Physical Layer Security in Wireless Networks

Vince Poor
(poor@princeton.edu)
Outline

1. Motivation & Background

2. Physical Layer Security in Basic Network Models
 - A Paradigm: The Broadcast Channel with Confidential Messages
 - Other Channels (Briefly)

3. Other Results & Open Issues

4. A Related Problem: Privacy (Briefly)
Motivation & Background
Exploiting the Wireless Physical Layer

- Key Techniques for Improving Capacity & Reliability:
 - Multiple-Antenna Systems (MIMO)
 - Cooperation & Relaying
 - Cognitive Radio

Physical Layer Security in Wireless Networks
Exploiting the Wireless Physical Layer

• Key Techniques for Improving Capacity & Reliability:
 – Multiple-Antenna Systems (MIMO)
 – Cooperation & Relaying
 – Cognitive Radio

• What About Security?

Physical Layer Security in Wireless Networks
Key Techniques for Improving **Capacity & Reliability**:
- Multiple-Antenna Systems (MIMO)
- Cooperation & Relaying
- Cognitive Radio

What About **Security**?
- Traditionally a *higher-network-layer issue*
Exploiting the Wireless Physical Layer

• Key Techniques for Improving **Capacity & Reliability**:
 – Multiple-Antenna Systems (MIMO)
 – Cooperation & Relaying
 – Cognitive Radio

• **What About Security?**
 – Traditionally a *higher-network-layer issue*
 – *Encryption can be complex and difficult without infrastructure (e.g., in ad-hoc networks)*
Key Techniques for Improving **Capacity & Reliability**:
- Multiple-Antenna Systems (MIMO)
- Cooperation & Relaying
- Cognitive Radio

What About **Security**?
- Traditionally a **higher-network-layer issue**
- **Encryption** can be complex and difficult without infrastructure (e.g., in ad-hoc networks)
- **Information theoretic security** characterizes the fundamental ability of the physical layer to provide security (confidentiality)
Exploiting the Wireless Physical Layer

• Key Techniques for Improving Capacity & Reliability:
 – Multiple-Antenna Systems (MIMO)
 – Cooperation & Relaying
 – Cognitive Radio

• What About Security?
 – Traditionally a higher-network-layer issue
 – Encryption can be complex and difficult without infrastructure (e.g., in ad-hoc networks)
 – Information theoretic security characterizes the fundamental ability of the physical layer to provide security (confidentiality)
 – Caveat: This is still largely a theoretical issue

Physical Layer Security in Wireless Networks
Physical Layer Security
Plausibility

Physical Layer Security in Wireless Networks
Physical Layer Security
Joint Security-Reliability Coding
Quantifying Security: Equivocation

\[I(W;Y)/n = H(W)/n - H(W|Y)/n \]
\[= 1 - 0 \]
\[= 1 \]

\[I(W;Z)/n = H(W)/n - H(W|Z)/n \]
\[= 1 - 1 \]
\[= 0 \]
Quantifying Security: Equivocation

Of interest:
- capacity-equivocation regions
- secrecy capacity regions (rate = equivocation)

Physical Layer Security in Wireless Networks
A (Very) Brief History

- Shannon [BSTJ’49]: For cipher, need $H(K) > H(S)$.
A (Very) Brief History

- **Shannon** [BSTJ’49]: For cipher, need $H(K) > H(S)$.
- **Wyner** [BSTJ’75]: For the wire-tap channel

the wire-tapper must be degraded.

Physical Layer Security in Wireless Networks
Physical Layer Security in Basic Network Models
A Paradigm: The Broadcast Channel with Confidential Messages
Broadcast Channel with Confidential (BCC) Messages

Csiszár & Körner [IT’78]: Discrete Memoryless BCC

Physical Layer Security in Wireless Networks
Broadcast Channel with Confidential (BCC) Messages

Csizsár & Körner [IT’78]: Discrete Memoryless BCC

Liang, Poor & Shamai [IT’08]:
- Gaussian BCC
 - secrecy-capacity region
- Fading BCC
 - secrecy-capacity region
 - exploit fading to achieve secrecy

Physical Layer Security in Wireless Networks
Gaussian BCC

Physical Layer Security in Wireless Networks
Gaussian BCC: Secrecy Capacity Regions
Fading BCC: Secrecy Capacity Regions

Physical Layer Security in Wireless Networks
Fading BCC: Secrecy Capacity Regions

Physical Layer Security in Wireless Networks
Other Channels of Interest
Multiple-Access Channel

User 1

$W_0 \rightarrow X_1$
$W_1 \rightarrow X_1$

User 2

$W_2 \rightarrow X_2$

Destination

$Y \rightarrow \hat{W}_0 \hat{W}_1 \hat{W}_2$

Physical Layer Security in Wireless Networks
Multiple-Access Channel with Confidential Messages

Liang & Poor - IT’08 (AWGN) & Liu, Liang & Poor – IT’11 (fading)
Multiple-Access Channel with Confidential Messages

Liang & Poor - IT’08 (AWGN) & Liu, Liang & Poor – IT’11 (fading)

\[\text{User 1} \rightarrow \frac{1}{n} H(W_2 | Y_1^n X_1^n W_0 W_1) \]

\[\begin{align*}
W_1 & \rightarrow Y_1 X_1 \\
W_0 & \rightarrow \text{Destination} \\
W_2 & \rightarrow Y_2 X_2 \\
\text{User 2} & \rightarrow \frac{1}{n} H(W_1 | Y_2^n X_2^n W_0 W_2) \\
\end{align*} \]

\[Y \rightarrow \hat{W}_0 \hat{W}_1 \hat{W}_2 \]

Physical Layer Security in Wireless Networks
Multiple-Access Channel: AWGN

Physical Layer Security in Wireless Networks
Multiple-Access Channel: Fading

- $|h_1|^2$, $|h_2|^2$ and $|g|^2$ are exponentially distributed with means σ_1, $\sigma_2=1$ and $\sigma_3=1$
- power constraint $P_1=P_2=10$ dB, and Gaussian noise variance $\nu_1=\nu_2=2$
Interference Channel

\[\text{Transmitter 1} \quad \text{Receiver 1/Wire-tapper} \]

\[W_1 \rightarrow X_1^n \rightarrow Y^n \rightarrow \hat{W}_1^{(1)}, \frac{1}{n} H(W_2 | Y^n) \]

\[W_2 \rightarrow X_2^n \rightarrow Z^n \rightarrow \hat{W}_1^{(2)} \hat{W}_2 \]

\[\text{Transmitter 2} \quad \text{Receiver 2} \]
Other Channels of Interest

- **Interference Channel** [w/ Liang, Someck-Baruch, Shamai, Verdú - IT’09 (cognitive) & w/ Koyluoglu, El Gamal, Lai - IT’11 (interference alignment)]:

 ![Interference Channel Diagram]

- **Relay Channels** [e.g., w/ Aggarwal, Sankar, Calderbank – JWCN’09 & w/ Kim – IT’11]: Source and relay cooperate to improve security.

Physical Layer Security in Wireless Networks
Other Channels of Interest

- **Interference Channel** [w/ Liang, Someck-Baruch, Shamai, Verdú - IT’09 (cognitive) & w/ Koyluoglu, El Gamal, Lai - IT’11 (interference alignment)]:

 ![Interference Channel Diagram]

- **Relay Channels** [e.g., w/ Aggarwal, Sankar, Calderbank – JWCN’09 & w/ Kim – IT’11]: Source and relay cooperate to improve security.

- **MIMO** [e.g., w/ Liu, Liu, Shamai – IT’10]: Use of multiple transmit & receive antennas allows simultaneous secure broadcast without rate penalty.

Physical Layer Security in Wireless Networks
Other Results & Open Issues
• **Authentication** [w/ Lai, El-Gamal – IT’09]: “Cheating” probability is characterized for authentication in noisy channels.

• **Feedback** [e.g., w/ Lai, El-Gamal – IT’08, w/ Liu, Tang, Spasojevic – IT’09 & w/ Kim – IT’10]: Judicious use of feedback enhances security.

• **Code Design** [e.g., w/ Liu, Liang, Spasojevic – IT (under review)]: Nested structure for secure error-control codes for the wire-tap channel.

• **Cross Layer Design** ...

Physical Layer Security in Wireless Networks
Scheduling of Secure Broadcast

[Liang, Poor & Ying – IFS’11]

- **Three objectives:**
 - reliability (low error probability)
 - security (perfect secrecy)
 - stability (queues remain finite)

Physical Layer Security in Wireless Networks
Scheduling of Secure Broadcast

[Li, Poor & Ying – IFS’11]

- **Three objectives:**
 - reliability (low error probability)
 - security (perfect secrecy)
 - stability (queues remain finite)

- **Two time scales:**
 - packet level (scheduling)
 - symbol level (power control)
Scheduling of Secure Broadcast

[Liang, Poor & Ying – IFS’11]

- Three objectives:
 - reliability (low error probability)
 - security (perfect secrecy)
 - stability (queues remain finite)

- Two time scales:
 - packet level (scheduling)
 - symbol level (power control)

- Two eavesdropping models:
 - collaborative - MIMO wiretapper [Khisti & Wornell - IT’10]; achieve secrecy-throughput optimality via time division
 - non-collaborative - compound wiretapper [w/ Liang, Kramer, Shamai - JWCN’09]; time division is suboptimal, but can still stabilize

Physical Layer Security in Wireless Networks
A Rich Area

Coding Theory
- code design

Cryptography
- key management

Information Theoretic Security
(feedback, side info, etc.)
- cross-layer design
- adversarial model

Networking

Game Theory

Liang, Poor & Shamai, *Information Theoretic Security* (Now ’09)
Liu & Trappe, Eds., *Securing Wireless Communications at the Physical Layer* (Springer ’10)

Physical Layer Security in Wireless Networks
A Related Problem: Privacy
The Privacy Problem

- Many electronic information sources are **publicly accessible**
 - Google, Facebook, open governance, census, etc.

- The **utility** of these sources depends on their accessibility

- But, they can also **leak private information**

Physical Layer Security in Wireless Networks
Privacy is not secrecy:
Privacy-Utility Tradeoff

- Privacy is not secrecy:

- An information theoretic characterization: equivocation-distortion [w/ Sankar, Rajagopalan, IT (under review)]
Privacy-Utility Tradeoff

- Privacy is **not** secrecy:

 ![Diagram of Alice, Bob, and Eve](image)

- An information theoretic characterization: *equivocation-distortion*
 [w/ Sankar, Rajagopalan, IT (under review)]

- Can consider **multiple queries** (successive disclosure) & **multiple databases** (side information)

Physical Layer Security in Wireless Networks
Privacy is not secrecy:

- An information theoretic characterization: equivocation-distortion
 [w/ Sankar, Rajagopalan, IT (under review)]

- Can consider multiple queries (successive disclosure) & multiple databases (side information)

- Application to smart grid: competitive privacy & smart metering
 [w/ Sankar, Kar, Tandon & w/ Rajagopalan, Sankar, Mohajer – SmartGridComm’11]
Thank You!