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Abstract—In this paper, we address the design of a distributed
passive radar system which operates on a strictly non-circular
source. The goal of a passive distributed radar is to provide
a reliable estimation from the source signal, by collecting and
combining the individual observations from the network in a
centralized node. We take advantage of the non-circular nature
of the source, and propose widely linear signal processing
algorithms, which achieve around 3 dB of gain in the estimation
accuracy compared to the available linear strategies. In this
regard, a minimum mean squared error (MMSE) problem is
formulated for unbiased class of estimators, where the widely-
linear processing is enabled at the distributed sensors, or at a
centralized entity. An optimal power allocation and information
fusion is achieved in each case, by studying the optimality
conditions of the corresponding problems. The performance of
the proposed methods are then compared to the known linear
strategies via numerical simulations.

I. INTRODUCTION

In the recent years the applications of radar sensor net-
works have gained significance, due to the high operational
diversity and scalability. Such use cases have been successfully
presented, e.g., in [1]–[5] for bi- and multi-static radars. In
particular, applications of a system of passive distributed radar
have been exemplified in [2] in the context of remote surveil-
lance, in [5] addressing a high resolution 3-D imaging problem.
The goal of a distributed passive radar is to provide a reliable
estimation from a source signal, by collecting and combining
the individual passive observations from a network of sensor
nodes (SN)s in a centralized node, i.e., fusion center (FC). As
an interesting example, we can mention the ’IceCube Neutrino
Observatory’ at the south pole, where a sensor network with
more than 5000 sensor nodes (SNs) is deployed to observe
certain characteristics of sub-atomic particles [4]. Since the
operation of the whole sensor network is mostly intended to
consume minimum resources while keeping the individual cost
and maintenance of SNs low, an energy efficient operation is
highly desirable. Hence, the related problem of optimal power
allocation and corresponding energy-aware system design has
been addressed in many works, e.g., in [6], [7] and [8]. In

These studies are then extended to include considerations
regarding computational complexity [9], network lifetime and
energy efficiency [10], [11], and occasional node failure [12].

The aforementioned works focus on the linear signal
processing strategies at the SNs and at the FC, motivated
by the computation simplicity, as well as the closed form
nature of the resulting optimal solutions. On the other hand,
for a communication or a radar system with a non-circular
signal source, where the real and imaginary parts of the

signal are correlated, the application of a widely-linear (WL)
processing strategy is promising1. Popular examples of such
sources are the ones following a binary phase shift keying
(BPSK), amplitude shift keying (ASK) or an offset quadrature
amplitude modulation (OQAM) signal constellations, see [14]
for more examples. In [15] it is shown that the achievable end-
to-end communication rate can be significantly enhanced for
a synchronized relay network with a non-circular source, via
the application of WL beamforming. The work in [14] presents
various use cases for exploiting the source non-circularity in
the context of radar signal processing. In particular, for a
system of passive distributed radar, the application of WL
processing at multiple network nodes is expected to be gainful.
This is since the non-circular distribution of the source signal
can be exploited, via a WL process, to better distinguish the
desired signal from the noise components which follow a
circularly-symmetric distribution. Nevertheless, the available
system-level designs have not yet been extended to realize this
potential.

Contribution: In this work, we extend the proposed linear
design strategies in [7], addressing the distributed passive radar
applications, for the case that the source signal follows a
strictly non-circular distribution. In this regard, a minimum
mean squared error (MMSE) problem is formulated for unbi-
ased class of estimators, where the widely-linear processing is
enabled at the SNs, or at the FC. An optimal power allocation
and information fusion is achieved in each case, by studying
the optimality conditions of the corresponding problems. The
performance of the proposed methods are then compared to
the optimal linear strategies via numerical simulations.

II. SYSTEM MODEL

We investigate a network of K passive SNs, cooperating
to achieve a single global observation via a FC. Both com-
munication and sensing channels are wireless, and follow the
quasi-static2 frequency-flat fading model. The final goal of
each observation is to classify (or detect) a strictly non-circular
source signal r at the FC. Each observation process can be
segmented into three parts: sensing process, communication
process and information fusion. For a detailed similar network
description with a circular source and linear process, please
see [7, Section II].

1A WL process may use conjugation (which is not a linear operator) in
addition to the linear operators. This enables a WL process to separate the
real and imaginary signal parts and exploit the correlation among them in
non-circular signals, see [13] for more details.

2It represents that the channel is constant during each observation, but may
vary from observation to another.



A. Strict Non-Circularity at the Source

In this work we focus on a setup with a zero-mean and
strictly non-circular source, r ∈ C. In a complex-valued signal
with a circularly symmetric distribution, the imaginary and real
parts of the signal are independent. On the other hand, for a
strictly non-circular source, the signal constellation is located
on a straight line with a constant phase, i.e., r = |r|ejθ0 where
θ0 is constant for all constellation points, see [16, Equation 2].
The statistics of the source can be hence expressed as

R := E{|r|2} = |E{r2}|, E{r} = 0, (1)

where R is the source signal power and E{·} represents math-
ematical expectation. Note that the above argument describes
the opposite situation compared to a circular source where
the constellation points are circular-symmetrically distributed
and hence we have E{r2} = 0. In this work, without loss
of generality, we focus on real-valued source constellation,
r ∈ R

1. For further elaboration on the statistical properties
of non-circular signals please see [16].

B. Operation of SNs

If a target signal r is present, it will be received at each SN
together with an additive white zero-mean complex Gaussian-
distributed circularly-symmetric (AWZMCGCS) noise. The
received signal is then processed at each SN and transmitted
to FC. The communication with FC is performed by using
orthogonal waveforms for each SN so that data from different
SNs can be separated and processed in FC. The process of
each SN can be described as

yk := gkr +mk, xk := f (SN)
k (yk) (2)

and

Xk := E{|xk|2}, (3)

where fSN
k (·) represents the signal processing at the SN

with index k. The sensing channel coefficient, communication
signal and its power from the SN with index k is respectively
denoted by gk ∈ C, xk ∈ C and Xk. The AWZMCGCS noise
on the sensing process and its variance are respectively denoted
as mk ∈ C and Mk. In order to take into account the weak
energy storage capability of the SNs, we consider a maximum
allowed individual average power consumption on each SN.
Furthermore, we limit the total network power consumption
to adjust the required network life-time to the available power
budget. The aforementioned constraints are expressed as

Xk ≤ Pk ⇔ E{∣∣f (SN)
k (yk)

∣∣2} ≤ Pk, (4)

and ∑
k∈FK

Xk ≤ Ptot ⇔
∑
k∈FK

E{∣∣f (SN)
k (yk)

∣∣2} ≤ Ptot, (5)

where Pk ∈ R+ and Ptot ∈ R+ respectively represent the
individual and total power constraints on the function of SNs.

1This follows as the constant term ejθ0 can be considered as a part of
the channel between source and SNs, as it remains constant for different
observations and constellation points.

C. Fusion Center

The transmitted signal from each SN passes through the
communication channel, with coefficients hk ∈ C, and arrives
at the FC combined with an AWZMCGCS noise component
nk, with variance Nk. A signal processing stage is then applied
at the FC to achieve an estimation, r̃, of the source signal from
the collected observations in the network. This is described as

zk := hkxk + nk, (6)

and

r̃ := f (FC)(z1, · · · , zK), (7)

where fFC (·) represents information fusion strategy, i.e., the
signal processing at the FC.

D. Remarks

• In the present work we assume the availability of the
perfect channel information for both sensing and com-
munication channels. In general, it is rather difficult
to estimate the sensing channel in an accurate way
unless the channel has a highly stationary nature, e.g.,
[4]. Hence, for scenarios where the sensing channel is
not stationary, the results of this paper can be treated
as theoretical limits.

• In this work we focus on the systems with a strictly
non-circular source. Nevertheless, the proposed solu-
tions can remain gainful for a reduced degree of non-
circularity at the source. The sensitivity of the network
performance to the non-circularity of the source is
numerically studied in Section V.

• In the present work we apply WL processing at the
SNs, or at the FC. The joint application of WL
processing at both SNs and the FC will be the goal of
our future investigations.

III. OPTIMAL WIDELY-LINEAR FUSION WITH LINEAR

SIGNAL PROCESSING AT THE SNS

In this part we investigate the scenario where FC applies a
WL process on the received signals from the SNs, while each
SN performs a linear process, similar to the SN operation in
[7]. This is described as

f (SN)
k (a) : = uka, ∀k ∈ FK ⇒

xk = uk (gkr +mk) , ∀k ∈ FK , (8)

and

f (FC)(a1, · · · , aK) : =
∑
k∈FK

v̂kak + v̌ka
∗
k ∀k ∈ FK ⇒

r̃ =
∑
k∈FK

v̂kzk + v̌kz
∗
k ∀k ∈ FK , (9)

where uk ∈ R represents the linear amplification coefficient
at the k-th SN and v̂k, v̌k ∈ C are the linear fusion weights
which apply a widely linear process on zk at the FC 3. Via the

3Please note that the real-valued assumption of the amplification coeffi-
cients does not reduce the generality, since any amplification phase can be
compensated via a constant rotation of fusion weights, with no effect on the
system objective and constraints. Please refer to [12, Lemma 1] for a similar
discussion.



application of (8), the defined power constraints in (4) and (5)
are formulated as

Xk ≤ Pk ⇔ |uk|2
(
R|gk|2 +Mk

) ≤ Pk, (10)

and∑
k∈FK

Xk ≤ Ptot ⇔
∑
k∈FK

|uk|2
(
R|gk|2 +Mk

) ≤ Ptot. (11)

Furthermore, via the application of (9) into (7) the final
estimation at the FC is formulated as

r̃ = r
∑
k∈FK

v̂kukhkgk + v̌kukh
∗
kg

∗
k

+
∑
k∈FK

v̂kukhkmk + v̌kukh
∗
km

∗
k

+
∑
k∈FK

v̂knk + v̌kn
∗
k, (12)

where (12) follows as the identity r = r∗ holds for r ∈ R.
Following the previous designs with a linear fusion process
[6], [10]–[12], we focus on unbiased class of estimators and
choose mean-squared-error (MSE) as our estimation metric.
The unbiased estimation condition can be expressed as

E{r̃ − r} = 0 ⇔∑
k∈FK

v̂kukhkgk + v̌kukh
∗
kg

∗
k = 1, (13)

where (13) follows as the noise terms are all zero-mean. By
applying (13) into (12) and considering the fact that all of the
noise terms are zero-mean, circularly symmetric, and mutually
independent, the estimation MSE is obtained as

V : = E{|r̃ − r|2}
=

∑
k∈FK

|uk|2
(|v̂k|2 + |v̌k|2

) |hk|2Mk

+
∑
k∈FK

(|v̂k|2 + |v̌k|2
)
Nk. (14)

Our optimization strategy in order to obtain an unbiased
minimum MSE (MMSE) estimation is hence expressed as

min
uk∈R,v̂k,v̌k, k∈FK

V s.t. (13), (10), (11), (15)

where the constraints in (15) result in a system parameter set
that satisfy the unbiased estimation, while the defined power
constraints are satisfied. As it can be seen from (14), the
resulting problem is not a jointly convex problem over the
optimization variables. Nevertheless, it is a separately convex
optimization problem over the amplification coefficients, i.e.,
uk, and over the fusion weights, i.e., v̂k, v̌k, ∀k ∈ FK . Hence,
in the next step we obtain the optimal fusion rule for a given
(fixed) set of amplification coefficients.

A. Optimal WL Fusion

As observed from (4) and (5), the power constraints are
invariant to the choice of the fusion weights. For a fixed set
of uk, ∀k ∈ FK that satisfies the defined power constraints,
the optimization over the fusion weights can be formulated as

min
v̂k,v̌k k∈FK

V s.t. (13), (16)

which holds a convex structure. The corresponding Lagrangian
function is consequently formulated as

L (v̂k, v̌k, λ) : = λ

(
1−

∑
k∈FK

v̂kukhkgk + v̌kukh
∗
kg

∗
k

)

+
∑
k∈FK

u2
k

(|v̂k|2 + |v̌k|2
) |hk|2Mk

+
∑
k∈FK

(|v̂k|2 + |v̌k|2
)
Nk. (17)

where L(·) represents the Lagrangian, and λ is the dual
variable corresponding to the unbiased estimation constraint.
Due to the convex problem structure, any optimum solution
to (16) will be located at the stationary point of the defined
Lagrangian function. Following the guidelines of the Wirtinger
calculus [17], [18], the derivative of the Lagrangian function
can be obtained with respect to v̂k and v̌k as

∂L
∂v̂k

= v̂∗k
(
u2
k|hk|2Mk +Nk

)− λukhkgk = 0, ∀k ∈ FK ,

(18)

∂L
∂v̌k

= v̌∗k
(
u2
k|hk|2Mk +Nk

)− λukh
∗
kg

∗
k = 0, ∀k ∈ FK .

(19)

Consequently we can write

∑
k∈FK

v̂k
∂L
∂v̂k

+ v̌k
∂L
∂v̌k

= 0 ⇒ V = λ. (20)

Furthermore, applying the identity

∑
k∈FK

h∗
kg

∗
kuk

u2
k|hk|2Mk+Nk

× ∂L
∂v̂k

+
hkgkuk

u2
k|hk|2Mk+Nk

× ∂L
∂v̌k

=0,

(21)

we have

V =
1

2

( ∑
k∈FK

|hkgk|2u2
k

u2
k|h2

k|Mk +Nk

)−1

. (22)

By plugging (22) and (20) into (18) and (19) we can calculate

v̂k
� =

( ∑
k∈FK

|hkgk|2u2
k

u2
k|h2

k|Mk +Nk

)−1
1
2h

∗
kg

∗
kuk

u2
k|h2

k|Mk +Nk
, (23)

v̌k
� =

( ∑
k∈FK

|hkgk|2u2
k

u2
k|h2

k|Mk +Nk

)−1
1
2hkgkuk

u2
k|h2

k|Mk +Nk

= (v̂k
�)

∗
(24)

where v̂k
� and v̌k

� respectively represent the optimal fusion
coefficients v̂k and v̌k.

B. Optimal Linear Processing at the SNs: Power Allocation
Problem

Via the application of the obtained fusion weights, i.e, (23),
(24), we aim at minimizing the resulting MSE, see (22), while



satisfying the defined power constraints (10), (11). This can
be equivalently formulated as

min
uk∈R

−
∑
k∈FK

|hkgk|2u2
k

u2
k|h2

k|Mk +Nk
s.t. (10), (11), (25)

which is a convex optimization problem, and results in a water-
filling solution structure. For an analytical optimum solution
for a similar problem please refer to [12, Section III], [7].

C. Interpretation of the Solution

As it can be observed from (22), in comparison with [7,
Equation (21)], benefiting from the strictly non-circular nature
of the source signal, the resulting MSE will be reduced by
factor of two for an optimal WL process at the FC compared
to the optimal linear processing. Furthermore, the values of the
WL fusion weights are complex conjugate of each other. In the
other words, the desired signal components (source signal) are
aligned at the FC on the real axis, via the application of (23)
and (24). In this way, the remaining imaginary parts are safely
ignored as they result from the additive noise at the FC or at
the SNs.

IV. OPTIMAL WIDELY-LINEAR PROCESSING AT THE SNS

WITH LINEAR PROCESSING AT THE FC

In this part we investigate a scenario where the FC applies a
linear process on the received signals from the SNs, while each
SN performs a widely linear process on the received signal
from the sensing channel. This is expressed as

f (SN)
k (a) : = ûka+ ǔka

∗, ∀k ∈ FK ⇒
xk = ûk (gkr +mk) + ǔk (gkr +mk)

∗
, ∀k ∈ FK ,

(26)

and

f (FC)(a1, · · · , aK) : =
∑
k∈FK

vkak ∀k ∈ FK ⇒

r̃ =
∑
k∈FK

vkzk ∀k ∈ FK , (27)

where vk ∈ C is the linear fusion weight, and ûk, ǔk ∈ C are
the amplification coefficients at the SN, respectively applied
to the actual and the complex-conjugate versions of the re-
ceived signal. Via the application of (26), the defined power
constraints in (4) and (5) are formulated as

Xk ≤ Pk ⇔
Mk

(|ûk|2 + |ǔk|2
)
+R|ûkgk + ǔkg

∗
k|2 ≤ Pk, (28)

and∑
k∈FK

Xk ≤ Ptot ⇔
∑
k∈FK

Mk

(|ûk|2 + |ǔk|2
)
+R|ûkgk + ǔkg

∗
k|2 ≤ Ptot. (29)

Furthermore, via the application of (26) and (6) into (27) the
final estimation at the FC is formulated as

r̃ = r
∑
k∈FK

vkhk (ûkgk + ǔkg
∗
k)

+
∑
k∈FK

vkhk (ûkmk + ǔkm
∗
k) +

∑
k∈FK

vknk, (30)

where (30) follows as the identity r = r∗ holds for r ∈ R.
Similar to (13), the unbiased estimation constraint is expressed
as

E{r̃ − r} = 0 ⇔∑
k∈FK

vkhk (ûkgk + ǔkg
∗
k) = 1. (31)

By applying (31) into (30) and considering the fact that all
of the noise terms are zero-mean, circularly symmetric, and
mutually independent, the estimation MSE is obtained as

V : = E{|r̃ − r|2}
=

∑
k∈FK

|vk|2|hk|2Mk

(|ûk|2 + |ǔk|2
)
+

∑
k∈FK

|vk|2Nk.

(32)

Hence for the scenario with a WL process at the SNs and linear
process at the FC we can express our optimization problem as

min
vk,ûk,ǔk k∈FK

V s.t. (31), (28), (29), (33)

which represents an MMSE optimization within the unbiased
class of estimators, while satisfying the defined power con-
straints (28) and (29). The resulting problem is not a jointly
convex problem over the optimization variables. Nevertheless,
it is a separately convex optimization problem over the am-
plification coefficients, i.e., ûk and ǔk, and over the fusion
weights, i.e., vk, ∀k ∈ FK . Hence, in the next step we obtain
the optimal fusion rule for a given (fixed) set of amplification
coefficients.

A. Optimal Linear Fusion

Similar to Subsection III-A, the power constraints are
invariant to the choice of the fusion weights, see (28) and (29).
For a fixed set of ûk, ǔk, ∀k ∈ FK , that satisfies the defined
power constraints, the optimization over the fusion weights can
be formulated as

min
vk, ∀k∈FK

V s.t. (31), (34)

which holds a convex structure. The following lemma reveals
the phase characteristics of the fusion weights vk at the
optimality.

Lemma 1: Let v1, . . . , vK be a feasible set of fusion coef-
ficients. Then the following variable update:

v̄k ← |vk| h∗
k (ûkgk + ǔkg

∗
k)

∗

|hk (ûkgk + ǔkg∗k) |
∑

k∈FK
|vkhk (ûkgk + ǔkg∗k) |

,

(35)

where v̄1, . . . , v̄K represent a new set of fusion coefficients,
is feasible and does not degrade the estimation, i.e., does not
increase the objective function.

Proof: Please see Appendix.A.

Note that a clear interpretation of Lemma 1 is the fact that
the received signals at the FC should be constructively aligned
in order to reduce the effect of noise. As a useful corollary of
Lemma 1 we can assume ∠vk = −∠hk (ûkgk + ǔkg

∗
k), with-

out reducing the optimality. The aforementioned assumption



simplifies our problem into finding |vk| ∈ R
+, ∀k ∈ FK . The

corresponding Lagrangian function is hence formulated as

L (|vk|, λ) : = λ

(
1−

∑
k∈FK

|vk||hk (ûkgk + ǔkg
∗
k) |

)

+
∑
k∈FK

|vk|2|hk|2Mk

(|ûk|2 + |ǔk|2
)

+
∑
k∈FK

|vk|2Nk, (36)

where L(·) represents the Lagrangian, and λ is the dual vari-
able corresponding to the unbiased estimation constraint. At
every stationary point of the defined Lagrangian the derivatives
will vanish with respect to |vk|:

∂L
∂|vk| = 2|vk|

(
Mk|hk|2

(|ûk|2 + |ǔk|2
)
+Nk

)
− λ|hk (ûkgk + ǔkg

∗
k) | = 0, ∀k ∈ FK . (37)

Consequently we can write∑
k∈FK

|vk| ∂L
∂|vk| = 0 ⇒ V =

λ

2
. (38)

Furthermore, following a similar derivation as in (21) we have∑
k∈FK

∂L
∂|vk| ×

|hk (ûkgk + ǔkg
∗
k) |

(|ûk|2 + |ǔk|2) |hk|2Mk +Nk
= 0, (39)

and consequently

V =

( ∑
k∈FK

|hk|2|ûkgk + ǔkg
∗
k|2

(|ûk|2 + |ǔk|2) |h2
k|Mk +Nk

)−1

. (40)

By plugging (40) and (38) into (37), and following the result
of Lemma 1 we calculate

vk
� =

( ∑
k∈FK

|hk|2|ûkgk + ǔkg
∗
k|2

(|ûk|2 + |ǔk|2) |h2
k|Mk +Nk

)−1

× h∗
k (ûkgk + ǔkg

∗
k)

∗

(|ûk|2 + |ǔk|2) |hk|2Mk +Nk
, (41)

where vk
�, ∀k ∈ FK represent an optimal set of fusion

coefficients.

B. Optimal Widely-Linear Processing at the SNs: Power Al-
location Problem

In Subsection IV-A the optimal linear fusion rule is studied
for a given set of amplification coefficients ûk, ǔk, ∀k ∈ FK .
It is observed that an optimal unbiased linear fusion results
in the estimation MSE equal to (40). In this part, we look
for an optimal set of amplification coefficients which lead to
the minimum V , see (40), while satisfying the defined power
constraints (28), (29). The corresponding optimization problem
can be hence formulated as

max
ûk,ǔk, k∈FK

∑
k∈FK

|hk|2|ûkgk + ǔkg
∗
k|2

(|ûk|2 + |ǔk|2) |h2
k|Mk +Nk

s.t. (28), (29). (42)

The following lemma reveals an important property of the
amplification coefficients at the optimality.

Lemma 2: There exists an optimal solution to (42) where
we have

û�
k = ǔ�

k
∗, ∠û�

k = −∠gk. (43)

Proof: Please see Appendix.B.

By benefiting from the results of the Lemma 2, the simpli-
fied version of our optimization problem in (42) is expressed
as

max
ũk∈R+,k∈FK

∑
k∈FK

4ũk|hkgk|2
2ũk|h2

k|Mk +Nk

s.t. ũkMk + 2Rũk|gk|2 ≤ Pk

2∑
k∈FK

ũkMk + 2Rũk|gk|2 ≤ Ptot

2
(44)

where ũk := |ûk|2 = |ǔk|2, and the optimal amplification
coefficients can be obtained via Lemma 2 as

û�
k =

g∗k
√

ũ�
k

|gk| , ǔ�
k =

gk
√

ũ�
k

|gk| , (45)

where ũ�
k represents the optimal solution to (44). The defined

problem (44) is a convex optimization problem and results in
a water-filling solution structure. For an analytical optimum
solution for a similar problem please refer to [12, Section III],
[7].

C. Interpretation of the Solution

Similar to the application of WL processing at the FC,
the defined WL process at the SNs aligns the components of
the source signal on the real axis and eliminates the imaginary
parts of the signal, caused by the noise. Nevertheless, the noise
components at the FC can not be reduced with this strategy, as
the WL process is merely applied at the SNs. As a result the
defined WL processing at the SNs is less effective compared
to the proposed WL processing at the FC.

V. SIMULATION RESULTS

In this part we investigate the performance of the defined
system via numerical simulations. We simulate a network
with K = 300 SNs, where all sensing and communication
channels are zero-mean and follow a Gaussian distribution
with variance σ2

g and σ2
h, respectively. For each set of chan-

nel realizations, i.e, hk, gk, ∀k ∈ FK , 10000 realizations of
r, nk,mk, ∀k ∈ FK are generated, following the defined
statistics. The resulting network performance is then averaged
over 100 channel realizations. We compare the proposed WL
processing strategies in Section III and Section IV to the
available linear strategies in terms of R/V . This includes the
WL or linear design strategy at the SNs or at the FC. Regarding
the power allocation strategies, our comparison includes the
optimal power allocation as defined in Subsection III.B and
Subsection IV.B, the equal power allocation (EPA) among
all SNs and the allocation of the all available power to an
optimally-selected single SN (SSN), see [19, Subsection III.C-
E]. Table 1 defines the different design strategies which are
evaluated in Fig. 2-4. Unless stated otherwise, the given values
in Table 2 are used as the simulated network parameters.



TABLE I: Simulated design strategoies

Legend Description

WL-FC-Opt Optimal WL proc. at FC and linear proc. at SNs,

WL-SNs-Opt Optimal WL proc.at SNs and linear proc. at FC

L-Opt Optimal linear proc. at SNs and FC

WL-FC-EPA Optimal WL proc.at FC with equal power alloc. among SNs

WL-SNs-EPA WL proc. at SNs with equal power allocation among SNs

L-EPA Optimal linear proc. at FC with equal power alloc. among SNs

WL-FC-SSN WL proc. at FC with best sensor selection

WL-SNs-SSN WL proc. at SN with best sensor selection

L-SSN Linear proc. at SN and FC with best sensor selection

TABLE II: Reference simulation parameters

K R Mk Nk σ2
g σ2

h Pk Ptot

300 1 1 1 1 1 1 60

In Fig. 1 the resulting estimation accuracy is depicted for
different noise levels. It is apparent that higher noise variance
results in the lower estimation quality. Furthermore, for various
power allocation schemes, the application of WL processing
at FC results in 3-dB of gain in the estimation accuracy, for
various noise conditions. Relatively smaller gain is observed
for the scenario with WL processing at the SNs. This is since
the circular nature of the noise at the FC is not exploited in
the latter case.

In Fig. 2 the impact of the source signal power is observed
on the resulting estimation accuracy. As it is expected, higher
source signal power results in a higher estimation accuracy.
Similar performance gain margins are observed as to Fig. 1
for the application of WL processing at the FC and SNs, for
various power allocation strategies.

While the proposed designs in Section III and IV are
optimal only for a strictly non-circular source situation, they
are still gainful in the presence of source circularity mis-
match. Nevertheless, the level of tolerable mismatch is highly
dependent on the noise variance. In Fig. 3 the performance
of the proposed WL methods are compared to the available
linear strategies, for various levels of source non-circularity
coefficient4. Furthermore, it is observed that for a high variance
of the noise signal, the proposed designs are gainful for a wider
range of non-circularity coefficients.

VI. CONCLUSION

In this work we have developed WL signal processing
methods for a passive distributed radar system, where the
source signal follows a strictly non-circular distribution. We
have observed that for an optimal WL processing at the
FC, we can obtain 3 dB of gain in the resulting estimation
accuracy, compared to the available optimal linear strategies.
Nevertheless, smaller gain margin was observed for an optimal
WL processing at the SNs. While the proposed WL methods
rely on the strict non-circularity of the source signal, as it
is numerically observed, they remain gainful for weak non-
circularity condition at the source depending on the network
noise situation.

4This represents the level of non-circularity for the source signal distribu-

tion, i.e., ρ :=
E{r2}
E{|r|2} . ρ = 1 represents a strictly non-circular distribution,

while ρ = 0 represents a circular distribution, please also see [13] for more
details.
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Fig. 1: Estimation accuracy in terms of RV −1 [dB] vs. Noise power
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0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

2

4

6

8

10

12

14

16

18

20

R

R
V

−
1
[d
B
]

L −Opt
WL − SNs−Opt
WL − FC−Opt
L −EPA
WL − SNs−EPA
WL − FC−EPA
L − SSN
WL − SNs− SSN
WL − FC− SSN

Fig. 2: Estimation accuracy in terms of RV −1 [dB] vs. Source signal
strength R [Watt].

APPENDIX

A. Proof to Lemma 1

Firstly, it is observable that (48) does not violate the power
constraints as (28) and (29) do not depend on the fusion
weights. Secondly, the unbiased condition (31) sill holds since∑

k∈FK

v̄khk (ûkgk + ǔkg
∗
k)

=
∑
k∈FK

|vkhk (ûkgk + ǔkg
∗
k) |∑

k∈FK
|vkhk (ûkgk + ǔkg∗k) |

= 1, (46)

which indicates that v̄1, · · · , v̄K is feasible. And finally, fol-
lowing the triangular inequality we have

1 =

∣∣∣∣∑
k∈FK

vkhk (ûkgk + ǔkg
∗
k)

∣∣∣∣ ≤ ∑
k∈FK

|vkhk (ûkgk+ǔkg
∗
k) |,

(47)
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Fig. 3: Estimation accuracy in terms of RV −1 [dB] vs. Source signal
non-circularity (ρ).

which together with (48) results in |v̄k| ≤ |vk|. The latter
inequality reveals that the set of updated fusion weights in
(35) does not increase the objective function, which concludes
the proof.

B. Proof to Lemma 2

Let ûk, ǔk k ∈ FK represent a set of optimal amplification
coefficients. Then the following variable update:

ŵk ← g∗k|ûkgk + ǔkg
∗
k|

2|gk|2 , w̌k ← gk|ûkgk + ǔkg
∗
k|

2|gk|2 , (48)

where ŵk, w̌k, ∀k ∈ FK , representing a new set of amplifi-
cation coefficients, and ŵk = w̌∗

k. By examining the different
parts of the objective function in (42) we have

|ŵkgk + w̌kg
∗
k| = |ûkgk + ǔkg

∗
k|, (49)

and

|ŵk|2 + |w̌k|2 =
|ûkgk + ǔkg

∗
k|2

2|gk|2

≤ |ûk|2 + |ǔk|2
2

+ |ûkǔk|

≤ |ûk|2 + |ǔk|2 − 1

2
(|ûk| − |ǔk|)2

≤ |ûk|2 + |ǔk|2, (50)

which conclude the non-decreasing effect of the defined update
on the objective. Furthermore, (49) and (50) show the non-
increasing effect of the defined update on the transmit power
from each SN, see (28), (29). This shows that the updated set
of amplification coefficients, ŵk, w̌k, ∀k ∈ FK , is indeed an
optimal solution to (42), as they are both feasible and do not
degrade the objective compared to the optimal amplification
coefficient set ûk, ǔk, ∀k ∈ FK . The later argument concludes
the proof.
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