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Abstract—Well-known modulation schemes for additive white
Gaussian noise (AWGN) channels are based on uniform input
distributions. Thus, their number of constellation points normally
is a power of two. In this work, a method for the construction
of efficient amplitude phase shift keying (APSK) modulation
schemes is presented. The number of constellation points are not
restricted to powers of two, and the referring input distributions
are not uniform, although dyadic. Compared to the well-known
quadrature amplitude modulation (QAM) schemes, they provide
shaping gain both by arranging the constellation points in a
circle, and due to the usage of non-uniform input distributions.
Additionally, they allow a finer adaptation to the channel state.
Performance evaluations show that these schemes are often better
than the QAM schemes.

I. INTRODUCTION

The transmission of discrete data via a complex AWGN
channel requires the use of modulation schemes. The data
stream is mapped to a stream of complex input symbols which
are transmitted via the channel, and the channel output is
decoded to achieve the original input data. To use the channel
capacity efficiently, the modulation scheme has to be adapted
to the channel state. If the signal-to-noise ratio (SNR) is low,
schemes with a small number of constellation points keep the
complexity as well as the symbol error probability low, while
schemes with a higher number of constellation points are able
to transmit more information per symbol when the SNR is
higher, see [1].

Conventional approaches such as the well-known quadrature
amplitude modulation schemes (QAM) often use a power of
two as number of constellation points, and they map a fixed
number of bits to a symbol, leading to a uniform channel
input distribution in case of a memoryless source producing
equiprobable bits. This works quite well and allows for a
simple implementation, but is not optimal. To approximate
the normal distribution as good as possible, the constellation
points should rather be arranged in a circle than in a square
or a cross, and the constellation points farther from the origin
should be used less frequently than those close to the origin.
The basic ideas of signal shaping are well-known, for an
overview see for example [2] and [3]. Apart from the signal
shaping aspect, restricting the number of constellation points
to powers of two (or even to powers of four for square QAM
schemes) leads to a somehow coarse adaptation to the channel

state, which impedes the optimal usage of a given channel.
In this paper, we present a construction method for APSK

modulation schemes which can be employed to transmit
discrete data via a complex AWGN channel. The constella-
tion points are placed on equally spaced rings around the
origin. The optimal input distribution (which is a normal
distribution) is then approximated by a dyadic distribution on
these points, using the geometric Huffman coding algorithm
proposed in [4]. To evaluate the performance of the different
modulation schemes depending on the SNR, we compute the
mutual information between the input and the decoded output,
and the maximal symbol error probability. In doing so we
show that our new approaches are often better than the QAM
schemes and some other schemes proposed in the literature,
and allow a finer adaptation of the modulation to the channel
state.

II. SYSTEM MODEL

In this work, our model is a complex AWGN channel
with input X , noise term W and output Y = X + W ,
whereupon X and W are stochastically independent, and the
latter follows a zero-mean circular symmetric complex normal
distribution with variance E(WW ∗) = σ2

W . Thus, the real
and the imaginary part of W are stochastically independent,
and both are N(0, σ2

W /2)-distributed. The probability density
function of W is

fW (w) =
1

πσ2
W

exp

(
−‖w‖

2

σ2
W

)
. (1)

For the discrete input distribution with the finite support
set X = {x1, . . . , xM}, a power constraint

E(XX∗) =
M∑
i=1

P (X = xi) · xix∗i = σ2
X (2)

is given.
A coding function g : {0, 1}∗ → X ∗ is used to map the

bit stream from the source to a stream of input symbols. The
bit stream from the source itself is assumed to be memoryless
with a uniform distribution. Although some source encoders
like plain Huffman coding often produce distributions that
are not exactly uniform, this assumption is reasonable. It
should be noted that there even exists a modification of the
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Huffman coding that enhances the uniformness of the resulting
distribution, see [5]. Also, it should be mentioned that there
exists a completely different idea to make use of a non-uniform
distribution from the source encoder for shaping, see [6].

In the context of the definition of the coding func-
tion, {0, 1}∗ denotes a sequence of bits with arbitrary length,
and X ∗ denotes a sequence of input symbols from X , also
with arbitrary length. As one symbol can represent a variable
number of bits in our approach, it is not possible to give
a simpler definition of the coding function. It is, however,
invertible, the sequence of input bits can be reconstructed from
the sequence of symbols. This reconstruction is not in the
scope of this work, the evaluation of the channel performance
is done on the symbol level.

The decoding function d : C → {1, . . . ,M} is defined
by sets D1, . . . , DM ⊆ C forming a partition of C, such
that d(y) = i if and only if y ∈ Di. In this work, we
predominantly use the maximum likelihood (ML) decoding
approach, the decoding regions are chosen such that

fY |X(y|xi) ≥ fY |X(y|xk) (3)

for all k = 1, . . . ,M if d(y) = i. This means the decoder
chooses the input symbol xi that maximises the (infinitesimal)
probability of the observed channel output y. Due to the zero-
mean circular symmetric distribution of the noise term W , the
conditional density

fY |X(y|xi) = fW (y − xi) (4)

is strictly monotonically decreasing in the Euclidean distance
between y and xi. Thus, the decoding regions correspond
to the Voronoi regions around the constellation points. For
a given constellation point, the associated Voronoi region is
defined as the set of all elements of the complex plane that
are closer to this point than to any other constellation point.

Another decoding approach is the maximum a posteriori
(MAP) decoding rule, it chooses the decoding regions such
that

P (X = xi) · fY |X(y|xi) ≥ P (X = xk) · fY |X(y|xk) (5)

for all k = 1, . . . ,M if d(y) = i. That is, the decoder
maximises the probability of the input symbol xi under the
observation of the output symbol y with its choice. Using the
density of the noise term given in (1), it can be shown that
this is equivalent to

‖y − xi‖2 ≤ ‖y − xk‖2 + σ2
W ln

(
P (X = xi)

P (X = xk)

)
. (6)

For uniform input distributions both decoding rules are iden-
tical, as

ln

(
P (X = xi)

P (X = xk)

)
= ln(1) = 0 (7)

holds for all i and k in that case. When a non-uniform input
distribution is used, the decoding regions for constellation
points with a higher probability are larger. The border between
the decoding regions of two constellation points is still a

straight line perpendicular to the connecting line of the points,
but it is shifted towards the less probable point (and might even
be located beyond the less probable point in extreme cases).
Note that the amount of this shift does not only depend on the
ratio between the input probabilities, but also on the variance
of the noise. In practice this means that the receiver must know
this value, or at least have an appropriate estimation for it, to
apply this decoding rule.

Applying the decoding function to the complex channel
output Y = X +W yields the decoded output Ỹ = d(Y ).
The conditioned distribution of Ỹ , given the input X , can be
computed as

P (Ỹ = k|X = xi) =

∫
Dk

fW (y − xi)dy. (8)

A closed-form solution for this integral does not exist. In
some rare cases, when the decoding region Dk is the Carte-
sian product of intervals, existing numerical approximations
for the cumulative density function of the one-dimensional
normal distribution could be used. In most cases, however, the
decoding regions are arbitrarily shaped polygons. So, generally
these values have to be calculated by numerical integration or
Monte Carlo methods.

The mutual information between the input X and the
decoded output Ỹ ,

I(X, Ỹ ) = H(Ỹ )−H(Ỹ |X), (9)

is used as the primary performance measure, while the maxi-
mal symbol error probability

ε = max
1≤i≤M

P (Ỹ 6= i|X = xi) (10)

is also considered.

III. MODULATION SCHEMES

A. Conventional Modulation Schemes

Well-tried modulation schemes for the transmission of
discrete input via an AWGN channel are for example the
quadrature amplitude modulation (QAM) schemes, with con-
stellation points arranged in a square tiling, see [7]. The whole
constellation has either the form of a square, if the number of
points is a power of 4 (e.g., 16-QAM or 64-QAM), or the
form of a cross (e.g., 32-QAM or 128-QAM). As the number
of constellation points always is a power of 2, these schemes
are normally used to encode a fixed number of bits per symbol.
Assuming a memoryless source producing equiprobable bits,
this leads to a uniform distribution of the channel input X .

B. Novel Modulation Schemes

Our process of constructing new modulation schemes con-
sists of two steps. In the first step, we choose an arrangement
of constellation points. The points are placed on K rings
around the origin, see for example Fig. 2 which will be
explained in detail later. The distance between adjacent rings
is d0, this value is also used as an approximate lower bound
for the distance between the constellation points. Keeping
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the spacing of the constellation points more or less uniform
ensures that the symbol error probability is also roughly uni-
form among the different points. This is especially important
when using its maximum as a performance measure. To allow
the first ring (counting from the origin) to carry four points
with this spacing, its radius is chosen as r1 = 0.7 · d0.
Thus, the radius of the i-th ring is ri = (i − 0.3) · d0. The
number of constellation points on the i-th ring, ni, is chosen
such that ni ≤ 2π · ri, to ensure the desired spacing. For
reasons which will be explained later, ni is always a power of
two. Thus, the total number of constellation points is already
determined by K, the number of rings, although there exists
no closed formula for this relationship.

The second step consists of constructing the input distri-
bution for this constellation. The idea is to approximate a
normal distribution. Due to the ring structure of the APSK
schemes, the construction of the distribution does not have to
consider the individual constellation points. Instead, only the
distribution for the rings has to be determined. Within one
ring, the points have a uniform distribution. This approach
also ensures that constellation points with the same distance
from the origin have the same probability, too. This would
not be ensured if we would calculate the probabilities for the
individual points, as the approximation procedure sometimes
maps equal probabilities to different approximated values
when generating a dyadic distribution.

To approximate a normal distribution in the complex plane,
the distribution for the rings has to approximate a Rayleigh
distribution. This can be seen as follows: Let X be circular
symmetric complex normal distributed with E(X) = 0 and
E(XX∗) = σ2

X . Then the radius R =
√
‖X‖2 is Ray(σ2

X/2)-
distributed with the probability density function

fR(r) =
2r

σ2
X

exp

(
− r2

σ2
X

)
for r ≥ 0. (11)

As about 98% of the mass of this distribution is concentrated
between 0 and 2

√
σ2
X , the algorithm starts by placing the K

rings equally spaced in this interval, setting

d0 =
2
√
σ2
X

K + 0.2
(12)

initially. Then, the optimal distribution, which is given by

p′i =

{
1
q

∫ r1+0.5·d0

0
fR(r)dr i = 1

1
q

∫ ri+0.5·d0

ri−0.5·d0
fR(r)dr i = 2, . . . ,K

(13)

with

q =

∫ rK+0.5·d0

0

fR(r)dr, (14)

is approximated by a dyadic distribution (p1, . . . , pK), using
the geometric Huffman coding (GHC) algorithm given in [4].
With knowledge of this distribution, the parameter d0 is finally
adjusted such that the power constraint E(XX∗) = σ2

X is
fulfilled. As the distribution is chosen as an approximation
to a continuous distribution which already fulfils the power
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Rayleigh distribution

44−APSK (4 rings)

92−APSK (6 rings)

Fig. 1. Rayleigh distribution and approximations

constraint, this adjustment is typically small. Nevertheless, the
small shifting of the rings induced by this might lead to the
case that the chosen distribution is not the optimal approxi-
mation anymore, so the algorithm is repeated if neccessary.

A different choice of the interval for the initial placing does
not have a great impact on the resulting distribution. This is
due to the fact that the power constraint has to be fulfilled.
When starting with a smaller interval, the adjustment to the
power constraint expands the distribution by increasing the
parameter d0. When the initial distribution is generated using
a much larger interval, the very small probabilities of the
outmost rings are often set to zero by the GHC algorithm,
leading to a distribution with fewer rings in a smaller interval.
While it is possible to produce two or even three different
distributions for a given number of rings in some cases, some
quick examinations show that their performance does not differ
significantly.

Two examples of the resulting distributions are shown in
Fig. 1, together with the continuous Rayleigh distribution that
is to be approximated. The first example contains four rings,
resulting in 44 constellation points, the second example has
six rings with 92 constellation points altogether. Note that
the probabilities of the rings are scaled proportional to the
number of rings to make them comparable to the continuous
Rayleigh distribution. The power constraint is σ2

X = 1 in this
case. Although the probability of the first ring p1 is smaller
than those of the second ring p2 in both examples, this does
not hold for the individual constellation points, as the first
ring carries four points and the second one eight. In general,
the probability of an individual constellation point located on
the i-th ring is pi/ni, the probability of the whole ring divided
by the number of points on that ring.

The binary codes assigned to the constellation points consist
of two parts, a prefix that identifies the ring, and a second
part that identifies the individual point within that ring. The
prefixes for the rings are determined by the GHC algorithm
that creates the dyadic distribution of the rings. Due to the
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11|0111 11|0011

11|1011

11|001011|0110

11|101011|1110

Fig. 2. APSK constellation with three rings

nature of the desired distribution they commonly have different
lengths. The length of the second part depends on the number
of constellation points in the ring. Thus, it is constant for all
points within one ring, but usually differs between the rings.
As the number of points in each ring is a power of 2, a binary
code is able to induce a uniform distribution.

An example is shown in Fig. 2, in this case the constellation
has 28 points placed on three rings. The vertical lines in the
code words, which are only shown for the sake of clarity,
separate the ring prefix and the second part of the code. The
second ring has a probability of 2−1, so it is addressed by a
one-digit prefix, in this example ’0’. The first and the third
ring both have a probability of 2−2, and thus, they have two-
digit prefixes, in this case ’10’ for the first ring and ’11’ for
the third. The length of the second part is determined by the
number of constellation points within the ring. Thus, it has
two digits for the first ring containing four points, three digits
for the second ring containing eight points, and four digits
for the third ring containing 16 points. The total length of
the code is the same for the constellation points on the first
and the second ring in this example, so the probability of the
individual points is also the same, namely 2−4. In contrast, the
constellation points on the third ring have a probability of 2−6

each. Within each ring it is possible to use a Gray mapping,
that is, the codes of neighbouring constellation points differ
in exactly one digit, like shown in the example.

The maximum capacity of a modulation scheme is the
number of bits that can be transmitted by one symbol over
a perfect channel with no noise. This value is identical to the
entropy H(X) of the input if the latter is computed using
the binary logarithm. Although the perfect complex channel
itself has an unlimited capacity, the capacities of discrete
modulation schemes (with a finite number of constellation
points) are always finite. Fig. 3 shows the maximum capacity
for 13 different schemes constructed by our proposed method,
ranging from two rings (twelve constellation points) to 14
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Fig. 3. Maximum capacity of the different modulation schemes

rings (476 constellation points). Of course the QAM schemes
(or any other modulation schemes with uniform input distri-
bution) can transmit slightly more bits for a given number
of constellation points, as they achieve the theoretical limit
given by the binary logarithm of the number of points, but this
small advantage is not overly relevant. Although the number of
constellation points affects the complexity of a transmission
system, its performance on a given channel with a certain
signal-to-noise ratio (SNR) is far more important. The results
in Section IV show that our new schemes often outperform
the QAM schemes in this regard.

All of the novel modulation schemes are proper, that is,
they fulfil the property E(XX) = 0. The same holds for
the QAM schemes mentioned before. This is not relevant for
AWGN channels where the noise is assumed to be circular
symmetric, but would be important for other channels where
the noise does not have this property.

IV. RESULTS AND DISCUSSION

To compare the performance of the constructed modulation
schemes, the mutual information I(X; Ỹ ) between the channel
input X and the decoded channel output Ỹ is computed for
different values of the signal-to-noise ratio (SNR) σ2

X/σ
2
W .

This mutual information is upper bounded by two different
values. On the one hand, we have

I(X; Ỹ ) ≤ I(X;Y ) ≤ Ccont. = log

(
1 +

σ2
X

σ2
W

)
, (15)

the mutual information is bounded by the capacity of the
channel with continuous input and output. Note that the latter
is reached if X follows a zero-mean circular symmetric normal
distribution with variance E(XX∗) = σ2

X . On the other hand,
we know that

I(X; Ỹ ) ≤ H(X), (16)

the mutual information is bounded by the entropy of the
input. When computed using the binary logarithm, the latter
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Fig. 4. Mutual information of different modulation schemes

is exactly the average number of transmitted bits per symbol,
due to the fact that a symbol coding a bit sequence of length n
is chosen with probability 2−n.

Another important performance measure is the maximal
symbol error probability ε, see (10). It is especially relevant
in practical applications, where it is often desired to keep the
error probability under a certain threshold. To reflect this, the
points where ε reaches the values 0.1 and 0.01, respectively,
are marked in the results.

For most of the 13 schemes considered here, the maximum
capacity is not an integer, so it is difficult to compare their
performance to the QAM schemes. But then, there are three
schemes whose maximum capacity is an integer or at least
close to an integer. These are 124-APSK with a maximum
capacity of six bits per symbol, 188-APSK with seven bits
per symbol and 476-APSK with 8.031 bits per symbol. Fig. 4
compares these three schemes to 64-QAM, 128-QAM and
256-QAM, respectively, showing the mutual information as
a function of the SNR. The theoretical Shannon bound Ccont.
is also shown in the figure.

In general, the new schemes have a higher capacity than the
corresponding QAM schemes when the SNR is low, and about
the same when the SNR rises and the maximum capacity is
approached. For 124-APSK, the SNR required for an error
level of ε = 0.1 is clearly lower than for 64-QAM, the
same holds for ε = 0.01. The capacity achieved by the new
scheme at the corresponding point is also higher, especially
in the former case. Regarding 188-APSK and 128-QAM, the
required SNR values for the two relevant error levels are nearly
the same, although 188-APSK has a slightly higher capacity at
those points, especially in the case ε = 0.1. The comparison
between 476-APSK and 256-QAM shows that the new scheme
requires a lower SNR value for a given error level of ε = 0.1
and ε = 0.01, respectively. Additionally, the capacity achieved
by the new scheme at this point is clearly higher, especially in
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Fig. 5. Mutual information of different decoding rules
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Fig. 6. Mutual information of some modulation schemes

the first case. Altogether, the new schemes are able to reduce
the capacity gap to the Shannon bound substantially when used
in the proper SNR range.

The above results were achieved using the maximum like-
lihood (ML) decoding rule. While the maximum a posteriori
(MAP) decoding rule might be better in theory, comparisons
of the practical results show that the difference is negligible,
and there are even cases when the MAP decoding is slightly
worse. A comparison of both decoding rules is shown in Fig. 5,
considering the modulation schemes 124-APSK, 188-APSK
and 476-APSK. Due to the high computational complexity
and the resulting runtime of the simulation, results for the
MAP decoding were only calculated for the integer values of
the SNR. Although a closer examination of the results shows
small differences, the crosses of the MAP results appear to
be located exactly on the lines of the ML results within the
accuracy of the plot, so the difference is indeed negligible.

Some different new approaches to construct APSK mod-
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ulation schemes are given in [8] and [9]. In contrast to our
approach, in [8] the authors propose the usage of a uniform
input distribution, together with a number of constellation
points that is a power of two. Also, the number of rings
and the number of points in each ring (which is the same
for all rings) are powers of two. Therefore it is possible
to use Gray mapping not only inside each ring, but on the
whole modulation scheme, like it can be done for square
QAM schemes. The downside of this approach is the tight
spacing of the constellation points on the inner rings. To
overcome this, the authors in [9] propose to reduce the number
of constellation points on the inner rings by mapping more
than one input bit vector to one point. Although this reduces
the maximum capacity, it leads to a more uniform spacing
of the constellation points. The resulting input distribution on
the constellation points is not uniform anymore in this case,
although the distribution on the rings still is.

Fig. 6 compares two of these schemes to 64-QAM and
our proposal 124-APSK, and to the theoretical Shannon
bound Ccont.. The scheme designated as Gray-64-APSK here
can be found in [8], it has four rings, each with 16 constellation
points. This results in 64 constellation points with a uniform
distribution, thus the maximum capacity is six bits per symbol.
NE-64-APSK is described in [9]. It is based on Gray-64-
APSK, but the number of constellation points on the innermost
ring is reduced to eight, so in fact is has just 56 constellation
points. While the points on the other rings still have a probabil-
ity of 2−6, it is 2−5 for the points on the innermost ring. Thus,
the maximum capacity is reduced to 5.75. Although these
schemes are a bit better than 64-QAM for low SNR values
(with high symbol error probability), they behave worse when
the SNR is higher. If an error level of ε = 0.1 is required, NE-
64-APSK needs about the same SNR level as 64-QAM to fulfil
this, and the resulting capacity is also roughly comparable.
For ε = 0.01 the SNR level is still about the same among those
two schemes, but NE-64-APSK has a much lower capacity in
this case. Due to the tight spacing of some of the constellation
points, Gray-64-APSK requires a much higher SNR level to
achieve comparable error levels, and the capacity is lower than
those of 64-QAM in the relevant SNR range. Compared to
124-APSK, these two schemes perform even slightly worse
for very low SNR values. Please note that the authors in [8]
and [9] use the average symbol error probability instead of the
maximum as a performance measure, thus schemes with some
tightly spaced constellation points seem to perform better than
in our analysis.

V. CONCLUSION AND OUTLOOK

We have proposed a general method for the construction of
APSK modulation schemes with dyadic input distributions.
As such distributions can be generated by a prefix code,
these schemes can be used efficiently for the transmission of
discrete data via a complex channel. Compared to established
modulation schemes like QAM, which place equiprobable
constellation points in a square or a cross pattern, the schemes
generated by our method place the constellation points on

rings around the origin, which leads to a circular pattern.
Additionally, the probability of the constellation points is
variable, this allows for a better approximation of the normal
distribution which would be the optimal input distribution.
Nonetheless, our method ensures that the spacing of the
constellation points is roughly uniform. Thus, there are no
tightly spaced constellation points that lead to an unneccessary
high symbol error probability.

Some of the new schemes have a maximum capacity com-
parable to existing QAM schemes or other recently proposed
APSK modulation schemes. In these cases a comparison is
possible, and it reveals that our new schemes perform better
than the QAM schemes, and also better than the recent
proposals for APSK schemes. The SNR value required for a
given threshold for the symbol error probability is always a bit
lower, and the capacity for the SNR value is higher, too. Those
schemes that are not comparable to existing schemes can be
seen as complements. As such, they allow a finer adaptation to
the channel state, so for a given SNR value a higher capacity
can often be reached.

Maximum a posteriori (MAP) decoding theoretically seems
to make sense for modulation schemes with non-uniform input
distributions, but our results show that the advantages over
maximum likelihood (ML) decoding are marginal and do not
justify the increased computational complexity that is required.
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