX
Winter 1994 Technical Conference. WTEC’94. San Francisco,
California, 1994.

[Kiv+07] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. “KVM:
the Linux virtual machine monitor”. In: Proceedings of the Linux
Symposium. Vol. 1. 2007, pp. 225–230.

[KRS88] C. P. Kruskal, L. Rudolph, and M. Snir. “Efficient Synchroniza-
tion of Multiprocessors with Shared Memory”. In: ACM Trans.
Program. Lang. Syst. 10.4 (Oct. 1988), pp. 579–601. doi: 10.
1145/48022.48024.

[KS02] G. B. Kandiraju and A. Sivasubramaniam. “Going the Dis-
tance for TLB Prefetching: An Application-driven Study”. In:
SIGARCH Comput. Archit. News 30.2 (May 2002), pp. 195–206.
doi: 10.1145/545214.545237.

144

http://dx.doi.org/10.1007/3-540-45591-4_162
http://dx.doi.org/10.1145/146628.139676
http://dx.doi.org/10.1145/48022.48024
http://dx.doi.org/10.1145/48022.48024
http://dx.doi.org/10.1145/545214.545237

References

[KSM05] B.-J. Kwak, N.-O. Song, and M. Miller. “Performance analysis
of exponential backoff”. In: IEEE/ACM Transactions on Net-
working 13.2 (Apr. 2005), pp. 343–355. doi: 10.1109/TNET.
2005.845533.

[Kum+11] R. Kumar, T. G. Mattson, G. Pokam, and R. van der Wijngaart.
“The Case for Message Passing on Many-Core Chips”. In: Multi-
processor System-on-Chip. 2011, pp. 115–123. isbn: 978-1-4419-
6459-5. doi: 10.1007/978-1-4419-6460-1_5.

[Lam87] L. Lamport. “A Fast Mutual Exclusion Algorithm”. In: ACM
Trans. Comput. Syst. 5.1 (Jan. 1987), pp. 1–11. doi: 10.1145/
7351.7352.

[Lan+12a] S. Lankes, P. Reble, C. Clauss, and O. Sinnen. “The Path to
MetalSVM: Shared Virtual Memory for the SCC”. In: Proceed-
ings of the 4th Many-core Applications Research Community
(MARC) Symposium. 55. Potsdam, Germany, Feb. 2012, pp. 7–
14. isbn: 978-3-86956-169-1.

[Lan+12b] S. Lankes, P. Reble, O. Sinnen, and C. Clauss. “Revisiting
Shared Virtual Memory Systems for Non-coherent Memory-
coupled Cores”. In: Proceedings of the 2012 International Work-
shop on Programming Models and Applications for Multicores
and Manycores. PMAM’12. New Orleans, Louisiana, 2012,
pp. 45–54. isbn: 978-1-4503-1211-0. doi: 10.1145/2141702.

2141708.

[Lan10] S. Lankes. First Experiences with SCC and a Comparison with
Established Architectures. Invited talk at the 1st MARC Sym-
posium. Braunschweig, Germany, Nov. 2010.

[LH89] K. Li and P. Hudak. “Memory Coherence in Shared Virtual
Memory Systems”. In: ACM Trans. Comput. Syst. 7.4 (Nov.
1989), pp. 321–359. doi: 10.1145/75104.75105.

[Lu+07] S.-L. L. Lu, P. Yiannacouras, R. Kassa, M. Konow, and T. Suh.
“An FPGA-based Pentium in a complete desktop system”. In:
Proceedings of the 2007 ACM/SIGDA 15th international sym-
posium. New York, New York, USA, 2007, pp. 53–59.

145

http://dx.doi.org/10.1109/TNET.2005.845533
http://dx.doi.org/10.1109/TNET.2005.845533
http://dx.doi.org/10.1007/978-1-4419-6460-1_5
http://dx.doi.org/10.1145/7351.7352
http://dx.doi.org/10.1145/7351.7352
http://dx.doi.org/10.1145/2141702.2141708
http://dx.doi.org/10.1145/2141702.2141708
http://dx.doi.org/10.1145/75104.75105

References

[Lub90] B. D. Lubachevsky. “Synchronization barrier and related tools
for shared memory parallel programming”. In: International
Journal of Parallel Programming 19.3 (1990), pp. 225–250. doi:
10.1007/BF01407956.

[MARC] Intel Corporation. Many-core Applications Research Community
(MARC). url: http://communities.intel.com/community/
marc (visited on 01/20/2015).

[Mat+10] T. Mattson, R. van der Wijngaart, M. Riepen, T. Lehnig, P.
Brett, W. Haas, P. Kennedy, J. Howard, S. Vangal, N. Borkar,
G. Ruhl, and S. Dighe. “The 48-core SCC Processor: The Pro-
grammer’s View”. In: Proceedings of the 2010 ACM/IEEE Con-
ference on Supercomputing. SC’10. New Orleans, LA, USA, Nov.
2010.

[Mat11] T. Mattson. The Future of Many Core Computing: A tale of two
processors. Invited talk at TUM. Munich, Germany: Intel Labs,
June 2011.

[MC11] Multicore Communications API (MCAPI) Specification. The
Multicore Association. Mar. 2011.

[McC95] J. D. McCalpin. “Memory Bandwidth and Machine Balance in
Current High Performance Computers”. In: IEEE Computer So-
ciety Technical Committee on Computer Architecture (TCCA)
Newsletter (Dec. 1995), pp. 19–25.

[McK+01] P. E. McKenney, J. Appavoo, A. Kleen, O. Krieger, R. Russell,
D. Sarma, and M. Soni. “Read-copy update”. In: AUUG Con-
ference Proceedings. Sydney, Australia, Sept. 2001, pp. 175–184.
isbn: 0-9577532-2-5.

[MF01] C. Moritz and M. Frank. “LoGPG: Modeling network contention
in message-passing programs”. In: IEEE Transactions on Paral-
lel and Distributed Systems 12.4 (Apr. 2001), pp. 404–415. doi:
10.1109/71.920589.

[MHS12] M. M. K. Martin, M. D. Hill, and D. J. Sorin. “Why On-chip
Cache Coherence is Here to Stay”. In: Commun. ACM 55.7 (July
2012), pp. 78–89. doi: 10.1145/2209249.2209269.

[Moo65] G. E. Moore. “Cramming more components onto integrated cir-
cuits”. In: Electronics 38 (Apr. 1965).

146

http://dx.doi.org/10.1007/BF01407956
http://communities.intel.com/community/marc
http://communities.intel.com/community/marc
http://dx.doi.org/10.1109/71.920589
http://dx.doi.org/10.1145/2209249.2209269

References

[Mor] T. P. Morgan. More Knights Landing Xeon Phi Secrets Unveiled.
The Platform. url: http://www.theplatform.net/2015/03/
25/more-knights-landing-xeon-phi-secrets-unveiled/

(visited on 05/04/2015).

[MP98] D. Mentré and T. Priol. “NOA: A Shared Virtual Memory over
a SCI cluster”. In: Proceedings of SCI-Europe’98, a conference
stream of EMMSEC’98. 1998, pp. 43–50.

[MPI94] Message Passing Interface Forum. “MPI: A Message Passing In-
terface Standard”. In: International Journal of Supercomputer
Applications 8.3/4 (1994), pp. 159–416.

[MS91] J. M. Mellor-Crummey and M. L. Scott. “Algorithms for Scal-
able Synchronization on Shared-memory Multiprocessors”. In:
ACM Trans. Comput. Syst. 9.1 (Feb. 1991), pp. 21–65. doi:
10.1145/103727.103729.

[MTL78] R. McGill, J. W. Tukey, and W. A. Larsen. “Variations of box
plots”. In: The American Statistician 32.1 (1978), pp. 12–16.

[MvW11] T. Mattson and R. van der Wijngaart. RCCE: a Small Library
for Many-Core Communication. Software Version 2.0. Intel Cor-
poration. Jan. 2011. url: https://communities.intel.com/
docs/DOC-5628 (visited on 01/20/2015).

[Nie+06] J. Nieplocha, V. Tipparaju, M. Krishnan, and D. K. Panda.
“High performance remote memory access communication: The
ARMCI approach”. In: International Journal of High Perfor-
mance Computing Applications 20.2 (2006), pp. 233–253.

[Nig+09] E. B. Nightingale, O. Hodson, R. McIlroy, C. Hawblitzel, and
G. Hunt. “Helios: Heterogeneous Multiprocessing with Satellite
Kernels”. In: Proceedings of the ACM SIGOPS 22nd Symposium
on Operating Systems Principles. SOSP ’09. Big Sky, Montana,
USA, 2009, pp. 221–234. isbn: 978-1-60558-752-3. doi: 10.1145/
1629575.1629597.

[NM93] L. Ni and P. McKinley. “A survey of wormhole routing tech-
niques in direct networks”. In: Computer 26.2 (Feb. 1993),
pp. 62–76. doi: 10.1109/2.191995.

[NO97] B. Nayfeh and K. Olukotun. “A single-chip multiprocessor”. In:
Computer 30.9 (Sept. 1997), pp. 79–85. doi: 10.1109/2.612253.

147

http://www.theplatform.net/2015/03/25/more-knights-landing-xeon-phi-secrets-unveiled/
http://www.theplatform.net/2015/03/25/more-knights-landing-xeon-phi-secrets-unveiled/
http://dx.doi.org/10.1145/103727.103729
https://communities.intel.com/docs/DOC-5628
https://communities.intel.com/docs/DOC-5628
http://dx.doi.org/10.1145/1629575.1629597
http://dx.doi.org/10.1145/1629575.1629597
http://dx.doi.org/10.1109/2.191995
http://dx.doi.org/10.1109/2.612253

References

[OMP13] OpenMP API. Specification. Version 4.0. OpenMP Architecture
Review Board, July 2013.

[OSS09] S. Owens, S. Sarkar, and P. Sewell. “A Better x86 Memory
Model: x86-TSO”. In: Theorem Proving in Higher Order Logics.
Vol. 5674. Lecture Notes in Computer Science. 2009, pp. 391–
407. isbn: 978-3-642-03358-2. doi: 10.1007/978-3-642-03359-
9_27.

[Owe+07] J. D. Owens, W. J. Dally, R. Ho, D. N. J. Jayasimha, S. W.
Keckler, and L.-S. Peh. “Research Challenges for On-Chip In-
terconnection Networks”. In: IEEE Micro 27.5 (2007), pp. 96–
108. doi: 10.1109/MM.2007.4378787.

[PLK09] S. Pakin, M. Lang, and D. K. Kerbyson. “The reverse-acceleration
model for programming petascale hybrid systems”. In: IBM
Journal of Research and Development 53.5 (Sept. 2009), pp. 721–
735. doi: 10.1147/JRD.2009.5429074.

[Poo+11] S. W. Poole, O. Hernandez, J. A. Kuehn, G. M. Shipman, A.
Curtis, and K. Feind. “OpenSHMEM - Toward a Unified RMA
Model”. In: Encyclopedia of Parallel Computing. 2011, pp. 1379–
1391. isbn: 978-0-387-09765-7. doi: 10 . 1007 / 978 - 0 - 387 -

09766-4_490.

[Pot+13] S. Potluri, A. Venkatesh, D. Bureddy, K. Kandalla, and D.
Panda. “Efficient Intra-node Communication on Intel-MIC
Clusters”. In: Proceedings of 13th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing. CCGrid.
May 2013, pp. 128–135. doi: 10.1109/CCGrid.2013.86.

[QPI09] Intel Corporation. An Introduction to the Intel QuickPath
Interconnect. Jan. 2009. url: http : / / www . intel . com /

content / www / us / en / io / quickpath - technology / quick -

path- interconnect- introduction- paper.html (visited on
01/20/2015).

[RCL13] P. Reble, C. Clauss, and S. Lankes. “One-sided Communication
and Synchronization for Non-coherent Memory-coupled Cores”.
In: Proceedings of the 2013 International Conference on High
Performance Computing and Simulation. HPCS. July 2013,
pp. 390–397. doi: 10.1109/HPCSim.2013.6641445.

148

http://dx.doi.org/10.1007/978-3-642-03359-9_27
http://dx.doi.org/10.1007/978-3-642-03359-9_27
http://dx.doi.org/10.1109/MM.2007.4378787
http://dx.doi.org/10.1147/JRD.2009.5429074
http://dx.doi.org/10.1007/978-0-387-09766-4_490
http://dx.doi.org/10.1007/978-0-387-09766-4_490
http://dx.doi.org/10.1109/CCGrid.2013.86
http://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html
http://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html
http://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html
http://dx.doi.org/10.1109/HPCSim.2013.6641445

References

[Reb+11] P. Reble, S. Lankes, C. Clauss, and T. Bemmerl. “A Fast Inter-
Kernel Communication and Synchronization Layer for Metal-
SVM”. In: Proceedings of the 3rd MARC Symposium. Ettlin-
gen, Germany, July 2011, pp. 19–23. isbn: 978-3-86644-717-2.
url: http://digbib.ubka.uni-karlsruhe.de/volltexte/
1000023937.

[Reb+12a] P. Reble, C. Clauss, M. Riepen, S. Lankes, and T. Bemmerl.
“Connecting the Cloud: Transparent and Flexible Communica-
tion for a Cluster of Intel SCCs”. In: Proceedings of the Many-
core Applications Research Community (MARC) Symposium at
RWTH Aachen University. Aachen, Germany, Dec. 2012, pp. 13–
19. isbn: 978-3-00-039545-1. url: http://darwin.bth.rwth-
aachen.de/opus3/volltexte/2012/4383/.

[Reb+12b] P. Reble, J. Galowicz, S. Lankes, and T. Bemmerl. “Efficient
Implementation of the bare-metal hypervisor MetalSVM for the
SCC”. In: Proceedings of the 6th Many-core Applications Re-
search Community (MARC) Symposium. Toulouse, France, July
2012, pp. 59–65. isbn: 978-2-7257-0016-8. url: http://hal.
archives-ouvertes.fr/hal-00719037.

[Reb+12c] P. Reble, S. Lankes, F. Zeitz, and T. Bemmerl. “Evaluation
of Hardware Synchronization Support of the SCC Many-Core
Processor”. In: 4th USENIX Workshop on Hot Topics in Paral-
lelism. HOTPAR’12. poster paper. Berkeley, CA, USA, June
2012. url: https : / / www . usenix . org / system / files /

conference/hotpar12/hotpar12-final9.pdf.

[Reb+15] P. Reble, S. Lankes, F. Fischer, and M. S. Müller. “Effective
Communication for a System of Cluster-on-a-Chip Processors”.
In: Proceedings of the Sixth International Workshop on Program-
ming Models and Applications for Multicores and Manycores.
PMAM’15. San Francisco, California, 2015. isbn: 978-1-4503-
3404-4. doi: 10.1145/2712386.2712393.

[Reg02] J. Regehr. “Inferring Scheduling Behavior with Hourglass”. In:
Proceedings of the FREENIX Track: 2002 USENIX Annual
Technical Conference. Berkeley, CA, USA, June 2002, pp. 143–
156. isbn: 1-880446-01-4. url: http://dl.acm.org/citation.
cfm?id=647056.715933.

149

http://digbib.ubka.uni-karlsruhe.de/volltexte/1000023937
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000023937
http://darwin.bth.rwth-aachen.de/opus3/volltexte/2012/4383/
http://darwin.bth.rwth-aachen.de/opus3/volltexte/2012/4383/
http://hal.archives-ouvertes.fr/hal-00719037
http://hal.archives-ouvertes.fr/hal-00719037
https://www.usenix.org/system/files/conference/hotpar12/hotpar12-final9.pdf
https://www.usenix.org/system/files/conference/hotpar12/hotpar12-final9.pdf
http://dx.doi.org/10.1145/2712386.2712393
http://dl.acm.org/citation.cfm?id=647056.715933
http://dl.acm.org/citation.cfm?id=647056.715933

References

[RH13] S. Ramos and T. Hoefler. “Modeling Communication in Cache-
coherent SMP Systems: A Case-study with Xeon Phi”. In:
Proceedings of the 22rd International Symposium on High-
performance Parallel and Distributed Computing. HPDC ’13.
New York, New York, USA, 2013, pp. 97–108. isbn: 978-1-4503-
1910-2. doi: 10.1145/2462902.2462916.

[Rot11] R. Rotta. “On Efficient Message Passing on the Intel SCC”. In:
Proceedings of the 3rd MARC Symposium. Ettlingen, Germany,
July 2011, pp. 53–58. isbn: 978-3-86644-717-2.

[Rus07] R. Russell. “lguest: Implementing the little Linux hypervisor”.
In: Proceedings of the Linux Symposium (OLS’07). Ottawa,
Canada, 2007, pp. 173–177. url: https://www.kernel.org/
doc/ols/2007/ols2007v2-pages-173-178.pdf.

[Rus08] R. Russell. “Virtio: Towards a De-facto Standard for Virtual
I/O Devices”. In: SIGOPS Oper. Syst. Rev. 42.5 (July 2008),
pp. 95–103. doi: 10.1145/1400097.1400108.

[RW14] P. Reble and G. Wassen. “Towards Predictability of Operating
System Supported Communication for PCIe Based Clusters”.
In: Euro-Par 2013: Parallel Processing Workshops. Vol. 8374.
Lecture Notes in Computer Science. 2014, pp. 833–842. isbn:
978-3-642-54419-4. doi: 10.1007/978-3-642-54420-0_81.

[SBdS08] M. Schulz, G. Bronevetsky, and B. R. de Supinski. “On the Per-
formance of Transparent MPI Piggyback Messages”. In: Recent
Advances in Parallel Virtual Machine and Message Passing In-
terface. Vol. 5205. Lecture Notes in Computer Science. 2008,
pp. 194–201. isbn: 978-3-540-87474-4. doi: 10.1007/978-3-
540-87475-1_28.

[SCC10] SCC External Architecture Specification (EAS). Revision 1.1. In-
tel Corporation. Nov. 2010. url: http://communities.intel.
com/docs/DOC-5852 (visited on 01/20/2015).

[SCC11] The sccKit 1.4.x User’s Guide. Revision 1.1. Intel Labs. Nov.
2011. url: https : / / communities . intel . com / servlet /

JiveServlet/previewBody/6241-102-3-22263/sccKit14x_

UsersGuide_Parts1-7.pdf (visited on 11/20/2014).

150

http://dx.doi.org/10.1145/2462902.2462916
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-173-178.pdf
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-173-178.pdf
http://dx.doi.org/10.1145/1400097.1400108
http://dx.doi.org/10.1007/978-3-642-54420-0_81
http://dx.doi.org/10.1007/978-3-540-87475-1_28
http://dx.doi.org/10.1007/978-3-540-87475-1_28
http://communities.intel.com/docs/DOC-5852
http://communities.intel.com/docs/DOC-5852
https://communities.intel.com/servlet/JiveServlet/previewBody/6241-102-3-22263/sccKit14x_UsersGuide_Parts1-7.pdf
https://communities.intel.com/servlet/JiveServlet/previewBody/6241-102-3-22263/sccKit14x_UsersGuide_Parts1-7.pdf
https://communities.intel.com/servlet/JiveServlet/previewBody/6241-102-3-22263/sccKit14x_UsersGuide_Parts1-7.pdf

References

[SCC12] The SCC Programmer’s Guide. Revision 1.0. Intel Corpora-
tion. Jan. 2012. url: https : / / communities . intel . com /

servlet/JiveServlet/previewBody/5684- 102- 8- 22523/

SCCProgrammersGuide.pdf (visited on 01/20/2015).

[Sch+10] D. Schmidl, C. Terboven, A. Wolf, D. an Mey, and C. Bischof.
“How to Scale Nested OpenMP Applications on the ScaleMP
vSMP Architecture”. In: Proceedings of the IEEE Interna-
tional Conference on Cluster Computing. CLUSTER. Sept.
2010, pp. 29–37. doi: 10.1109/CLUSTER.2010.38.

[SCI93] Standard for Scalable Coherent Interface (SCI). 1596. IEEE,
1993. doi: 10.1109/IEEESTD.1993.120366.

[SCIF14] Symmetric Communications Interface (SCIF) for Intel Xeon Phi
Product Family. Users Guide. Intel Corporation, Feb. 2014. url:
http://registrationcenter.intel.com/irc_nas/5079/

scif_userguide.pdf (visited on 01/20/2015).

[SDM11] J. Shalf, S. Dosanjh, and J. Morrison. “Exascale Computing
Technology Challenges”. In: High Performance Computing for
Computational Science - VECPAR 2010. Vol. 6449. Lecture
Notes in Computer Science. 2011, pp. 1–25. isbn: 978-3-642-
19327-9. doi: 10.1007/978-3-642-19328-6_1.

[Sei+08] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P.
Dubey, S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa,
E. Grochowski, T. Juan, and P. Hanrahan. “Larrabee: A Many-
core x86 Architecture for Visual Computing”. In: ACM Trans.
Graph. 27.3 (Aug. 2008), 18:1–18:15. doi: 10.1145/1360612.
1360617.

[SS08] K. Strandberg and S. Schoenberg. Synchronization in a Many-
Core World. White Paper. Intel Corporation, 2008. url: https:
//software.intel.com/en-us/articles/synchronization-

in-a-many-core-world (visited on 01/20/2015).

[ST98] A.-H. Smai and L.-E. Thorelli. “Global reactive congestion con-
trol in multicomputer networks”. In: Proceedings of the 5th
International Conference on High Performance Computing.
HIPC’98. Dec. 1998, pp. 179–186. doi: 10.1109/HIPC.1998.
737987.

151

https://communities.intel.com/servlet/JiveServlet/previewBody/5684-102-8-22523/SCCProgrammersGuide.pdf
https://communities.intel.com/servlet/JiveServlet/previewBody/5684-102-8-22523/SCCProgrammersGuide.pdf
https://communities.intel.com/servlet/JiveServlet/previewBody/5684-102-8-22523/SCCProgrammersGuide.pdf
http://dx.doi.org/10.1109/CLUSTER.2010.38
http://dx.doi.org/10.1109/IEEESTD.1993.120366
http://registrationcenter.intel.com/irc_nas/5079/scif_userguide.pdf
http://registrationcenter.intel.com/irc_nas/5079/scif_userguide.pdf
http://dx.doi.org/10.1007/978-3-642-19328-6_1
http://dx.doi.org/10.1145/1360612.1360617
http://dx.doi.org/10.1145/1360612.1360617
https://software.intel.com/en-us/articles/synchronization-in-a-many-core-world
https://software.intel.com/en-us/articles/synchronization-in-a-many-core-world
https://software.intel.com/en-us/articles/synchronization-in-a-many-core-world
http://dx.doi.org/10.1109/HIPC.1998.737987
http://dx.doi.org/10.1109/HIPC.1998.737987

References

[Star99] Star Wars: Episode I – The Phantom Menace. VHS. Lucas Arts,
1999.

[Sut05] H. Sutter. “The free lunch is over: A fundamental turn toward
concurrency in software”. In: Dr. Dobb’s Journal 30.3 (2005),
pp. 202–210.

[SY05] M. Snir and J. Yu. On the Theory of Spatial and Temporal Lo-
cality. Tech. rep. UIUCDCS-R-2005-2611. University of Illinois
at Urbana-Champaign, July 2005.

[Tan07] A. Tanenbaum. Modern Operating Systems. Prentice Hall, 2007.
isbn: 978-0-13-600663-3.

[Ter+08] C. Terboven, D. an Mey, D. Schmidl, and M. Wagner. “First Ex-
periences with Intel Cluster OpenMP”. In: OpenMP in a New
Era of Parallelism. Vol. 5004. Lecture Notes in Computer Sci-
ence. 2008, pp. 48–59.

[TLH94] J. Torrellas, M. Lam, and J. L. Hennessy. “False sharing and
spatial locality in multiprocessor caches”. In: IEEE Transactions
on Computers 43.6 (June 1994), pp. 651–663. doi: 10.1109/12.
286299.

[Tsa+05] D. Tsafrir, Y. Etsion, D. G. Feitelson, and S. Kirkpatrick. “Sys-
tem Noise, OS Clock Ticks, and Fine-grained Parallel Applica-
tions”. In: Proceedings of the 19th Annual International Con-
ference on Supercomputing. ICS ’05. Cambridge, Massachusetts,
2005, pp. 303–312. isbn: 1-59593-167-8. doi: 10.1145/1088149.
1088190.

[TvS13] A. Tanenbaum and M. van Steen. Distributed Systems: Princi-
ples and Paradigms. Always learning. Pearson Education, Lim-
ited, 2013. isbn: 978-1292025520.

[UPC05] UPC Language Specifications. Version 1.2. UPC Consortium.
Lawrence Berkeley National Lab, LBNL-59208, 2005.

[Vaj11] A. Vajda. Programming Many-Core Chips. Springer, June 2011.
isbn: 978-1-4419-9739-5.

152

http://dx.doi.org/10.1109/12.286299
http://dx.doi.org/10.1109/12.286299
http://dx.doi.org/10.1145/1088149.1088190
http://dx.doi.org/10.1145/1088149.1088190

References

[Van+08] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz,
D. Finan, A. Singh, T. Jacob, S. Jain, V. Erraguntla, C. Roberts,
Y. Hoskote, N. Borkar, and S. Borkar. “An 80-Tile Sub-100-W
TeraFLOPS Processor in 65-nm CMOS”. In: IEEE Journal of
Solid-State Circuits 43.1 (Jan. 2008), pp. 29–41. doi: 10.1109/
JSSC.2007.910957.

[vWMH11] R. F. van der Wijngaart, T. G. Mattson, and W. Haas. “Light-
weight Communications on Intel’s Single-chip Cloud Computer
Processor”. In: SIGOPS Oper. Syst. Rev. 45.1 (Feb. 2011),
pp. 73–83. doi: 10.1145/1945023.1945033.

[WM95] W. A. Wulf and S. A. McKee. “Hitting the Memory Wall: Impli-
cations of the Obvious”. In: SIGARCH Comput. Archit. News
23.1 (Mar. 1995), pp. 20–24. doi: 10.1145/216585.216588.

[WSG02] A. Whitaker, M. Shaw, and S. D. Gribble. “Denali: Lightweight
virtual machines for distributed and networked applications”.
In: Proceedings of the USENIX Annual Technical Conference.
2002.

[WWP09] S. Williams, A. Waterman, and D. Patterson. “Roofline: An In-
sightful Visual Performance Model for Multicore Architectures”.
In: Communications of the ACM 52.4 (Apr. 2009), pp. 65–76.
doi: 10.1145/1498765.1498785.

[YTL87] P.-C. Yew, N.-F. Tzeng, and D. H. Lawrie. “Distributing Hot-
Spot Addressing in Large-Scale Multiprocessors”. In: IEEE
Transactions on Computers C-36.4 (Apr. 1987), pp. 388–395.
doi: 10.1109/TC.1987.1676921.

153

http://dx.doi.org/10.1109/JSSC.2007.910957
http://dx.doi.org/10.1109/JSSC.2007.910957
http://dx.doi.org/10.1145/1945023.1945033
http://dx.doi.org/10.1145/216585.216588
http://dx.doi.org/10.1145/1498765.1498785
http://dx.doi.org/10.1109/TC.1987.1676921

	Introduction
	Motivation
	Contribution
	Structure of this Work

	Many-core Systems
	Basic Components
	Computing Core
	Memory Organization
	Interconnect

	Single-chip Cloud Computer (SCC)
	Research System
	Processor Cores
	Interconnect
	Basic Memory Types
	Synchronization Support

	Communication Model
	Related Work
	Analysis
	Multi-Line Ping-Pong
	Quantify synchronization overhead
	Contention
	Back-off with Feedback

	Conclusion

	Communication and Synchronization
	Related Work
	Message Passing Interface
	RCCE

	vSCC: Extending a Research Platform
	Global Atomic Operations
	Increasing the Core Count

	iRCCE: Extending Rock Creek Communication Environment
	Communication Model
	Communication Modes

	Message Passing Buffer
	Communication Schemes
	Flags
	Dynamic Buffer Allocation
	Results

	Synchronization Constructs
	Lock
	Barrier
	Results

	Conclusion

	System Software and Application
	Related Work
	Programming Models
	Virtualization

	Concept of MetalSVM
	Motivation of MetalSVM
	Integration of iRCCE into MetalSVM

	Efficient implementation of a bare-metal Hypervisor
	Bare metal framework
	Many-core Virtualization
	Hypervisor Performance

	Application Examples
	Jacobi
	NPB

	Conclusion

	Conclusion
	Methods
	Results

	List of Abbreviations
	References

