
Compressed Time Difference of Arrival Based
Emitter Localization

Johannes Schmitz, Rudolf Mathar
Institute for Theorectical Information Technology

RWTH Aachen University
D-52074 Aachen, Germany

Email: {schmitz, mathar}@ti.rwth-aachen.de

Dominik Dorsch
Lehrstuhl C für Mathematik (Analysis)

RWTH Aachen University
D-52062 Aachen, Germany

Email: dorsch@mathc.rwth-aachen.de

Abstract—Utilizing the time differences of arrival of a signal,
impinging on a distributed sensor network, is a well known
approach for the location estimation of a radio wave emitter. The
high sampling rate necessary for a precise positioning implies
a huge amount of data exchange between the sensor nodes.
Contrary, the absence of high data rate enabled backbone links,
connecting the nodes, restricts the system performance or may
even render it dysfunctional in some cases. In order to tackle
the problem we propose a novel method for compressed time
difference of arrival based localization. Due to the joint spatial
sparsity of the underlying problem the amount of exchanged
samples can be reduced by applying the compressed sensing
methodology. Furthermore, our algorithm provides a direct way
of estimating the location, avoiding the necessity of solving a
system of nonlinear hyperbolic equations. The performance of
the proposed method and the impact on the estimation accuracy
are evaluated based on simulations.

Keywords—TDOA, Positioning, Compressed Sensing, Spatial
Sparsity, Joint Sparsity, Block Sparsity

I. INTRODUCTION

Passive localization of a signal source can be achieved by
means of different methods and algorithms. Such methods
usually rely on time, frequency or signal strength related
parameters or a combination thereof. By jointly processing a
multitude of received signals in a distributed system, spatial
information can be extracted from the signal parameters.

For the case of missing synchronization between transmit-
ters and receivers, methods using the angle or direction of
arrival can be used. Well known algorithms from this class
include [1] and [2] among others. Another possibility is to
apply difference based method such as time-, frequency- [3],
or power-(difference)-of-arrival [4].

More recently another step of innovation also for localiza-
tion methods was enabled by the introduction of compressed
sensing (CS). The concept of CS [5], [6] has introduced a new
paradigm for the sampling of signals that are sparse in a certain
domain. It has been shown that under certain conditions con-
cerning the involved matrices, the so called restricted isometry
property [7], it is possible to design a system that subsamples
the signal with respect to the Nyquist-rate while still being able

This work was partially supported by the Deutsche Forschungsgemeinschaft
(DFG) project CLASS (grant MA 1184/23-1).

DD acknowledges funding from the European Research Council through
the Starting Grant StG 258926.

to fully reconstruct it with a very high probability. CS has led
to new approaches of localization where it is assumed that
the location of the object to be observed and the location of
the observers are sparsely distributed in the spatial domain as
described in [8]–[10]. By finding an appropriate formulation
that physically relies on the received signal strength of the
signal, the localization problem is then solved using algorithms
that are based on `1-norm minimization.

In contrast, the authors of [11], [12] make use of the
time difference of arrival (TDOA) of the signals assuming
sparsity, while in [13] additionally the doppler shift is used
to obtain a direct location estimate. However, these papers do
not investigate the impact of the number of recorded samples
on the estimation performance. This is important due to the
fact that systems with TDOA based localization using radio
waves are usually distributed, with widely separated receiver
nodes. In [14] it is described how a larger distance between
observing nodes simplifies the TDOA estimation and decreases
the localization error. However, in practice large distances
impose some limitations on the data rate between the nodes.
For example, it might be necessary to use locally available
landline, cellular network or other types of small data rate
wireless links to connect the sensor network. On the other
hand, TDOA estimation methods require wide bandwidths in
order to increase accuracy. This requirement in conjunction
with low data rate links may severely restrict the performance
of the system or may even render it useless.

To overcome this problem, we proposes a CS based method
for localization based on TDOA that particularly aims for a
reduction of the number of samples that need to be transmitted
between the distributed nodes. More specifically, the reduction
can be achieved by the choice of the CS measurement matrix
at the cost of estimation performance. As the approach deter-
mines the transmitter location directly based on the received
signals, it avoids solving nonlinear hyperbolic equations that
occur in the problem, as described in [15]–[17]. In [18] a
group of receive antenna elements performs direction finding
by applying CS. This work describes how the signal at a
single antenna element is sampled at Nyquist-rate, yielding a
reference signal, while the remaining elements are subsampled
following a CS based approach. A distributed (multi-static)
active radar system described in [19] performs non-coherent
combining of the received signals in order to obtain joint
sparsity. Following these ideas, we propose to use one receiver
in the distributed system as a reference and derive a novel



approach for the application of CS to TDOA based location
estimation.

The paper is structured as follows. Section II introduces
a system model and basic algorithms for TDOA estimation.
Sections III explains the application of CS to the problem. In
Section IV we provide numerical simulation results demon-
strating the impact of the CS method on the estimation
performance and conclude the paper in Section V.

II. SYSTEM MODEL

A typical TDOA based localization system consists of
R ≥ 3 observing receivers for the estimation of Q ≥ 1
transmitter locations in a two-dimensional space; see Fig. 1
for the case where R = 4, Q = 2. Each pair of nodes needs
to be synchronized by a common clock source and be capable
of exchanging measurement data. By cooperatively processing
the received signal, a hyperbola curve corresponding to the
potential locations of an emitter can be determined for each
receiver node pair based on the estimated TDOAs [20]. The
intersection point of the curves yields the emitter location.

The TDOA for transmitter location xj and receiver loca-
tions zk and zl can be geometrically determined as

∆(xj , zk, zl) =
1

c
‖zk − xj‖2 −

1

c
‖zl − xj‖2, (1)

where c denotes the speed of light. To estimate the TDOA
we introduce the following model. We denote the emitted
signal with sq(t) and consider the signals yr(t) received at
different nodes. The received signal at the r-th receiver for Q
transmitters with channel coefficients hq,r adds up to

yr(t) =

Q∑
q=1

hq,rsq(t− τq,r) + wr(t),

where wr(t) is assumed to be a realization of a white Gaussian
noise process and τq,r stands for the delay which is related to
the free-space propagation distance between transmitter q and
receiver r. Further, we assume the transmitted signals to be
mutually uncorrelated.

An overview of important symbols used in the description
of the system model can be found in Table I.

TABLE I. LIST OF USED SYMBOLS IN SYSTEM DESCRIPTION

Notation Description

xj transmitter location
zk, zl receiver locations
Q number of transmitters
R number of receivers

sq(t) transmitted signal of transmitter q
yr(t) received signal at receiver r
τq,r time delay between transmitter q and receiver r
∆ time difference of arrival
hq,r channel coefficients
wr(t) receiver noise

yr sampled signal vector
ȳref normalized sampled reference signal vector
N number of uncompressed samples
K number of location bins on the grid

Fig. 1. TDOA based localization system with reference receiver marked in
red.

III. LOCATION ESTIMATION

For the sake of simplicity we omit the derivation of an
equivalent baseband model and assume the vector yr(γ) to
contain an ideally low pass filtered, Nyquist sampled and
delayed version of the received signal:

yr(γ) = (yr(t0 − γ), . . . , yr(tN−1 − γ))T

Inspired by [18], we select one receiver, e.g., r = 1 as a
reference and denote it’s output as yref (γ). We set

ȳref (γ) = yref (γ)/‖yref (γ)‖2
to denote the normalized version of yref (γ). Since at the
remaining receivers r = 2, . . . , R only a fraction of the
samples is processed (see Section III-B), we term them CS
receivers.

We define an estimator ỹr for the received signal yr at a
CS receiver:

ỹr = Ψrbr . (2)

Here, the N × K matrix Ψr contains time shifted versions
of the normalized reference signal vector with time shifts
γr,1, ..., γr,K , i.e.,

Ψr = [ȳref (γr,1), . . . , ȳref (γr,K)], (3)

and br is a vector with sparse support corresponding to the
TDOAs of the transmitters’ signals between receiver r and
the reference receiver. If only one transmitter is active and
no noise is present in the system, then the estimator ỹr
matches yr if the nonzero entry of br contains the quotient
of channel coefficients h1,r/h1,ref . In general this does not
hold due to noise and the different combinations of time shifts
between the transmitter and receiver locations. Nevertheless,
given the received signal yr, one can try to reconstruct br and
thus, in particular the nonzero entries in br yielding TDOAs
corresponding to locations.

It should be emphasized that a single TDOA does not
correspond to a unique transmitter location. In order to resolve
this ambiguity and be able to directly determine the location,



further restructuring of the problem is necessary in order to
reveal the joint sparsity between the different receiver pairs.

A. Joint Sparsity

To localize the transmitters we introduce a discrete grid
G in the two-dimensional plane containing potential location
bins:

G = {µ · (u, v) | u ∈ {1, . . . , L1}, v ∈ {1, . . . , L2}},

where µ is a resolution parameter. This leads to a total
number of K = L1L2 bins. Assuming that x1, . . . ,xK is an
enumeration of all bins in G and the locations of the reference
receiver and the CS receivers are denoted as zr and zref , we
can define the time shifts in (3) using (1) as

γr,k = ∆(xk, zr, zref ), k = 1, . . . ,K. (4)

This guarantees, that for all CS receivers the mapping from
columns of Ψr to location bins is the same. We then observe
that the presence of transmitters in certain location bins yields a
joint sparsity pattern for all vectors br. Such type of structured
sparsity has also been studied in [21].

B. Compressed Sensing

The joint sparsity makes it feasible to apply ideas from
CS and therefore estimate all vectors br recording only a
subsampled signal ŷr. We consider reduced versions of the
received signal yr and the estimator ỹr by introducing

ŷr = Φryr, (5)

y̌r = Φrỹr = ΦrΨr︸ ︷︷ ︸
Ar

br = Arbr, (6)

with the m×N matrix Φr which is obtained from the N ×N
identity matrix by randomly selecting m rows. This means
that each CS receiver only transmits m < N samples to the
reference receiver instead of N samples taken at Nyquist-
rate. Nevertheless, CS theory suggests that the sparsity ensures
that br can be recovered. In fact, for the case of one active
transmitter the recovery of br from ŷr reduces to a classical
CS problem. The latter can be solved by `0-minimization
searching for a solution with a low number of non zero
elements which, however, is known to be NP-hard. It has been
shown that under additional assumptions on the matrix Ar the
`0-minimization can be relaxed by `1-minimization [22]. In
our case we expect that `1-minimization similarly promotes
sparse solutions and consider the relaxation

minimize ‖br‖1 subject to ‖y̌r − ŷr‖22 ≤ εr, (7)

where εr has to be adjusted to the level of noise being present.
This relaxation can be solved using well known linear and
convex optimization methods. For fast numerical implemen-
tations, a greedy heuristic called orthogonal matching pursuit
(OMP) [23] can be used (see Section III-C).

In case that the time shifts in (3) are multiples of the
sampling rate, the resulting matrices Ar are closely related
to so-called partial random circulant matrices. There exists a
comprehensive theory for these matrices showing that they are
feasible for the CS approach [24] and, indeed, the necessary
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Fig. 2. Example of matrix form of the combined cross correlations β∗, blue
colors denote low and red colors denote high values

number of measurements for sparse recovery basically grows
linearly with the level of sparsity.

In our case, the matrices Ar are determined by (4) and
are less favorable for CS. This is due to the fact that different
location bins might result in very close TDOAs and, hence,
the columns of Ar cannot be distinguished, anymore. Nev-
ertheless, by exploiting the joint sparsity in a modified OMP
algorithm, this drawback can be overcome.

C. Algorithm

The standard OMP algorithm iteratively builds up an esti-
mate for the unknown support set P . If P has been estimated
at the (i−1)-th iteration, one uses the residual r̂r,i of the least
squares approximation of ŷr by Arbr, where supp(br) ⊂ P ,
to choose an update for P . This is achieved by selecting the
index of an entry of the correlation vector AH

r r̂r,i−1 with
maximal norm.

For the jointly sparse case, the basic idea is to perform

Algorithm 1 Localization Algorithm
// Initialize:

1: r̂r,0 ← ŷr . (5)
2: P ← ∅

// for i-th iteration (beginning with i = 1):
3: while stopping criterion is not met do

// Calculate correlations βr and combine in β∗:
4: βr ← AH

r r̂r,i−1

5: β∗[k]←
∑R
r=2 |βr[k]|2

// Estimate a new location bin and add it to the set:
6: pi ← argmaxk∈{1,...,K} β

∗[k]
7: P ← P ∪ {pi}

// Calculate new residuals:
8: b∗r ← argminsupp(br)⊂P ‖ŷr −Arbr‖22 . (7)
9: r̂r,i ← ŷr −Arb

∗
r

10: end while
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Fig. 3. Success rate of localization for different number of compressed
samples with 1 transmitter and 4 receivers
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Fig. 4. Success rate of localization for different number of compressed
samples with 2 transmitters and 4 receivers

a non-coherent combining of the entries of the correlation at
each receiver to obtain a measure of how likely a transmitter
is present at a given location bin. This leads to a modified
version of the OMP algorithm. Such modifications, in the
presence of structured sparsity (”block” or ”joint” sparsity),
have already been studied by different authors [21], [25]. The
resulting algorithm is depicted in Algorithm 1.

After termination, the set P contains estimated location
bins. A stopping criterion could either be to stop if the iteration
count has reached the number of transmitters (if previously
known) or if the norm of the current residual is smaller than
a given threshold.

Figure 2 shows a matrix version of the combined cross
correlation vector β∗ for the case of R = 4 receivers and
Q = 2 transmitters. Here, the matrix entry (u, v) is equal to
the entry β∗[k], with k chosen such that xk = µ · (u, v).

IV. RESULTS

To confirm the theoretical considerations and to evaluate
the performance of the proposed algorithm, numerical sim-
ulations of a two dimensional free-space radio wave propa-
gation environment have been conducted as described in the
following. A random BPSK modulated baseband signal with
a sample rate of 100 MHz is generated for each transmitter
location. In order to determine the received sum signals, the
transmit signals are time-shifted and attenuated according to
their free-space path loss between each pair of transmitter and
receiver. The sum of signals at each receiver is then added
with white Gaussian noise, while for simplicity it is assumed
that the SNR of each receiver’s output signal is identical.

The scenario is a 100 m×100 m square and the receivers are
located around the border at zref = (0, 0), z2 = (0, 100), z3 =
(100, 0), z4 = (100, 100), z5 = (0, 50), z6 = (50, 0), z7 =
(50, 100), z8 = (100, 50). The transmitters are randomly
placed in the region of interest, for each Monte Carlo iteration.
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Fig. 5. Root mean squared error of true and estimated location for a single
transmitter and 0 dB SNR

Further, the estimator grid dimension is set to cover the
scenario with a resolution of one bin per square meter. In order
to estimate the transmitter location, the reference receiver takes
1000 samples at Nyquist-rate and obtains compressed samples
from the CS receivers. In the first experiment 1 transmitter and
4 receivers are active. The transmitter location is determined
using a discrete uniform distribution placing it on the estimator
grid in order to simplify the evaluation of the success rate.
We perform the estimation algorithm for different numbers of
compressed samples and determine the success rate as shown
in Fig. 3. A location is estimated successfully if all TDOAs
corresponding to the true and estimated bins are equal within
a tolerance of one sample duration. We notice that for these
parameters the estimator produces acceptable results up to a
compression ratio of about 10.



A second experiment is performed with 4 receivers and 2
transmitters. As mentioned in Section III-B, for a single trans-
mitter we may apply classical CS solutions to our problem. For
the case of multiple transmitters at different locations we ex-
pect worse results. The corresponding success rate is depicted
in Fig. 4, where a performance degradation can be observed.
This is due to interference between the two transmitted signals
that are added with a different relative delay at each receiver.
Therefore, when using the signal of the reference receiver in
the CS reconstruction, it remains inherently inaccurate. More
specifically, we accumulate errors in the calculation of the
residual. However, unless the transmitted signal waveforms
are known at the reference receiver this situation is difficult
to resolve.

The third experiment considers the number of participating
receivers. Placement of the single transmitter is now performed
using a uniform distribution to allow arbitrary locations. Vary-
ing the number of receivers, including the reference receiver,
between 3 and 8 we determine the root-mean-square error
(RMSE) between the true and estimated transmitter location
as shown in Fig. 5. It is clearly visible how the error decreases
for a higher number of CS receivers.

V. CONCLUSION

We have introduced a novel TDOA based method that
exploits spatial sparsity of transmitter locations in order to
apply compressed sensing to the location estimation. The
method, using a reference receiver that samples at the Nyquist-
rate and two or more compressed sensing receivers, helps
to significantly reduce the amount of samples that have to
be exchanged between the nodes of a TDOA based emitter
localization system. Furthermore, it avoids the need of solving
hyperbolic equations to obtain a location estimate. Simulation
results indicate how the number of exchanged samples influ-
ences the success rate of the algorithm and demonstrate a high
potential for savings in data exchange between the receivers.
Due to the structure of the algorithm, additional compressed
sensing receivers can be added in a straight forward way
and are able to lower the estimation error of the transmitter
locations.
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