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Abstract—We investigate the average error probability of
data communication over Nakagami fading channels. First, we
discuss some new identities and properties of a certain integral
representation of the average error probability. Second, we
propose novel lower and upper bounds. Both bounds are sharp,
and they have a simple closed-form representation. We also
demonstrate that the bounds are very precise for a wide range
of parameters. A relative error of less than 1.2% is achieved.
Finally, the mathematical structure of the bounds is investigated.
For both bounds, parameters can be adapted to achieve a simpler
form, however, at the price of a reduced precision. The channel
capacity for Nakagami fading is hard to determine in general. It
is expected that by using the accurate bounds developed in this
work precise approximations of the capacity can be achieved.

I. INTRODUCTION

Understanding the stochastic nature of fast-fading com-
munication channels is essential to develop high data rate
transceivers. In digital communication theory the bit-error
rate of a signal disturbed by additive white Gaussian noise
(AWGN) is well investigated. However more general and
practically relevant fading channels are much less understood
and investigated. The main reason is that analytical expressions
become nearly intractable and require the use of complicated
functions. Thus, numerical methods are typically applied in
simulations to optimize, analyze or verify a communication
system, or parts of it. These methods are indeed appropriate
for many applications, but inadequate to truly understand
and describe the behavior of transceivers and their perfor-
mance. A prominent example is the explicit evaluation of
the average error probability (AEP) in signal transmission
over Nakagami- or Rice-distributed fading channels. It is
mathematically challenging to derive a closed-form equation
of the AEP from its integral representation, if at all possible.
Closed-form and analytical solutions are only known for some
special cases. In this situation, mathematical approximations
by simpler functions are of great help and fully sufficient for
most practical purposes. The main topic of the present paper is
hence to provide such approximations in the form of analytical
bounds, and at the same time guarantee the minimum deviation
from the true values.

In [1], we have provided a bunch of mathematical tools for
dealing with the complicated AEP in Nakagami-distributed
fading channels. The main focus of the present work is to
continue the investigation of the AEP and provide novel
bounds for the so called Beta-Nakagami integral (BeNaI).

First, we represent some new identities, proposed recently
in [1], and based on them we devise a proper class of functions
for bounding the BeNaI. Second, we propose analytical bounds
on the BeNaI and discuss their mathematical properties. Our
aim is to suggest a lower and an upper bound which are mathe-
matically simple and accurate over a wide range of parameters.
We are analytically able to show that the maximum relative
error between the proposed bounds and the true BeNaI is less
than 1.2%. Finally, we compute selected results numerically
in order to visualize and demonstrate the achieved accuracy.

To the best of our knowledge, the investigation of the BeNaI
and the corresponding bounds in this paper are new. They have
been examined neither in the original work by Nakagami [2]
nor in other publications. The main reason is that approximat-
ing the integrand of the BeNaI by simpler functions is much
easier than the approximation of the integral itself. Thus, in
many publications we can find approximations for the Gauss
error function or for the Bessel function which are subse-
quently used to approximate the AEP of a Nakagami- or Rice-
distributed data transmission, respectively. For instance, in [3]–
[10] and [11] relatively good approximations of the integrands
are suggested. In general, there exists a trade-off between
improvement of integrand approximation and complication of
the subsequent integration. Some examples of sharp integrand
approximations, however not including the integration of the
conditional error probability, are given in [12]–[14] and [15].
We also want to mention some pioneering works, like [16]–
[21] and [22], which include the error probability and some
corresponding approximations in terms of special functions
and finite or infinite series. These approximations are rather
useful for numerical evaluations. The approximation of the
whole integral by lower and upper bounds has been an open
problem to date, and is the main objective of the present paper.

In the next section, we start with prerequisite mathematical
notations and definitions. Thereafter, the BeNaI is represented
in its integral forms. Subsequently, we use particular properties
of the BeNaI and, as a main result, we present sharp analytical
upper and lower bounds for the BeNaI. Afterwards, some im-
portant mathematical properties of the bounds are discussed. In
between, selected results are visualized by the corresponding
curves. For the sake of compactness, some proofs of the central
theorems are moved into [23].



II. MATHEMATICAL PREPARATION

Throughout this paper we use the same notation as given
in [1] and [23]. The sets of positive (non-negative) integers
and (non-negative) real numbers are denoted by N (N0) and
(R+) R, respectively. By |z| we denote the absolute value of
some real number z. A function ϑ(x) is said to be of order
O
(
ω(x)

)
as x 7→ x0 whenever for some δ > 0, ε > 0 and all

x with |x− x0| < ε the inequality |ϑ(x)| ≤ δ |ω(x)| holds.
We further introduce some important special functions and
summarize their properties, which may be found for example
in chapters 6, 7, 15 and 26 of [24].

Euler’s classical gamma function is defined as

Γ(x) :=

∞∫

0

tx−1 e−t dt , x > 0 . (1)

It is well-known that

Γ( 1
2 ) =

√
π , Γ(1) = Γ(2) = 1 and Γ( 3

2 ) =
√
π

2 . (2)

Moreover, for all positive real numbers x, the identity

Γ(x+ n) = Γ(x)

n−1∏

i=0

(x+ i) , n ∈ N , (3)

holds, which especially entails Γ(x+ 1) = xΓ(x). Further-
more, it holds that

lim
n 7→∞

nb−a
Γ(n+ a)

Γ(n+ b)
= 1 , a, b ∈ R+ . (4)

We will also use the digamma function

ψ(x) :=
d

dx
ln Γ(x) =

Γ′(x)

Γ(x)
, x > 0 , (5)

where Γ′(x) denotes the first derivative of Γ(x).
Closely related to the gamma function is the incomplete

beta function, which is defined as

B(a, b;x) :=

x∫

0

ta−1(1− t)b−1 dt , (6)

for all a, b > 0 and 0 ≤ x ≤ 1. By substituting t by t
1+t

in (6), we obtain the identity

B(a, b;x) =

x
1−x∫

0

ta−1

(1 + t)a+b
dt . (7)

The beta function is obtained as x→ 1 yielding

B(a, b) :=
Γ(a) Γ(b)

Γ(a+ b)
= B(b, a) =

∞∫

0

ta−1

(1 + t)a+b
dt . (8)

The Gaussian error function and a useful series expansion
are given for x ∈ R by

erfc(x) :=
2√
π

∞∫

x

e−t
2

dt = 1− 2√
π

∞∑

n=0

(−1)n x2n+1

(2n+ 1)n!
. (9)
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Fig. 1. The ratio τ(x) and its associated bounds from Theorem II.2
are visualized for the range of −1 ≤ x ≤ 9. For all x ≥ 1 the inequality√

(3x+ 5)/2 ≤ τ(x) holds while for all −1 ≤ x ≤ 1 the reverse inequality
holds. The curves are closely adjacent to one another such that the maximum
relative error is less than

√
π/3− 1 or equivalently 2.33%. The relative

error approaches its maximum as x approaches infinity. The curves intersect
one another at x = −1 and at x = 1.

Another special function of importance for this work is the
Gaussian hypergeometric function. For all a, b and c ∈ R+

and for all x ∈ R, it is defined as

2F1(a, b; c;x) :=
Γ(c)

Γ(a) Γ(b)

∞∑

n=0

Γ(a+ n) Γ(b+ n)xn

Γ(c+ n) Γ(n+ 1)
. (10)

If a, b > 0 and c > b, then for all x > 0 the integral represen-
tation

2F1(a, b; c;−x) =
Γ(c)

Γ(b) Γ(c− b)

1∫

0

tb−1(1− t)c−b−1

(1 + x t)a
dt

(11)
holds.

Definition II.1 For all real numbers x > −2, we define the
ratio

τ(x) :=

√
π Γ
(
x+3

2

)

Γ
(
x+2

2

) . (12)

Obviously, τ(x) is positive. Furthermore, the identities

τ(−1) = 1 , τ(0) =
π

2
and τ(1) = 2 (13)

easily follow from (2). From (3) and (8) we conclude that

τ(x) =
x+ 1

2

∞∫

0

dt

(1 + t)
x+2
2

√
t
. (14)

The ratio τ(x) in (12) and its properties have been investi-
gated in a series of papers. W. Gautschi [25] proposed a lower
and an upper bound for this ratio, which are together known
as Gautschi’s double inequality. This double inequality was



later refined and extended by many scientists, primarily by
D. Kershaw [26], M. Merkle [27] and F. Qi [28]. For the
purpose of the present paper, Gautschi’s double inequality
plays an important role. However, Gautschi’s bounds and
subsequent improvements are too weak, particularly for the
case −1 ≤ x < 1, in order to prove some of the main theorems
of the present work. Thus, a new tighter inequality is given in
the following theorem.

Theorem II.2 For all real numbers x ≥ 1, the inequality
√

3x+ 5

2
≤ τ(x) (15)

holds. If −1 ≤ x ≤ 1, then the reverse inequality holds.

Proof: See [23, pp. 9-14].
In Figure 1, both sides of inequality (15) are depicted. As can
be seen from the graph, both lower and upper bounds are very
close to τ(x) in their respective range and equality holds for
x = −1 and x = 1.

III. DESCRIPTION OF THE PROBLEM AND ASSOCIATED
IDENTITIES

The AEP for communication over Nakagami-distributed
fading channels, assuming a coherent transmission, is usually
given by its integral form [1, eq. 15]. Simple substitutions and
normalizations yield the following concise form.

Definition III.1 For all p ∈ R, −1 < p <∞1 and for all
x ∈ R+, we have given the name Beta-Nakagami Integral
(BeNaI) to

g(p, x) :=
(p+ 1)

√
π

Γ
(
p+2

2

)
∞∫

0

tp e−xt
2

erfc(t) dt . (16)

In [1, Theorem 6, eq. 27b], we have shown, among other
properties and identities, the convenient identity

g(p, x) =
p+ 1

2

1∫

0

t
p−1
2

(1 + xt)
p+2
2

dt , (17)

which enables us to evaluate the value of g(p, x), for certain
p and x, numerically more accurate than the evaluation of
g(p, x) by equation (16). There are three reasons for this fact.
First, the integration domain is finite and it only includes
a singularity at the origin for all −1 < p < 1. Second, the
integrand does not contain any complicated functions and is
merely an integration over a broken rational function. Third,
all operations and functions in the integrand are numerically
stable. Furthermore, we have shown that by using the new

1The domain of p may be extended to {p ∈ R | p > −1} ∪ {∞}, and
therewith, all results can be proven by concepts of uniform integrability. But
this extension is pointless for the purpose of the present work and hence is
not considered.

identity in (17), one can deduce some closed-form solutions
of (16) easily, e.g.,

g(1, x) =
2

1 + x+
√

1 + x
, (18a)

g(0, x) =
1√
x

arctan
(√
x
)

(18b)

and

lim
p 7→−1

g(p, x) = 1 . (18c)

Moreover, the derivation of some specific series expansions2

becomes more comfortable as shown in [1, eq. 40 and eq. 42],
e.g.,

g(p, x) = 1− (p+1)(p+2)x
2(p+3) + (p+1)(p+2)(p+4)x2

8(p+5) −O
(
x3
)

(19a)

and

g(p, x) = τ(p)

x
p+1
2

− (p+1)

x
p+2
2

+ (p+1)(p+2)

6x
p+4
2

−O
(
x−

p+6
2

)
. (19b)

However, the concise form in (17) has closed-form solutions
only for some particular cases, and is thus poorly applicable
for analytical treatments. Hence, we set out to find analytical
bounds for g(p, x), which are more applicable in theoretical
investigations. We start with the following experiments to find
a parametric class of functions for an accurate determination
of proper bounds.

Since
√

1 + xt is greater than or equal to one and
√
t is

less than or equal to one, we can divide the integrand in (17)
by these quantities in order to obtain a lower and an upper
bound, respectively. Hence, it holds the double inequality

p+1
2

1∫

0

t
p−1
2 dt

(1 + xt)
p+3
2

≤ g(p, x) ≤ p+1
2

1∫

0

t
p−2
2 dt

(1 + xt)
p+2
2

. (20)

By using the identity3

∫
tρ−1 dt

(1 + xt)ρ+1
=

tρ

ρ (1 + xt)ρ
, ρ > 0 , (21)

we can calculate both sides of the double inequality (20) in
closed-form and conclude

1

(1 + x)
p
2

· 1√
1 + x

≤ g(p, x) ≤ 1

(1 + x)
p
2

· p+ 1

p
. (22)

As can be seen, a proper approximation is described by a
product of two functions. The first function is the mutual factor
on both sides of the above double inequality which may be
considered as the main part of a proper approximation. The
second function is a function which should lie between 1√

1+x

and p+1
p on the one hand, and on the other hand, the entire

2It is sometimes necessary to deal with another representation of the
asymptotic expansion than that given in (19b). In such cases, we refer the
reader to the book [29].

3Identity (21) is devised in the present work. However, we think that this
identity is already well-known.



product of both functions should have the same properties of
the BeNaI as discussed in [1, Section IV]. As we will see
later, for the second function the choice of the form

e1

e2 +
√

1 + x e3
, e1, e2, e3 ∈ R+, (23)

is accurate enough for most applications.

IV. BOUNDS FOR THE BENAI

In this section, we propose two new bounds for the BeNaI
from Definition III.1. We will determine bounds in a paramet-
ric class of functions given by

1

(1 + x)
p
2

e1

e2 +
√

1 + x e3
(24)

with positive real coefficients e1, e2 and e3. This specific
class of functions has advantageous properties to bound the
BeNaI as we will describe later. Since the BeNaI depends
on x and p, the coefficients e1, e2 and e3 must also depend
on p to achieve accurate bounds. In the following, we first
present both bounds with optimal coefficients. The particular
choice of the coefficients will be explained later. Second, we
introduce an important property of the bounds with respect
to their coefficients, which enables the users to choose other
coefficients in order to adapt the bounds for their needs.

Theorem IV.1 Let f(p, x) be defined by

f(p, x) :=
1

(1 + x)
p
2

af (p) + 1

af (p) +
√

1 + x bf (p)
(25)

with the coefficients

af (p) :=
2

p+ 3
τ2(p)− 1 (26a)

and

bf (p) :=
4 τ2(p)

(p+ 3)2
. (26b)

Then for all p ∈ R, 1 ≤ p <∞ and for all x ∈ R+, the
inequality

f(p, x) ≤ g(p, x) (27)

holds. If p ∈ R and −1 < p ≤ 1, then the reverse inequality
holds.

Proof: See [23, pp. 113-114].

Remark IV.2 The coefficients in (24) with e1 = af (p) + 1,
e2 = af (p) and e3 = bf (p) are the best possible ones for the
inequality (27) to hold. In other words, no coefficient can be
replaced by a better value while keeping the other ones fixed in
order to further improve the bound. In this sense, the inequality
in Theorem IV.1 is sharp.

Please note that by incorporating (26a) into (26b) we obtain
the relationship

bf (p) = 2
af (p) + 1

p+ 3
. (28)

We now collect some important properties of the coefficients
af (p) and bf (p).

Lemma IV.3 For all −1 < p <∞,
a) the coefficient af (p) is strictly increasing in p,
b) it holds that 0 < af (p) < π − 1, and
c) both coefficients af (p) and bf (p) are non-negative.

Proof: The coefficient af (p) is strictly increasing, if its
first derivative with respect to p is positive. The first derivative
is given by

daf (p)

dp
= 2 τ(p)

2(p+ 3) τ ′(p)− τ(p)

(p+ 3)2
(29)

where τ ′(p) denotes the first derivative of τ(p) with respect
to p. The positivity is given, if the inequality

τ ′(p)

τ(p)
>

1

2(p+ 3)
⇔ ψ(p+3

2 )− ψ(p+2
2 ) >

1

p+ 3
(30)

holds. After replacing p with 2(x− 1), we can use [28,
Theorem 3] to deduce

ψ(x+ 1
2 )− ψ(x) >

1

2x+ 1
(31)

which proves the statement.
Considering the monotonicity of af (p), as shown above,

we obtain the lower bound for p 7→ −1 and the upper bound
for p 7→ ∞. For p 7→ −1, we obtain from (13) the equality
τ(−1) = 1 and hence

af (−1) =
2

−1 + 3
τ2(−1)− 1 = 0 . (32)

By using the limit in (4) and replacing p with 2(x− 1), we
obtain

lim
p 7→∞

af (p) = −1 + π lim
x 7→∞

(
Γ(x+ 1

2 )
√
xΓ(x)

)2

= −1 + π . (33)

The coefficient bf (p) is trivially non-negative by definition.
Due to 0 < af (p) < π − 1, the coefficient af (p) is also non-
negative.

Corollary IV.4 By (28) the representation

f(p, x) =
1

(1 + x)
p
2

af (p) + 1

af (p) +
√

1 + 2x
af (p)+1
p+3

(34)

is obtained, which is a strictly increasing function in af (p).

Proof: We show that the first partial derivative of f(p, x)
with respect to af (p) is strictly positive for all −1 < p <∞.
The derivative is given by

(1 + x)
p
2
∂f(p, x)

∂af (p)

=
1 + x

af (p)+1
p+3 −

√
1 + 2x

af (p)+1
p+3[

af (p) +
√

1 + 2x
af (p)+1
p+3

]2√
1 + 2x

af (p)+1
p+3

. (35)



Elementary algebra shows that the numerator of (35) is strictly
positive.

Theorem IV.5 Let h(p, x) be defined by

h(p, x) :=
1

(1 + x)
p
2

ah(p) + 1

ah(p) +
√

1 + x bh(p)
(36)

with the coefficients

ah(p) :=
(p+ 1)

τ2(p)− (p+ 1)
(37a)

and

bh(p) :=
[ τ(p)

τ2(p)− (p+ 1)

]2
. (37b)

Then for all p ∈ R, 1 ≤ p <∞ and for all x ∈ R+, the
inequality

g(p, x) ≤ h(p, x) (38)

holds. If p ∈ R and −1 < p ≤ 1, then the reverse inequality
holds.

Proof: See [23, pp. 114-116].

Remark IV.6 The coefficients in (24) with e1 = ah(p) + 1,
e2 = ah(p) and e3 = bh(p) are the best possible ones for
inequality (38) to hold. In other words, no coefficient can
be replaced by a better value while keeping the other ones
fixed in order to further improve the bound. In this sense, the
inequality in Theorem IV.5 is sharp.

Please note that the bounds in Theorem IV.1 and IV.5 are
converse to each other. For all 1 ≤ p <∞ the double inequal-
ity f(p, x) ≤ g(p, x) ≤ h(p, x) holds while for all−1 < p ≤ 1
the converse double inequality h(p, x) ≤ g(p, x) ≤ f(p, x)
holds.

Note that by incorporating (37a) into (37b) we obtain the
relationship

bh(p) =
ah(p) + 1

p+ 1
ah(p) . (39)

Analogously to the properties of af (p) and bf (p) the
following holds.

Lemma IV.7 For all −1 < p <∞,
a) the coefficient ah(p) is strictly increasing in p,
b) it holds that 0 < ah(p) < 2

π−2 , and
c) both coefficients ah(p) and bh(p) are non-negative.

Proof: The coefficient ah(p) is strictly increasing, if its
first derivative with respect to p is positive. The first derivative
is given by

dah(p)

dp
= τ(p)

τ(p)− 2(p+ 1) τ ′(p)

[τ2(p)− (p+ 1)]2
. (40)

The positivity is given, if the inequality

τ ′(p)

τ(p)
<

1

2(p+ 1)
⇔ ψ(p+3

2 )− ψ(p+2
2 ) <

1

p+ 1
(41)
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Fig. 2. The coefficients af (p), bf (p), ah(p) and bh(p) are visualized
for the range of −1 < p ≤ 9. af (p) and ah(p) are strictly increasing and
they tend toward π − 1 and 2/(π − 2) as p approaches infinity, respectively.
The coefficients bf (p) and bh(p) approach zero as p approaches infinity.
Moreover, all coefficients are non-negative for all −1 < p <∞.

holds. After replacing p with 2(x− 1) we can again use [28,
Theorem 3] to deduce

ψ(x+ 1
2 )− ψ(x) <

1

2x− 1
(42)

which proves the statement.
Considering the monotonicity of ah(p), as shown above,

we obtain the lower bound for p 7→ −1 and the upper bound
for p 7→ ∞. For p 7→ −1, we obtain from (13) the equality
τ(−1) = 1 and hence

ah(−1) =
(−1 + 1)

τ2(−1)− (−1 + 1)
= 0 . (43)

By using the limit in (4) and replacing p with 2(x− 1), we
obtain

lim
p 7→∞

ah(p) = lim
p 7→∞

1
τ2(p)
p+1 − 1

= lim
x7→∞

1

π
2

(Γ(x+ 1
2 )√

xΓ(x)

)2 − 1
=

1
π
2 − 1

.
(44)

The coefficient bh(p) is trivially non-negative by definition.
Due to 0 < ah(p) < 2

π−2 , the coefficient ah(p) is also non-
negative.

In Figure 2, the coefficients af (p), bf (p), ah(p) and bh(p)
are depicted. We can observe additional properties of these
coefficients which are not important for our purpose and are
thus not discussed further.

Corollary IV.8 By (39) the representation

h(p, x) =
1

(1 + x)
p
2

ah(p) + 1

ah(p) +
√

1 + x ah(p)+1
p+1 ah(p)

(45)
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Fig. 3. The double inequality f(p, x) ≤ g(p, x) ≤ h(p, x) is visualized for
the range of 0 ≤ x ≤ 5 and in the case of p = 2. The curves are closely
adjacent to one another such that without magnification the differences are
not really visible. The curves are equal at x = 0 and they approach zero as
x approaches infinity.

is obtained, which is a strictly decreasing function in ah(p).

Proof: We show that the first partial derivative of h(p, x)
with respect to ah(p) is strictly negative for all −1 < p <∞.
The derivative is given by

2 (1 + x)
p
2

√
1 + x

ah(p) + 1

p+ 1
ah(p) · ∂h(p, x)

∂ah(p)

=
2− x ah(p)+1

p+1 − 2
√

1 + x ah(p)+1
p+1 ah(p)

[
ah(p) +

√
1 + x ah(p)+1

p+1 ah(p)
]2 . (46)

By simple rearrangement of the numerator, we derive the
assertion from the chain of inequalities

x
ah(p) + 1

p+ 1
+ 2

√
1 + x

ah(p) + 1

p+ 1
ah(p)

≥ 0 + 2

√
1 + x

ah(p) + 1

p+ 1
ah(p) ≥ 2

√
1 + 0 . (47)

Remark IV.9 Because of Corollary IV.4, f(p, x) is monoton-
ically increasing in af (p). The coefficient af (p), in turn, is
increasing in τ(p) due to the relationship (26a). Choosing an
upper bound of τ(p), which is desirably easier to handle than
τ(p) itself, also yields an upper bound for f(p, x). By this, we
also obtain a weaker upper bound of g(p, x) for −1 < p ≤ 1
of potentially simpler form. Analogously, selecting a lower
bound of τ(p) yields a weaker lower bound of g(p, x) for
1 ≤ p <∞.

Analogously, because of Corollary IV.8 and relation-
ship (37a) any surrogate function, which is greater or less

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
 

 

−0.5

0

0.5

1

2

5

h(p, x)
g(p, x)
f(p, x)

Fig. 4. For the case of p ∈ {−1/2, 0, 1/2, 1, 2, 5, 10, 50}, the behavior of
f(p, x), g(p, x) and h(p, x) is visualized for the range of 0 ≤ x ≤ 5. Note,
that for all −1 < p ≤ 1 the double inequality h(p, x) ≤ g(p, x) ≤ f(p, x)
holds, while for all 1 ≤ p <∞ the reverse double inequality holds. All curves
are non-negative, continuous, strictly decreasing and logarithmically convex
in x. They are equal at x = 0 and they approach zero as x approaches infinity.
Furthermore, the curves are decreasing in p, as well.

than τ(p), will provide a weaker lower or a weaker upper
bound of g(p, x) in the corresponding domain −1 < p ≤ 1 or
1 ≤ p <∞, respectively. This is particularly attractive if the
surrogate functions of τ(p) are of more tractable form. The
bounds on τ(p) from Theorem II.2 may serve as an example
for the above approach. Other appropriate bounds on τ(p)
may be found in [26], [27] and [28].

In Figure 3, the numerical evaluation of the BeNaI lying
between the bounds f(p, x) and h(p, x) is depicted for p = 2.
As we can see, the curves are very similar and closely adjacent
to one another. In Figure 4, the curves for different values of
p are depicted.

In order to illustrate the quality of both bounds, we define
their maximum relative errors by

rf (p) = maximize
x∈R+

∣∣∣∣
f(p, x)− g(p, x)

g(p, x)

∣∣∣∣ (48a)

and

rh(p) = maximize
x∈R+

∣∣∣∣
h(p, x)− g(p, x)

g(p, x)

∣∣∣∣ (48b)

and show the corresponding numerical results in Figure 5. For
analytical results and a treatment of different types of errors
in various ways, we refer our readers to [23, pp. 117-124].

For the sake of brevity, we will hereinafter write af , bf ,
ah and bh instead of af (p), bf (p), ah(p) and bh(p), unless
their dependency to p needs to be emphasized. We will
mathematically discuss some general properties of the curves
in the next section having in mind that this is important for
future applications.
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V. FUNCTIONAL PROPERTIES OF THE BOUNDS

In this section, we investigate some properties of the bounds,
that are given in Theorem IV.1 and IV.5, in order to compare
them with the properties of the BeNaI discussed in [1, Section
IV]. In particular, the positivity, continuity, monotonicity, con-
vexity and series expansions of both bounds are investigated.
Furthermore, we show in which cases both bounds are equal
to the BeNaI. Two of the properties are given first. As an
auxiliary function we use

g̃(p, x) :=
1

(1 + x)
p
2

a+ 1

a+
√

1 + x b
(49)

with non-negative constants a and b, see Theorems IV.1
and IV.5 and also Lemmata IV.3 and IV.7.

Lemma V.1 For all −1 < p <∞ and for all x ≥ 0, both
functions f(p, x) and h(p, x) are

a) non-negative,
b) continuous in both arguments, and
c) strictly decreasing with respect to x.

Proof: The first two properties are obvious, because
af (p), bf (p), ah(p) and bh(p) are non-negative, due to
Lemma IV.3 and IV.7, and because of continuity of the
constituent functions. To prove monotonicity, the function
g̃(p, x) is differentiated, with respect to x, to obtain

∂g̃(p, x)

∂x
= −1

2
g̃(p, x)

( b

a+
√

1 + x b

1√
1 + x b

+
p

1 + x

)
.

(50)
For all 0 ≤ p <∞, the derivative is always negative because
g̃(p, x) is positive as shown above, and the coefficients a and b
are non-negative due to Lemma IV.3 and IV.7. Hence, f(p, x)
and h(p, x) are strictly decreasing. Monotonicity seems to

be much harder to prove for the case −1 < p < 0. However,
we conjecture that f(p, x) and h(p, x) are strictly decreasing
functions of x also for −1 < p < 0.

Lemma V.2 For all −1 < p <∞, both functions f(p, x) and
h(p, x) are logarithmically convex for all arguments x ≥ 0.

Proof: In order to prove the above statement, we have to
show that the inequality

g̃
(
p, λx1 + (1− λ)x2

)
≤ g̃λ(p, x1) g̃1−λ(p, x2) (51)

holds for all 0 ≤ p <∞, x1 ≥ 0, x2 ≥ 0 and 1 ≥ λ ≥ 0. We
use the weighted means inequality [30, p. 13, eq. 2.2.2 and
p. 26, eq. 2.9.1] thrice which leads to the inequality chain

[
(1 + x1)λ(1 + x2)1−λ] p

2

·
[(
a+

√
1 + bx1

)λ(
a+

√
1 + bx2

)1−λ]

≤
[
λ(1 + x1) + (1− λ)(1 + x2)

] p
2

·
[
λ
(
a+

√
1 + bx1

)
+ (1− λ)

(
a+

√
1 + bx2

)]

=
[
1+λx1+(1−λ)x2

] p
2

[
a+λ

√
1 + bx1+(1−λ)

√
1 + bx2

]

≤
[
1+λx1 +(1−λ)x2

] p
2

[
a+
√

1 + bλx1 + b(1− λ)x2

]
.

(52)

By simple rearrangement of the last inequality and multiplying
both sides by a+ 1, we conclude

1

[1 + λx1 + (1− λ)x2]
p
2

a+ 1

a+
√

1 + b[λx1 + (1− λ)x2]

≤ 1
[
(1 + x1)λ(1 + x2)1−λ

] p
2

·
( a+ 1

a+
√

1 + bx1

)λ( a+ 1

a+
√

1 + bx2

)1−λ
, (53)

which is equivalent to inequality (51). Hence, f(p, x) and
h(p, x) are logarithmically convex as well. Convexity seems to
be much harder to prove for the case −1 < p < 0. However,
we also conjecture that f(p, x) and h(p, x) are logarithmically
convex in x also for −1 < p < 0.

Lemma V.3 For all a ≥ 0, b ≥ 0 and −1 < p <∞, the ex-
pansion

g̃(p, x) = 1− b+ (a+ 1)p

2(a+ 1)
x

+
(a+ 3)b2 + 2(a+ 1)pb+ (a+ 1)2(p+ 2)p

8(a+ 1)2
x2−O

(
x3
)

(54)

holds at x = 0.

Proof: The statement is obtained by using the general
definition of the Taylor expansion and straightforward calcu-
lation of the first three derivatives of the surrogate function.



Corollary V.4 The Taylor expansion of f(p, x) at x = 0 is
given by

f(p, x) = 1− (p+ 1)(p+ 2)

2(p+ 3)
x

+
4(af + 3) + 4p(p+ 3) + p(p+ 2)(p+ 3)2

8(p+ 3)2
x2−O

(
x3
)
.

(55)

Proof: The assertion follows by incorporating (28)
into (54).

Corollary V.5 The Taylor expansion of h(p, x) at x = 0 is
given by

h(p, x) = 1− ah + p(p+ 1)

2(p+ 1)
x

+
(ah + 3)a2

h + 2p(p+ 1)ah + p(p+ 2)(p+ 1)2

8(p+ 1)2
x2

−O
(
x3
)
. (56)

Proof: The assertion follows by incorporating (39)
into (54).

Remark V.6 The first two elements in the Taylor expansions
of f(p, x) and g(p, x) are identical, while in the Taylor
expansions of h(p, x) and g(p, x) only the both first elements
are identical. Thus, f(p, x) achieves a better approximation
of g(p, x) than h(p, x) for sufficiently small x.

Lemma V.7 For all a ≥ 0, b ≥ 0 and −1 < p <∞, the ex-
pansion

g̃(p, x) =
(a+ 1)

b
1
2x

p+1
2

− (a+ 1)a

bx
p+2
2

+
(a+ 1)(2a2 − 1− pb)

2b
3
2x

p+3
2

−O
(
x−

p+4
2

)
(57)

holds as x 7→ ∞.

Proof: We use the general definition of asymptotic series
expansion for any bounded function ω(x) which approaches a
constant finite value as x approaches infinity. This definition
is implicitly given by

lim
x 7→∞

x
n
2

[
ω(x)−

n∑

k=0

αk x
− k

2

]
= 0 (58)

for all n ∈ N0, see [29, p. 11, Definition 1.3.3]. Now, consider
the function

ω(x) := x
p+1
2 g̃(p, x) . (59)

Then we first consider the case of n = 0 and obtain the
first coefficient α0 = (a+1)√

b
by determining the limit. Second,

we increment n by one, determine the limit in (58) by
applying l’Hospital’s rule, and obtain the second coefficient
α1 = − (a+1)a

b . The same principe is applied to obtain the
coefficient α2 and the order of the series expansion. Note that

the last three steps are straightforward, however, require inten-
sive algebra. Finally, the sequence

∑3
k=0 αk x

− k
2 is divided by

x
p+1
2 which completes the proof.
Substituting a and b in (57) by the corresponding coeffi-

cients af (p), bf (p), ah(p) and bh(p) yields the following two
propositions.

Corollary V.8 The asymptotic series expansion of f(p, x) for
x 7→ ∞ is given by

f(p, x) =
τ(p)

x
p+1
2

− 2 τ2(p)− (p+ 3)

2x
p+2
2

+
8 τ4(p)− 12(p+ 2) τ2(p) + (p+ 3)2

8 τ(p)x
p+3
2

−O
(
x−

p+4
2

)
.

(60)

Corollary V.9 The asymptotic series expansion of h(p, x) for
x 7→ ∞ is given by

h(p, x) =
τ(p)

x
p+1
2

− (p+ 1)

x
p+2
2

+
− τ4(p) + (p+ 2) τ2(p) + (p+ 1)2

2 τ(p)x
p+3
2

−O
(
x−

p+4
2

)
. (61)

Remark V.10 Only the both first elements in the asymptotic
series expansions of f(p, x) and g(p, x) are identical, while
in the asymptotic series expansions of h(p, x) and g(p, x) the
first two elements are identical. Thus, h(p, x) achieves a better
approximation of g(p, x) than f(p, x) for sufficiently large x.

As mentioned at the beginning of Section IV, the coeffi-
cients e1, e2 and e3 in (24) are chosen such that Remark V.6
and V.10 are fulfilled. It is near at hand to aim at choosing
the coefficients in an optimal way, namely to minimize the
difference between the bounds and the BeNaI. However,
because of the analytical complexity this seems to be out of
reach.

The above statements show the general and asymptotic
behavior of the bounds, while the following ones describe the
relationship to the BeNaI. In particular, it is shown in which
cases the bounds and the BeNaI are equal.

Corollary V.11 If x = 0, it holds for all −1 < p <∞ that

f(p, 0) = h(p, 0) = g(p, 0) = 1 . (62)

Proof: The equality g(p, 0) = 1 is given by (19a). By
inserting x = 0 into (25) and (36), we obtain the equalities
f(p, 0) = 1 and h(p, 0) = 1, respectively.

Corollary V.12 For all −1 < p <∞, the functions f(p, x),
h(p, x) and g(p, x) approach the asymptote τ(p)x−

p+1
2 as x

approaches infinity. Thus, it follows that

lim
x 7→∞

f(p, x) = lim
x7→∞

h(p, x) = lim
x 7→∞

g(p, x) = 0 . (63)

Proof: The asymptote τ(p)x−
p+1
2 follows from the

asymptotic expansions, which are stated in equation (19b),
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Fig. 6. The inverse tangent function and its bounds from Corollary V.14 are
visualized for the range of 0 ≤ x ≤ 10. The curves are closely adjacent to one
another such that without magnification the differences are not really visible.
The curves are equal at zero and approach the same limit as |x| approaches
infinity. Their maximum relative errors are approximately less than 0.23%
and 0.27% which shows how sharp both bounds are.

Corollary V.8 and Corollary V.9. From this asymptote we
derive the limit which tends toward zero.

Corollary V.13 In case of p 7→ −1 and for all x ≥ 0, we
observe the equality

f(−1, x) = h(−1, x) = lim
p 7→−1

g(p, x) = 1 . (64)

Proof: By using the identity τ(−1) = 1 from (13), we
obtain the equalities af (−1) = 0 and ah(−1) = 0 from (26a)
and (37a), respectively. By inserting af (−1) and ah(−1)
into (34) and (45), respectively, we derive equation (64) by
considering (18c).

Corollary V.14 If p = 0 and x ≥ 0, the double inequality

π2x

4 +
√

(π2 − 4)2 + 4π2x2
≤ arctan(x)

≤ π2x

π2 − 6 + 2
√

9 + π2x2
(65)

holds. For all x < 0, the reverse double inequality holds.

Proof: The double inequality (65) follows from equa-
tion (18b), inequalities (27) and (38), and by replacing x with
x2.

The double inequality in Corollary V.14 is tight as can
be seen from Figure 6. The maximum relative errors of the
bounds, related to the inverse tangent function, are approxi-
mately less than 0.23% and 0.27%. Inequality (65) is obtained
as a side result of the general approach in this work. A more
detailed discussion is included in [31].

As shown in the representation [1, eq. 29b], the frac-
tions af (p)+1

af (p)+
√

1+x bf (p)
and ah(p)+1

ah(p)+
√

1+x bh(p)
may also be

seen as approximations of the hypergeometric function
2F1

(
1
2 , 1; p+3

2 ;−x
)
. Thus, they can be used as bounds for

other functions that can be described in terms of the hyperge-
ometric function and its transformations.

Corollary V.15 If p = 1, it holds for all x ≥ 0 that

f(1, x) = h(1, x) = g(1, x) =
2

1 + x+
√

1 + x
. (66)

Proof: By using the identity τ(1) = 2 from (13), we
obtain the equalities af (1) = 1 and ah(1) = 1 from (26a)
and (37a), respectively. By inserting af (1) and ah(1) into (34)
and (45), respectively, we derive equation (66) by consider-
ing (18a).

In the current section, we have shown some mathematical
properties of the bounds which are identical to those of the
BeNaI. Unfortunately, we could not prove the monotonicity
and the convexity of the bounds for the case −1 < p < 0 and
thus we leave the proof as an open problem.

VI. DISCUSSION OF RESULTS AND CONCLUSION

As shown in (17) from our previous work [1, Theorem 6],
we have found new representations for the Beta-Nakagami
integral (BeNaI) with considerable consequences. On the one
hand, equation (17) does not include any special functions
and is thus simpler to handle than (16). On the other hand,
by the new representation (17) we have been able to deduce a
proper class of functions for determining accurate bounds in
closed-form for the BeNaI.

As stated in Theorem IV.1 and IV.5, we have presented
two novel bounds on the BeNaI for the whole range of
parameters −1 < p <∞ and x ≥ 0. Both lower and upper
bound are dependent on their coefficients and it is possible
to modify the coefficients in order to adapt the bounds for
certain applications. This shows that the proposed bounds are
scalable and are thus universally useful. In addition, we have
illustrated that both bounds are sharp and accurate over a wide
range of parameters. Their maximum relative errors over the
whole range of parameters are approximately less than 1.2%.

In addition, we have shown in [1, Section IV] and in
Section V that the BeNaI and both bounds have some famous
mathematical properties in common. In particular, they are
non-negative, continuous, strictly decreasing and logarithmi-
cally convex with respect to x. All series expansions of
the BeNaI and both bounds are also derived, especially for
the limits x 7→ 0 and x 7→ ∞ in order to understand their
asymptotic behavior. By studying these properties, we have
established the existence of certain cases where both bounds
and the BeNaI are equal. This reinforces the decision about the
chosen class of functions from (24) for generating the bounds
in Theorem IV.1 and IV.5.

We believe that the same proposed methods, for investiga-
tion of the average error probability (AEP) in communication
over Nakagami-distributed fading channels, are also applicable
for the investigation of the AEP over Rice-distributed fading
channels and devote this investigation for future works.



VII. OPEN PROBLEMS

We have not found any short proof in order to show the
monotonicity and the convexity of the bounds f(p, x) and
h(p, x) for the range −1 < p < 0. Properties of completely
monotonic functions, see [32], could be of help to accomplish
this task, which we leave for future research. For the time
being, both properties are claimed as conjectures.

Conjecture VII.1 For all −1 < p < 0 and for all x ≥ 0, both
f(p, x) and h(p, x) are strictly decreasing functions of x.

Conjecture VII.2 For all −1 < p < 0 and for all x ≥ 0, both
f(p, x) and h(p, x) are convex functions of x.
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