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Abstract—The paper discusses three main adaptive filtering
algorithms with partial updates and low computational com-
plexities that converge fast and have a significantly better mean
square error (MSE) performance than their non selective-update
versions when they are tuned well. The algorithms are set-
membership normalized least mean squares (SM-NLMS), SM
affine projection (SM-AP) and SM recursive least squares (SM-
RLS, also known as BEACON). The lifetime of a wireless sensor
network (WSN) is often governed by its power consumption.
We show how the previous works for energy prediction, channel
estimation, localization and data replication in WSNs can be
improved in both accuracy and energy conservation by employing
these algorithms. We derive two simplified versions of the SM-AP
and BEACON algorithms to further minimize the computational
load. The probable drawbacks of the algorithms and the alterna-
tive solutions are also investigated. To exhibit the improvements
and compare the algorithms, computer simulations are conducted
for different scenarios. The purpose is to show that many signal
processing algorithms for WSNs can be replaced by one general
low complexity algorithm which can perform different tasks by
minor parameter adjustments.

I. INTRODUCTION

A wireless sensor network (WSN) consists of many densely
deployed sensor nodes that are often randomly distributed in
an area. The sensor nodes are small in size with low computa-
tional capacity and limited power. Due to their wide range of
applications in surveillance, military, habitat monitoring, etc.,
they have received considerable researcher attention through
the last decade. The purpose of a WSN is to collect data about
a phenomenon by many sensor nodes and forward them to the
sink node or a fusion center for further processing. Based on
the type of the sensor nodes, application and resource budget,
this might be done through a multi-hop configuration which
is often due to the high energy consumption or infeasibility
of a long single hop. In case of a multi-hop network, a
proper relaying scheme is responsible to forward the data to
the sink node or receiver. Though the realization of multi-
hop networks is difficult enough, most of the constraints
on the WSNs are due to the stringent restrictions in power
consumption and computational capacity of the sensor nodes.
In fact, the lifespan extension is one of the main considerations
in designing WSNs. The power management is also included
in the protocol stack of WSNs. The protocols of WSNs are
specifically designed to tackle the power and complexity con-
straints of such networks. To guarantee a theoretically infinite
lifetime, energy harvesting systems have been incorporated

into WSNs in which the required power is provided by the
environment. The photovoltaic cells (PVs), thermal generators
(TEGs), wind generators and vibration scavengers are exam-
ples of harvesters for such networks [1]. However, the solar
energy is often preferred due to the high power density, relative
predictability and ease of implementation [1], [2]. The relative
predictability means the power can be predicted approximately
and the sensor node activity including the computation load
and data communication can be adapted accordingly so that the
WSN sustains the periodic power shortages while the crucial
applications of the network are not compromised. Figure 1
shows a multi-hop WSN with L relay groups between the
transmitter nodes and the receiver. The receiver in this model
is the final fusion center equipped with multiple antennas with
unlimited power and complex processing capabilities. Based
on the network configuration, the sensor nodes can cooperate
in transmission, estimation and decision making or they can
be individual data collectors with no data or resource sharing.
The figure shows a general scheme where there are direct
hops from the transmitter to the destination as well as the
multi-hops through the relays. Similarly, the feedback links
from the receiver to the transmitter and the relay nodes are
shown. The direct transmitter-receiver hop has the advantage
of halting the retransmissions by the relays when this direct
connection can be established. The model in Figure 1 will
be further discussed in the next sections. The purpose of this
paper is to show that the proposed set-membership adaptive
filtering methods can improve the current algorithms for chan-
nel estimation, data replication and energy prediction in terms
of accuracy and computational complexity. The rest of the
paper is organized as follows: In Section II, the previous works
on energy prediction, channel estimation and data replication
for WSNs are briefly introduced which are based on the
adaptive filtering algorithms. In Section III, the proposed set-
membership filtering algorithms are discussed in detail and the
improved performance in terms of accuracy and complexity
reduction is shown by the simulations in Section IV.

II. PREVIOUS WORKS

As discussed before, the purpose of energy prediction in
WSNs is often to make the system self-sustainable in terms
of energy. The energy harvesters provide the required energy
from the environment. The type of the energy source is very
important in prediction. The PV cells are often preferred
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Fig. 1. A WSN with L relays. The number of sensor nodes in the transmitter,
ith relay and the receiver are denoted by Ns , Nui and Nr , respectively.
HTx→1 and HL→Rx denote the channel matrices of the corresponding hops.

due to their high energy density and relative predictability.
In [3], an exponentially weighted moving average (EWMA)
prediction was used based on [4]. For solar energy predic-
tion, an algorithm called weather conditioned moving average
(WCMA) was used in [5]. These two algorithms as well
as the algorithm developed at the Swiss Federal Institute of
Technology of Zurich (ETHZ) [6], [7] and a prediction based
on neural networks [8] were simulated and compared in [2] in
terms of complexity, memory and average error. The results
of this comparison show that the WCMA algorithm has the
minimum average error among the four algorithms, which is
about one third of the next accurate algorithm EWMA, though
it requires more memory and has a higher computational
complexity. However, in [1], an adaptive filtering approach
was employed for energy prediction using the normalized least
mean squares algorithm (NLMS) and it was shown that in
comparison to WCMA, the NLMS algorithm can remarkably
reduce the complexity and memory while the average error
is slightly higher than WCMA. Moreover, it also verifies that
the average error of WCMA is about one third of the EWMA.
As a consequence, this adaptive filtering algorithm seems to
be the proper choice for energy prediction considering both of
the constraints and accuracy. The adaptive filtering algorithms
are also used for approximate data replication in WSNs. This
technique is used in cases where the receiver can infer results
from a fairly accurate estimate of the value at the source,
rather than the exact value [9]. In fact, this technique reduces
the rate of data transmission by transmitting only a subset of
the sensed data and therefore preserves energy for the WSN. In
[9], this technique has been employed using LMS, NLMS and
recursive least squares (RLS) algorithms. Another approach
for data reduction in WSNs was proposed by [10], where a
hierarchical LMS (HLMS) algorithm was employed to accel-
erate the convergence speed. However, the HLMS algorithm is
far more complex than the LMS and NLMS algorithms, as it
combines several levels of independent LMS sub-filters. Note
that the NLMS algorithm has a better MSE performance than
the LMS algorithm, as it is tuned such that the a posteriori
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Fig. 2. The TDOA localization using six anchor nodes and NLMS with step-
size µ = 0.4. The noise power is σ2

n = 0.49. The magnified part shows how
the NLMS algorithm converges to the position of the emitter.

error is set to zero. In [11], a framework for combined data
prediction, compression, and recovery was proposed where an
optimal step size LMS algorithm (OSSLMS) was employed
for prediction. The problem with the OSSLMS and the variable
step size (VS) LMS algorithms is often the high complexity
of the step size calculations, as derived in [12] and [13].
Moreover, some step size solutions require setting several
proper constants to manage the performance of the algorithm.
Therefore, these versions of the LMS algorithms often improve
the MSE performance at the cost of significantly higher
complexity and power consumption. Another application of
the adaptive filtering in WSNs is the channel estimation, as
proposed by [14] and [15]. In fact, when the a priori channel
information is unavailable, the well known minimum MSE
(MMSE) cannot be employed for channel estimation. Also due
to the synchronization deficiency of the sensors at the transmit-
ter of a hop or difficulty of implementation, the mutual pilot
sequence orthogonality is not always possible. Therefore, the
least squares (LS) estimator cannot be simplified by diagonal
matrix inversion. Besides the channel estimation, the NLMS
algorithm can be employed to perform channel equalization,
as discussed in [16]. There are many applications where the
data acquisition in the WSN should be accompanied by sensor
location information. Adaptive filtering techniques can be also
employed for localization. For example, the time difference of
arrival (TDOA) localization has a nonlinear objective function
which can be optimized using the NLMS algorithm after
applying the first order Taylor series expansion, as discussed
in [17]. Figure 2 illustrates this localization process, where
six anchor nodes were used to locate an emitter at (−3,−2).
In this figure, the converging process of the NLMS algorithm
from the initial guess (0, 0) to the emitter’s location is de-
picted, where the step size µ and the noise power σ2

n were set
as µ = 0.4 and σ2

n = 0.49, respectively. As a consequence of
this section, the adaptive filtering algorithms, and in particular
the NLMS algorithm, have remarkable applications in different
fields of signal processing for WSNs. Therefore, if there is
a general low complexity and fast converging technique in



adaptive filtering with an MSE performance comparable to or
better than that of the NLMS algorithm, one algorithm can
be used to perform many tasks, with minor adjustments of
constants for different applications.

III. PROPOSED ADAPTIVE FILTERING ALGORITHMS

The algorithms proposed here are obtained by applying
the set-membership filtering (SM) technique on the adaptive
filtering algorithms. This filtering framework improves the
MSE performance while it reduces the complexity by means
of selective updates and matrix sparsity. We consider a general
complex-valued matrix based estimation scheme here so that
it encompasses a wide range of applications such as complex-
valued channel estimation with arbitrary number of sensor
nodes at the transmitter and receiver of each hop. Denoting the
received vector at each hop as r, the complex valued channel
matrix as H, the known pilot vectors as s and the additive
white Gaussian noise (AWGN) as n, the received vector can be
expressed as rk = Hksk + nk, where the subscript k denotes
the kth time-step. For convenience, this can be considered
as the transmission through the direct data link illustrated in
Figure 1, where rk,nk ∈ CNr , sk ∈ CNs and Hk ∈ CNr×Ns .
However, this is the general model for each hop where rk
and sk can be replaced by the received vector ui and the
transmitted vector u′i−1, respectively, with i denoting the relay
number. Depending on the relaying plan, vector u′i can be an
amplified-and-forward, compressed-and-forward or decoded-
and-forward version of vector ui. Note that this is a general
model based on the complex-valued matrix estimation and it
can be used for the estimation of other parameters, whereas
most of the adaptive filtering techniques are based on the real-
valued vector estimations. Since the SM-NLMS algorithm is
a special case of the SM-AP algorithm where the data reuse
factor is set to 1, we discuss the latter here. The objective of
the AP algorithm is to minimize ‖Hk+1 −Hk‖2F subject to
rk−i − Hk+1sk−i = 0∀i ∈ FP−10 , where P ∈ N denotes
the data reuse factor, F implies the Frobenius norm and
Fji := {i, i + 1, . . . , j} ∀i, j ∈ Z, i ≤ j. This means that
the next estimate, i.e., Hk+1, is found such that all of the
a posteriori errors are set to zero. Denoting the optimal H by
Ho, i.e., rk = Hosk + nk ∀k, it is clear that in a general
case rk − Hosk = nk 6= 0, consequently, forcing the a
posteriori errors to zero in the AP algorithm for P times in
each step degrades the MSE performance, though improves
the convergence speed. The SM framework resolves this issue
by setting rk−i −Hk+1sk−i = gk,i ∀i ∈ FP−10 , where for a
γ ∈ R+, ‖gk,i‖ ≤ γ. Defining the feasibility set Θ as

Θ :=
⋂

(r,s)∈S

{H ∈ CNr×Ns : ‖r−Hs‖ ≤ γ}

where S denotes the set of all possible data pairs (r, s), the
constraint set at any time instant k as

Hk := {H ∈ CNr×Ns : ‖rk −Hsk‖ ≤ γ}

and the membership set at time instant k as ψk :=
k⋂
i=1

Hi, the

latter can be expressed as follows

ψk =

k−P⋂
i=1

Hi
k⋂

j=k−P+1

Hj = ψ
(k−P )
k

⋂
ψ

(P )
k

where ψ(k−P )
k and ψ(P )

k are the intersections of the first k −
P and the last P constraint sets, respectively. Thus, the P

constraints of the problem are equivalent to Hk+1 ∈ ψ(P )
k .

From the previous work [14], the solutions for the Lagrangian
function are as follows

Hk+1 =

{
Hk + µ(Ek −Gk)(SHk Sk)−1SHk if ‖ek‖ > γ;

Hk else,

where ek := rk − Hksk ∀k ∈ Z, εk,i := rk−i −
Hksk−i ∀i ∈ FP−11 , Ek := [εk,P−1 εk,P−2 . . . εk,1 ek] ∈
CNr×P , Gk := [gk,P−1 gk,P−2 . . . gk,1 gk,0] ∈ CNr×P ,
Sk := [sk−P+1 sk−P+2 . . . sk] ∈ CNs×P and 0 < µ ≤
1 is the step size. Different choices for matrix Gk were
discussed in [14]. Also for the case Nr = 1, sk,H

T
k ∈

RNs , rk,nk ∈ RNr , the choice G̃ := [γsign(E)] was
employed in [18], where sign(E) returns the element-wise
sign of the matrix. Here, we show that the choice G∗k =
[εk,P−1 εk,P−2 . . . εk,1 γ

ek

‖ek‖ ] has the best performance. First
of all, from the previous updates, we have Hk ∈ Hk−j ∀j ∈
FP−11 , therefore with the Gk defined above, we have ‖gk,i‖ =
‖εk,i‖ = ‖rk−i−Hksk−i‖ ≤ γ ∀i ∈ FP−11 . So the first P −1
vectors of Gk are bounded by γ. Secondly, the last vector
γ ek

‖ek‖ is obtained such that it has the minimum distance to
the error vector ek while it has a norm not greater than γ.
Thus, by simply expanding ‖Ek −Gk‖2F as

‖Ek −Gk‖2F =

P−1∑
i=1

‖εk,i − gk,i‖2 + ‖ek − gk,0‖2,

it can be seen that G∗k is the unique solution for minimizing
‖Ek −Gk‖2F subject to ‖gk,i‖ ≤ γ ∀i ∈ FP−10 . Finally, the
update equation above can be simplified as follows

Hk+1 =

{
Hk + µ(1− γ

‖ek‖ )ekq
H
k SHk if ‖ek‖ > γ;

Hk else,
(1)

where qk is the last column vector of the matrix (SHk Sk)−1.
Thus, the calculation of other entries of the inverse matrix is
not required. As discussed, the SM-AP algorithm derives the
solution for Hk+1 with respect to the bounding performance
in the P most recent time steps. Applying the SM filtering
framework on the RLS algorithm, the obtained SM-RLS
algorithm (also known as BEACON) takes into account the
error from all previous steps with a varying forgetting factor.
In other words, matrix Hk is found by setting ∇L = 0, where
∇ denotes the gradient operator and the Lagrangian function
L is defined as

Lk :=

k−1∑
i=1

λk−ik ‖ri −Hksi‖2 + λk
(
‖rk −Hksk‖2 − γ2

)



with λk playing the role of both the Lagrange multiplier
and the forgetting factor [15]. The solution for the BEACON
algorithm can be found in [15]. This algorithm is generally
more complex than the SM-AP algorithm but it has a better
MSE performance and does not require any explicit matrix
inversion. For convenience, this algorithm is shown here.

Algorithm 1. BEACON (as derived in [15])

(1) Initialization: H0 = 0 ,P0 = I
(2) For k ≥ 1, compute εk = rk −Hk−1sk

λk =

{
1
Gk

(
‖εk‖
γ
− 1
)

if ‖εk‖ > γ;

0 else,
where Gk = sHk Pk−1sk

kk =
sHk Pk−1

1+λkGk
, update

{
Hk = Hk−1 + λkεkkk
Pk = Pk−1 − λkPk−1skkk

Since the number of multiplications is generally the most
dominant factor for complexity and power consumption eval-
uation, we aim at slightly reducing this number here. From
Algorithm 1, the following relation is deduced

Pk−1skkk =
Pk−1sks

H
k Pk−1

1 + λkGk
.

By substitution, the relation below holds for every k

Pk =

Pk−1 −
‖εk‖/γ − 1

sHk Pk−1sk

Pk−1sks
H
k Pk−1

1 + λkGk
if ‖εk‖ > γ

Pk−1 otherwise.

Considering 1 + λkGk ∈ R ∀k ∈ Z, it can be easily observed
that if Pk−1 is Hermitian, then Pk is also Hermitian, and
since P0 = I, by mathematical induction it is concluded that
for every k, PH

k = Pk. In other words, it is not necessary
to compute the lower triangular part of Pk as it can be
reconstructed from the upper triangular part by a complex
conjugation. So in Algorithm 1, Pk can be updated as follows

vech(Pk) = vech(Pk−1)− λkvech(Pk−1skkk)

where vech(.) denotes the half vectorization. Also using this
Hermitian property, it is clear that [Pk−1sk]H = sHk Pk−1,
therefore, kk and Pk can be obtained from zk := Pk−1sk
without any multiplication or addition to calculate zk again.
The modified BEACON algorithm is shown in Algorithm 2.
Defining ∆Hk as ∆Hk := Ho −Hk, one can simply prove
that ek = nk + ∆Hksk. Therefore, Jk can be defined and
expressed as follows

Jk := E
[
‖ek‖2

]
=E

[
eH
kek
]

=E
[(

nHk + sHk ∆HH
k

)
(nk + ∆Hksk)

]
=E

[
‖nk‖2

]
+ E

[
sHk ∆HH

k ∆Hksk
]

=Nrσ
2
n + E

[
‖∆Hksk‖2

]
(2)

where the property E[nk] = 0 was used to simplify the
relation assuming a zero-mean white Gaussian noise. Exclud-
ing the additive noise term in Equation (2), the excess MSE
(EMSE) is defined as EMSE := limk→∞E

[
‖∆Hksk‖2

]
.

The optimum γ, denoted by γo, can be found by minimizing
the EMSE, i.e.,

γo = arg min
γ

lim
k→∞

E
[
‖∆Hksk‖2

]
.

The major drawback of the SM-AP and BEACON algorithms
is the fact that finding a convenient closed-form solution for
EMSE, and subsequently γo, is very difficult. However, even
a suboptimal performance can be significantly better than the
NLMS algorithm if γ is close enough to the optimum value.
One simple solution is to set γ for different estimations based
on the statistical performance.

Algorithm 2. Modified BEACON

(1) Initialization: H0 = 0 ,P0 = I
(2) For k ≥ 1, compute εk = rk −Hk−1sk

λk =

{
1

sH
k

zk

(
‖εk‖
γ
− 1
)

if ‖εk‖ > γ;

0 else,
where zk = Pk−1sk

kk =
γzHk
‖εk‖

, update

{
Hk = Hk−1 + λkεkkk
vech(Pk) = vech(Pk−1)− λkvech(zkkk)

The performance of the SM-AP algorithm with respect to
different γ values will be discussed in Section IV. Another
approach to prevent overbounding or underbounding is to
employ time-varying bounds. This method slightly increases
the computational load and often involves setting some extra
parameters for tuning. For our complex- valued BEACON
matrix estimation problem, the time varying bound can be
expressed as γk+1 = (1− β)γk + β

√
α‖Hk‖Fσn, where β is

the forgetting factor, α is the tuning parameter and σ2
n is the

noise power [15], [19].

IV. SIMULATIONS

In this section, we show how the proposed low complexity
algorithms can improve the MSE performance in terms of
steady state error (SSE) and convergence speed, while reduc-
ing the power consumption by selective updates. We consider
a hop with Ns = 5, Nr = 6 where SNR is fixed at 30dB and
the actual channel matrices Ho to generate rk are drawn from
uniform distributions U(0, 1) and U(−π, π) for amplitude
and phase, respectively. Also the pilots sk are generated by
exp(jλπθ) where θ ∼ U(0, 1) and 0 < λ ≤ 2 is a constant
to manage the pilot correlation, i.e., for smaller λ values, the
pilots are more correlated. Figure 3 shows the performance of
the SM-AP algorithm for different γ values, where P = 3,
µ = 1, λ = 2 and Gk = G∗k. In the figures of this section, β̄
denotes the average update rate for each algorithm. As shown
in Figure 3, in steps around 200, where the algorithms have
approximately converged, the performance of the algorithm
with γ = 0.1 is superior. Also as the magnified part shows,
from γ = 0.05 to 0.1, the MSE performance improves steadily,
while from γ = 0.1 to 0.13, the performance degrades in a
similar manner. This behaviour implies γo = 0.1, which is
validated by the EMSE performance shown in this figure. As
expected, the update rate decreases with γ. Figure 4 shows
the performance of the SM-AP, SM-NLMS, BEACON and
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Compared to NLMS, SM-NLMS is superior.

NLMS algorithms in comparison to each other for a Rayleigh
fading channel, where, the independent real and imaginary
components are distributed by N (0, 0.5). In this figure, λ = 2,
µ = 1 and P = 3. It is evident that the proposed SM-AP
and BEACON algorithms outperform the NLMS algorithm in
terms of convergence speed and SSE. Note that SM-NLMS is
obtained from SM-AP with P = 1. As shown in this figure,
the SM-NLMS algorithm is clearly superior compared to the
NLMS algorithm in terms of SSE (about 7.9dB lower) and
update rate β̄ = 86.5%. This rate for BEACON and SM-AP
with P > 1 decreases to 45.5% and 49.2%, respectively, which
is due to the data reuse property in these algorithms. Figure 5
shows the performance of SM-AP and SM-NLMS for different
input signal correlations λ = 0.7, 1 and 2, where other simu-
lation parameters are the same as in Figure 4. As the curves
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exhibit, the SM-AP algorithm converges faster than the SM-
NLMS algorithm, and this convergence is more pronounced
when the signals are highly correlated. In fact, compared to
SM-NLMS, the SM-AP algorithm with P > 1 improves the
convergence speed at the cost of a slight increase in the SSE
value. As a result, for highly correlated input signals, the SM-
AP with P > 1 is more appropriate than SM-NLMS, as it
requires less training symbols to converge. Figure 6 shows the
MSE performance of SM-AP for Gk = G̃k and Gk = Gk

where P = 2, µ = 1, λ = 2. For this simulation, the
pilot vectors are generated by <{exp(jλπθ)}, i.e., the real
component of exp(jλπθ), and consequently SNR is less than
30 dB for this figure. The reason for choosing real pilots while
other parameters are the same as before is the fact that the main
relation rk = Hksk + nk with sk ∈ RNs and a circularly



symmetric complex Gaussian noise can be decomposed as
two real-valued equations <{rk} = <{Hk}sk + <{nk} and
={rk} = ={Hk}sk + ={nk}, where each of the recent
relations can be further decomposed as Nr separate real-
valued vector-based estimations. Therefore, if we define Θ
and Hk as

Θ :=
⋂

(r,s)∈S

{
H ∈ CNr×Ns : ‖r−Hs‖<∧=max ≤ γ

}
and

Hk :=
{
H ∈ CNr×Ns : ‖rk −Hsk‖<∧=max ≤ γ

}
where for any vector like x, ‖x‖<∧=max ≤ γ means
‖<{x}‖max ≤ γ and ‖={x}‖max ≤ γ, then G̃k is applicable
and we can make a fair comparison of the MSE performance
for G̃k and G∗k. As shown in Figure 6, the proposed G∗k
completely outperforms G̃k for different values of γ (except
for γ = 0.01), while, due to the removal of the a posteriori
errors and major parts of the matrix inversion (Equation (1)),
its computational complexity is significantly less than using
G̃k. This figure verifies the mathematical proof presented in
Section III. Note that in both cases, when γ = 0, the SM-
AP algorithm becomes the regular AP algorithm. Therefore,
as shown in this figure, the performance in both cases are
similar for γ = 0.01. As a consequence, similar to the
superiority of SM-NLMS over NLMS in Figure 4, SM-AP
clearly outperforms the regular AP algorithm in terms of error
performance and complexity.

V. CONCLUSIONS

The diverse applications of adaptive filtering techniques, and
in particular, the NLMS algorithm, for signal processing in
WSNs were investigated and two general adaptive algorithms
based on the set-membership filtering were proposed, which
can estimate complex-valued matrices in the presence of
AWGN. The set-membership filtering reduces the complexity
and consequently the energy consumption by means of selec-
tive updates and sparse matrix calculations, while it improves
the error performance as well. The purpose was to show that
many signal processing algorithms for WSNs can be replaced
by one general low complexity algorithm which can perform
different tasks by minor parameter adjustments. In this way,
we eliminate the need to implement many energy and mem-
ory consuming algorithms for different purposes and replace
them with one energy efficient and accurate structure. In the
simulations section, we showed that the MSE performance
of the proposed algorithms are better than that of the NLMS
algorithm, where, the latter technique was one of the main
algorithms used in the previous works.
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