
Modern Heuristical Optimization Techniques for
Power System State Estimation

Halil Alper Tokel, Gholamreza Alirezaei and Rudolf Mathar

Institute for Theoretical Information Technology, RWTH Aachen,
ICT cubes, Kopernikusstrasse 16, 52074 Aachen
{tokel,alirezaei,mathar}@ti.rwth-aachen.de

http://www.ti.rwth-aachen.de/

Abstract. The development of efficient and accurate algorithms for
state estimation has come into the focus in power system research as the
power grid becomes more decentralized. In this work, we apply the heuris-
tical continuous optimization techniques differential evolution, simulated
annealing and particle swarm optimization to power system state esti-
mation problem, and provide a comparison between them in terms of
convergence and optimality. Examining the results, we propose a hybrid
algorithm combining particle swarm optimization and differential evolu-
tion.
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1 Introduction

The accurate state estimation has been the most fundamental problem in power
grids, since it delivers the system state as an input to all other applications in an
energy management system. With the integration of renewable resources and the
resulting decentralization of the power grids, an accurate and reliable information
about the state of the system is required not only for the transmission level but
also for the distribution level. This is a prerequisite to introduce new applications
and to ensure a stable operation of the power system.

The traditional state estimation problem is formulated as a nonlinear weighted
least square (WLS) problem, which can be solved iteratively by using gradient-
based methods, e.g., the Gauss-Newton method. However, the success of these
methods is based on a proper selection of a starting point, which is usually
unknown. Thus, they often converge to a local minimum instead of a global
one. On the other hand, the gradient is needed which is in practice replaced by
an approximation, since the used objective functions and constraints are often
discontinuous or very complicated to handle. In scenarios with a high number
of distributed generators and consumers, this problem leads to Jacobian matri-
ces [1], that are ill-conditioned. Considering the drawbacks of the basic state
estimation approach, modern heuristical optimization techniques can provide an
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alternative to deliver an accurate snapshot of the system state for the decentral-
ized structure of future distribution grids.

Since the seminal work of Schweppe et.al. [2], numerous formulations of the
state estimation problem and different numerical solution techniques have been
proposed. In [3] a comprehensive survey of different state estimation techniques
is given. The authors in [4] have proposed a hybrid particle swarm optimiza-
tion(PSO) algorithm with a natural selection mechanism for evolutionary com-
putation of the system state. For the computation, measurements consisting of
branch voltages and injection values are used. Similarly, Mallick et.al. [5] have
proposed a PSO algorithm with an additional differential evolution(DE) update
step and have shown that the PSO performance can be improved by this method
and it outperforms the Gauss-Newton method while considering ill-conditioned
networks. Basetti et.al. [6, 7] have applied a gravitational search algorithm con-
sidering both traditional measurements and phasor measurement units (PMU),
as well as a Taguchi differential evolution algorithm. Their proposed method de-
livers satisfactory results at the cost of longer computation time. In [8] a genetic
algorithm-based technique is used, and the authors point out that the heuris-
tical algorithm converges prematurely for IEEE 14 bus network without giving
a good estimate. The authors of [9] use a self-adaptive evolutionary approach
and conclude that evolutionary programming provides an accurate estimation
in tests with IEEE test networks for 14 and 30 bus.

This literature review reveals the interest in power system research to find
effective heuristical computational methods with good convergence properties in
order to overcome the drawbacks of traditional numerical methods. It is well-
known that the performance of heuristical techniques is highly dependent on
the structure of the considered optimization problem [10]. Hence, for a specific
optimization problem, one has to try out different heuristical approaches in order
to find the one with the best performance. This is our main goal in the present
work to compare all three methods, namely DE, simulated annealing(SA) and
PSO, and provide meaningful results for the state estimation of energy grids.

We start with a description of the power system model as well as the tradi-
tional state estimation problem. Next, we introduce the optimization techniques
followed by the description of the test cases along with simulation details. Finally,
we present our main results and conclude our achievements.

2 Power System State Estimation

State estimation in power systems tries to obtain a reliable estimate of the volt-
age phasors at all system buses in the network by using a set of measurements.
Although recent PMUs can measure voltage and current values with a high ac-
curacy, the wide deployment of PMUs is costly, especially when considering the
scale of distribution grids. For this reason, the traditional formulation of the
state estimation problem still plays a crucial role.

In the following, we introduce the basic formulation of the state estimation
problem for a power system. We define the system state x of a power grid with
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n buses by the vector x = [θ2, . . . , θn, |V1|, . . . , |Vn|], where θi and |Vi| are the
angle and the magnitude of the voltage phasor at node i, respectively. The angle
θ1 of the first bus is set to zero and used as the reference angle. The set of
measurements is denoted by

z =

h1(x)
...

hn(x)

+

e1...
en

 = h(x) + e, (1)

where hi(x) is a nonlinear function, which describes the relation between the
value of measurement i and the state vector x, while e is the vector of mea-
surement errors. It is assumed that the measurement errors are independent and
zero-mean Gaussian distributed, i.e., e ∼ N (0,R), where R = diag(σ2

1 , . . . , σ
2
n)

is the covariance matrix, with the variances σ2
i of the noise components ei as its

diagonal entries. The standard deviation σi of each measurement is modeled to
take the accuracy of different measurements into account. The nonlinear mea-
surement function hi(x) depends on the measurement type and location, and
is formulated by the Kirchhoff rules for voltage and current. To illustrate the
measurement function Pi for the real power injection at bus i, we may write

Pi = Vi

N∑
j=1

Vj(Gij cos θij +Bij sin θij), (2)

where G and B are the real and imaginary parts of the bus admittance matrix
Y of the power system and θij = θi − θj . The WLS estimator tries to find the
state vector, which minimizes the error in the measurements. The optimization
problem reads as

minimize
x

J(x), (3)

where J(x) is defined by (z−h(x))TR−1(z−h(x)). Note that the optimization
problem (3) is subject to implicit constraints of state variables due to the as-
sumption of a stable operation. Of course, a solution to (3) can be found by the
Gauss-Newton method, however as mentioned in the introduction, the Gauss-
Newton method has its own challenges. For a solid treatment of this approach
please refer to [11].

3 Optimization Techniques

The heuristical techniques, which are considered in this work, are well-known
methods which have been applied to different problems in engineering and other
natural sciences. In this section, we introduce our notation for the power system
state estimation problem and present the parameters adopted in this work. A
good overview of modern heuristical techniques along with their applications in
power systems can be found in [12].
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3.1 Differential Evolution

In this work, we exploit the key ideas of differential variation, crossover and
mutation in DE, where mutation and crossover operations occur with a certain
probability, which is given by the algorithm parameter CR. The optimization
variable xk

i is encoded as a vector of floating point values.
The generation of a new candidate xk+1

i follows the update equation

xk+1
i = xk

p + (xk
i − xr1)λ+ (xr2 − xr3)F (4)

where xk
i is ith member of the current generation k, xk

p is the population member
to perturb, λ and F are the crossover and mutation coefficients, respectively, and
xri are randomly selected population members. We select the first term xk

p as

the best population member xk
best. This strategy has outperformed other options

in the test problems considered in this work.

3.2 Simulated Annealing

The key concepts in SA are cooling schedule, state generation and state ac-
ceptance. In present work, initial temperature is chosen as 100 and updated
by Tk+1 = 0.95kTk, where k is the iteration number. A new candidate xk+1 is
generated by perturbing the current point xk as in

xk+1 = xk + r
√
Tk, (5)

where r is a random unit vector with |r| = 1. The acceptance of a candidate
with an inferior objective function value occurs with a probability calculated by
the acceptance function faccept as

faccept = exp
(J(xi)− J(xj)

Tk

)
. (6)

Table 1. Summary of algorithm parameters and functions in this work

Algorithm Parameters Functions

DE CR = 0.7 xk+1
i = xk

best + (xk
i − xr1)λ+ (xr1 − xr2)F

F = 0.7 , λ = 0.5

SA T0 = 100 xk+1 = xk + r
√
Tk, |r| = 1

Tk+1 = 0.95kTk , faccept = exp
(

J(xi)−J(xj)

Tk

)
PSO c1,2 = 1.49 vk+1

i = wvk
i + (pbest,i − xk

i )c1r1 + (gbest,i − xk
i )c2r2

w = [0.4, 0.8] xk+1
i = xk

i + vk
i
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3.3 Particle Swarm Optimization

In PSO, a population with N members have their positions xk
i and velocities vk

i

where k is the iteration number and i is the member index. Each member knows
its personal best value pbest,i and the best value of its neighborhood gbest,i. The
velocity vi and the position xi are updated by

vk+1
i = wvk

i + (pbest,i − xk
i )c1r1 + (gbest,i − xk

i )c2r2, (7)

xk+1
i = xk

i + vk
i , (8)

where w is called the weight, c1, c2 are cognitive and social acceleration coeffi-
cients, and r1 and r2 are independent and uniformly distributed random num-
bers between 0 and 1. If the new member xk+1

i achieves a smaller value of the
objective function, the member and its personal best are updated.

In Table 1 the chosen parameters for all algorithms are summarized.

4 Test Cases

In this section, we describe the test networks considered in the present work. We
use the IEEE 14 and 30-bus test networks [13] for the comparison of the heuristi-
cal optimization techniques whose details are provided in the previous section. In
this work, we consider only power flow and generation injection measurements.
The power flow measurements are located on the branches of a spanning tree
of the networks. With the injection measurements, this placement ensures full
observability [11]. The exact measurement locations are listed in Table 2.

Table 2. Measurements used for calculations in IEEE 14- and 30-bus test networks

Power Flow on Branches Generation at Buses

14-Bus 1-2,1-5,2-3,2-4,4-7,4-9,5-6,6-11,6-12,6-13,7-8,9-10,9-14 1,2,3,6,8

30-Bus 1-2,1-3,2-4,3-4,2-5,2-6,6-7,6-8,6-9,6-10,23-24,25-26, 1,2,5,8,11,13

6-28,9-11,10-17,10-20,10-21,10-22,12-13,25-27,28-27,

12-15,12-16,14-15,15-18,15-23,18-19,22-24,27-29,27-30

We use the MATLAB package MATPOWER 5.1 to obtain the real (correct)
measurement values and the values of the state variables by solving the optimal
power flow problem [14]. The measurement values are then overlaid with additive
Gaussian noise with the standard deviation σi of 0.02 and 0.015 for power flow
and injection measurements, respectively.

Two different approaches are used for the initialization of the first candidates.
In the first approach, we set the starting candidate in SA and one member of
the first populations of DE and PSO to a candidate obtained by overlaying the
true system state along with a noise which has the same statistics as in the
measurement creation step. In other words, the algorithms start from a point in
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the search space which is close to the true system state. This approach, which we
call near start in the following, is reasonable since the power system state changes
gradually and the result of the last estimation can be used as the starting point
in the next estimation. For the sake of completeness, in the second approach, we
apply the same procedure with a flat start, where all voltage phasor magnitudes
|Vi| are set to 1 p.u. and all voltage phasor angles θi to 0◦. In both approaches,
other candidates in DE and PSO are randomly generated over the search space.
For each optimization algorithm, we perform Monte Carlo simulations with 30
runs with an iteration limit of 1000 iterations.
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Fig. 1. Values of the objective function at certain iteration points for the IEEE 14-
bus network for all three heuristical optimization techniques DE, SA, PSO and hybrid
PSO-DE algorithm. Left: Near Start, Right: Flat Start.
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Fig. 2. Values of the objective function at certain iteration points for the IEEE 30-
bus network for all three heuristical optimization techniques DE, SA, PSO and hybrid
PSO-DE algorithm. Left: Near Start, Right: Flat Start.
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5 Results

The results for IEEE 14-bus and 30-bus test networks are illustrated in Figure 1
and Figure 2, respectively. The graphs on the left provide a comparison of the
expected values of the objective function for near start initializations, whereas
the graphs on the right side show the results with flat start. It is noticeable in
near start case in Figure 1 that PSO performs best in first iterations, but is
overtaken by DE after 300 iterations. This observation has led us to propose an
hybrid solution with PSO and DE to benefit from their superior performances
in search and intensification, respectively. In this algorithm, we observe the rate
of decrease in the best value of PSO until it reaches a threshold value. After
the threshold is reached, the algorithm continues with the update steps of DE.
We set the threshold to 5% of the improvement in the first 5 iterations, where
the decrease in the best function value is compared with the threshold at every
five iterations. As can be seen in Figure 1, the proposed hybrid solution outper-
forms all other algorithms considerably in near start case. On the other hand,
we observe a very slight improvement in flat start initialization. In fact, DE out-
performs PSO in flat start initialization, which can be attributed to the start
from a worse population and the decrease in the search capability of PSO with
increasing iteration number. Another observation is the inferior performance of
SA compared with PSO and DE.

In Figure 2, the results of 30-bus test case enable the evaluation of the scala-
bility of the algorithms in a larger problem size. We observe in near start initial-
ization that the hybrid algorithm improves the performance of PSO marginally.
This is reasonable as DE does not outperform PSO in later iterations as in 14-
bus test case. In flat start case, we see that none of the algorithms can achieve
acceptable objective function values comparable to the result of Gauss-Newton
method, which can be reasoned by the larger problem size and the iteration
limit of the algorithms. Interesting is that the hybrid algorithm improves the
PSO performance only slightly, although the performance of DE is better than
PSO in flat start initialization. Regarding the variation in the achieved results,
PSO, DE and the hybrid algorithm have an average normalized standard devia-
tion of 0.08, 0.1, and 0.09% in 14-bus near start case, and 0.26, 0.41, and 0.23%
in 30-bus near start case, respectively. On the other hand, the variation in the
flat start case is as high as 36 and 89% in 14- and 30-bus networks, respectively.

6 Conclusion

In this work, we have applied the modern heuristical optimization techniques
DE, SA, and PSO to the problem of state estimation in power systems with
traditional measurements. Based on the comparison results in 14-bus network
test case, we have proposed a hybrid algorithm with PSO and DE, which has
improved the convergence noticeably. On the other hand, we have deduced that
a larger problem size poses a challenge for the hybrid algorithm, whereas none
of the algorithms can deliver satisfactory results with flat start initialization.
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Nevertheless, the decentralized structure of future distribution grids can enable
the use of heuristical techniques in a distributed manner.
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