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Abstract—In this paper, we address the optimal power allo-
cation problem in a distributed passive radar sensor network
system, where closely located nodes are capable of distributed
beamforming. In this setup, the network of sensor nodes is viewed
as a combination of node clusters, where each cluster is capable
of time synchronization, and coordinated transmission. The goal
of the network is to provide a reliable estimation of a source
signal, by collecting and combining the individual observations
from the sensor nodes in a centralized node. In this regard, a
minimum mean squared error (MMSE) problem is formulated
for the class of unbiased estimators. As it is shown, the resulting
problem can be formulated as a convex optimization problem,
which is solvable with the standard numerical solvers. At the end,
numerical simulations illustrate the effect of the different network
parameters on the resulting performance, and a significant gain
is observed by enabling the proposed distributed beamforming
algorithm for multiple sensor clusters.

1. INTRODUCTION

Nowadays, many applications benefit from the idea of
distributed sensor networks for purposes of observation and
communication. The range of these applications especially
covers health care, traffic monitoring, radio astronomy, particle
physics [1], [2], as well as various use-cases in the area of
space and extreme environments. In particular, goal of a dis-
tributed passive radar is to provide a reliable estimation from
a source signal, by collecting and combining the individual
passive observations from a network of sensor nodes (SN)s in
a centralized node, i.e., fusion center (FC). As an interesting
example, we can mention the ’IceCube Neutrino Observatory’
at the south pole, where a sensor network with more than
5000 SNs is deployed to observe certain characteristics of sub-
atomic particles [3]. Since the operation of the whole sensor
network is mostly intended to consume minimum resources
while keeping the individual cost and maintenance of SNs low,
an energy efficient operation is highly desirable. Hence, the
related problem of optimal power allocation and corresponding
energy-aware system design has been addressed in many
works, e.g., in [4], [5] and [6]. In particular, an optimal
power allocation scheme in the context of a distributed passive
radar is provided in [1], where an analytical framework is
proposed, and afterwards extended regarding computational
complexity [7], network lifetime and energy efficiency [8], [9],
and occasional node failure and network data inaccuracy [10].

Other than the gainful approaches regarding smart power
allocation and energy-aware design, it is known that the
network energy efficiency can be significantly improved by

benefiting from spatially coordinated transmission schemes,
e.g., distributed beamforming [11]. Nevertheless, due to the
small and cheap nature of the SNs, an ideal coordination
among all sensors in the network level is difficult to achieve.
As a result, a joint operation of the SNs is mostly separated in
different channels to avoid interference and reduce complexity,
see, e.g., [1], [12], [13]. In the early works [14], [15] the
idea of local coordination of SNs is studied, where a cluster-
based distributed beamforming is enabled for communication
purposes. The aforementioned works follow the idea that the
closely located SNs can communicate and coordinate their
transmission schemes at a minimal energy and complexity.
These works have been then extended in various aspects
addressing the applications of distributed passive radar, e.g.,
target localizations [16], distributed imaging [17], and airspace
surveillance [18]. Nevertheless, an optimal power allocation, as
well as an optimal information fusion among different sensor
clusters for a partially-coordinated distributed passive radar
system is still an open problem.

In this work, we extend the optimal power allocation
algorithm in [1] in the context of a passive distributed radar
system, to the scenario where the clusters of closely located
sensors can perform distributed beamforming. In particular,
we provide optimal solutions regarding two open problems.
Firstly, for a given network with multiple clusters, how should
be the network power allocated among different sensor clus-
ters, and secondly, how should be the observations from
different clusters optimally combined in order to build a single
reliable observation. In Section II, we define the investigated
system model. Section III presents the optimal design of the
system parameters, including an optimal signal fusion rule, as
well as an optimal distributed beamforming within each sensor
cluster. The numerical simulations evaluate the performance of
the proposed algorithms under different network conditions.

2. SYSTEM MODEL

In this work we investigate a network of amplify-and-
forward (AF) passive sensor nodes, cooperating to achieve a
single global observation via a fusion center (FC), see Fig 1.
The sensors which are closely located are clustered in a group,
and are capable of time synchronization and coordinated
transmission, i.e., distributed beamforming. The index k ∈ K

and l ∈ Lk are used to represent different clusters and different
SNs, where the sets K and Lk respectively represent the index
set of all clusters, and the index set of all SNs in the k-th
cluster. Both communication and sensing channels (frequency-
flat fading) are assumed to be wireless and static during the978-1-5090-2609-8/16/$31.00 c© 2016 IEEE



observation process. The final goal of each observation is to
classify (or detect) a source signal r ∈ C. Each observation
can be segmented into three parts: sensing, communication,
and information fusion. The detailed function of each SN is
discussed in the following, see also [1, Section II] for a detailed
discussion on a non-clustered network.

A. Operation of SNs

If a target signal r ∈ C is present, each SN receives and
amplifies the incoming signal using an amplification coefficient
uk,l ∈ C, k ∈ K, l ∈ Lk. The communication with FC is
performed by using orthogonal waveforms for each cluster so
that the signal from different clusters can be separated and
processed in FC. Please note that for the SNs belonging to
the same cluster, a time-delay is imposed on the amplified
signal prior to transmission, such that the signals from the
SNs belonging to a same cluster simultaneously arrive at the
FC. See [11] for a more detailed synchronization process for
the distributed beamforming scenarios. The process of each
SN can be hence described as 1

xk,l := uk,l (gk,lr +mk,l) , k ∈ K, l ∈ Lk (1)

and

Xk,l := E{|xk,l|2}, R := E{|r|2}, (2)

where the sensing channel coefficient, the transmit signal from
the SNs and its power are respectively denoted by gk,l ∈ C,
xk,l ∈ C and Xk,l. The additive white Gaussian noise (AWGN)
on the sensing process and its variance are respectively denoted
as mk,l ∈ C and Mk,l.

Furthermore, it is assumed that the power consumption
of k-th SN cluster is limited by Xmax,k, while the total
power consumption of the network is limited by Xtot. This
is formulated as ∑

l∈Lk

Xk,l ≤ Xmax,k, k ∈ K, (3)

and ∑
k∈K

∑
l∈Lk

Xk,l ≤ Xtot. (4)

Please note that the per-cluster power constraint is to ensure
that the resources of each cluster, as a united group of
the network resources, will not be over-utilized for a single
observation process and remains functional for the future tasks.
On the other hand, the total network power constraint is to
ensure that the network remains functional over a reasonable
lifetime.

B. Fusion Center

The transmitted signal from the SNs belonging to the same
cluster pass through the same communication channel, with
coefficient hk,l ∈ C, and arrive at the FC combined with

1The described synchronization process by introducing time-delay is as-
sumed implicit in the following formulations, and eliminated due to the
notational simplicity.

Figure 1. Signal flow at the defined sensor network consisting of a
target signal, multiple sensor clusters (C1, . . . , C|K|), multiple sensor
nodes at each cluster, and a fusion center. See Section II for a detailed
explanation.

an AWGN component nk ∈ C, with variance Nk. This is
described as

yk := nk +
∑
l∈Lk

hk,lxk,l. (5)

Please note that while the communication channel to the FC is
shared among the SNs belonging to a same cluster, orthogonal
communication channels are assigned to clusters. Hence, the
received signals from different clusters can be separated and
processed at the FC. In our system, a linear combination rule
is then applied at the FC to achieve an estimation, r̃, from the
observed target signal by the network. This is described as

r̃ : =
∑
k∈K

vkyk

=
∑
k∈K

vk

(
nk +

∑
l∈Lk

hk,luk,lgk,lr + hk,luk,lmk,l

)
. (6)

where vk ∈ C represents the applied fusion weight at the
received signal from the k-th sensor cluster, and r̃ represents
the estimated target signal at the FC.

C. Remarks

In the present work:

• we assume the availability of perfect channel infor-
mation for both sensing and communication channels.
In reality. it is rather difficult to estimate the sensing
channel in an accurate way unless the channel has
a highly stationary nature, see, e.g., [3]. Hence, for
scenarios where the sensing channel is not stationary,
or the statistics regarding node failure is not tractable,
the results of this paper can be treated as theoretical
limits.

• we assume a perfect time synchronization between the
SNs belonging to a same cluster, as well as perfect
separation of the channels belonging to different SN
clusters. A study regarding the effects of the time and
frequency synchronization error will be a focus of our
future research.



3. MMSE DESIGN OF NETWORK PARAMETERS WITH

PARTIAL DISTRIBUTED BEAMFORMING

In this section we propose an MMSE design of the network
parameters for unbiased class of estimators. In the first step, we
observe that the unbiased estimation property can be written
as

E {r̃ − r} = 0 ⇔
∑
k∈K

vk
∑
l∈Lk

hk,luk,lgk,l = 1, (7)

following the identity (6) and the fact that all noise terms
are zero mean. Furthermore, the mean squared error of the
estimation can be written as

V : = E{|r̃ − r|2}
=
∑
k∈K

|vk|2Nk +
∑
k∈K

|vk|2
∑
l∈Lk

|hk,luk,l|2Mk,l, (8)

where (8) follows via the application of (7), and the fact that
all the noise terms are mutually independent and zero-mean.
As a result, the MSE minimization problem can be formulated
for an unbiased class of estimates which satisfy the defined
power constraints as

minimize
uk,l,vk, k∈K,l∈Lk

V (9a)

s.t. (7), (3), (4). (9b)

Unfortunately, (9) is not a jointly convex optimization problem.
Nevertheless it is separately convex over the fusion weights,
i.e., vk, k ∈ K. In the following part we obtain a set of optimal
fusion weights for a fixed set of amplification coefficients.

A. Optimal Linear Fusion

Please note that the defined power constraints in (3), (4)
are invarient to the choice of fusion weights. The correspond-
ing optimization problem over the fusion weights, when the
amplification coefficients are fixed, is formulated as

minimize
vk, k∈K

V (10a)

s.t.
∑
k∈K

vk
∑
l∈Lk

hk,luk,lgk,l = 1, (10b)

which is a convex optimization problem. The corresponding
Lagrangian function to (10) can be subsequently written as

L (vk, λ) =
∑
k∈K

λ

(
1−

∑
k∈K

vk
∑
l∈Lk

hk,luk,lgk,l

)
(11a)

+
∑
k∈K

|vk|2
∑
l∈Lk

|hk,luk,l|2Mk,l (11b)

+
∑
k∈K

|vk|2Nk. (11c)

For any optimal solution to (10), the derivative of the La-
grangian should vanish with respect to vk. This is written as

∂L
∂vk

= 0 ⇔

v∗k

(
Nk +

∑
l∈Lk

Mk,l|hk,luk,l|2
)

− λ
∑
l∈Lk

hk,luk,lgk,l = 0.

(12)

Following the identity ∑
k∈K

vk
∂L
∂vk

= 0 (13)

we obtain λ = V . Furthermore, following

∑
k∈K

(∑
l∈Lk

hk,luk,lgk,l
)∗

Nk +
∑

l∈Lk
Mk,l|hk,luk,l|2

(
∂L
∂vk

)
= 0 (14)

we obtain

V =

(∑
k∈K

|∑l∈Lk
hk,luk,lgk,l|2

Nk +
∑

l∈Lk
Mk,l|hk,luk,l|2

)−1

(15)

which consequently from (12) results in

v�k =

(∑
k∈K

|∑l∈Lk
hk,luk,lgk,l|2

Nk +
∑

l∈Lk
Mk,l|hk,luk,l|2

)−1

×
∑

l∈Lk
h∗
k,lu

∗
k,lg

∗
k,l

Nk +
∑

l∈Lk
Mk,l|hk,luk,l|2 , k ∈ K, (16)

where v�k represents the optimal fusion weight, corresponding
to the k-th sensor cluster.

B. Power Constraint Per-Cluster Distributed Beamforming

The obtained MSE in (15) corresponds to the optimal linear
fusion at the FC for an unbiased class of estimators, via the uti-
lization of the fixed set of uk,l. In this part, we are looking for
an optimal set of uk,l which result in the minimum estimation
MSE in (15), while satisfying the total, and per-cluster power
constraints. The corresponding optimization problem can be
formulated as

maximize
uk,l,k∈K,l∈Lk

∑
k∈K

|∑l∈Lk
hk,luk,lgk,l|2

Nk +
∑

l∈Lk
Mk,l|hk,luk,l|2 (17a)

s.t. (3), (4), (17b)

where the maximization objective reflects the inverse of the
obtained minimum MSE in (15). As it can be observed, (17)
is a coupled optimization problem over different clusters due to
(4) and hence it is difficult to approach in the current form. In
order to decouple the optimization of uk,l for each cluster, we
equivalently reformulate (17) as a power allocation problem
over different sensor clusters. This is written as

maximize
uk,X̃k,k∈K

∑
k∈K

uH
k Akuk

uH
k Bkuk +Nk

(18a)

s.t. uH
k Pkuk = X̃k, (18b)

X̃k ≤ Xmax,k,
∑
k∈K

X̃k ≤ Xtot, (18c)

where uk ∈ C
|Lk| is a vector which is constructed by stacking

the values of uk,l, l ∈ Lk such that [uk]l = uk,l. The
matrices Bk and Pk are diagonal matrices such that [Pk]ll =
R|gk,l|2 +Mk,l and [Bk]ll = |hk,l|2Mk,l. Moreover we have
Ak = aka

H
k such that ak ∈ C

|Lk| and [ak]l = h∗
k,lg

∗
k,l,

which also reveals the rank-1 nature of the matrix Ak. In
the above formulation, X̃k holds the consumed power at the
sensor cluster k, see (18b). Note that the objective in (18) is
now a decoupled problem over uk,l for a fixed set of X̃k,



while the constraint (18c) is coupled over different clusters.
This decomposes (18) into a maximization of the objective for
each cluster, for a fixed set of X̃k as

maximize
uk,l,l∈Lk

τk :=
uH
k Akuk

uH
k Bkuk +Nk

(19a)

s.t. uH
k Pkuk = X̃k. (19b)

By defining ũk :=
P

1
2
k uk

∣
∣
∣
∣
P

1
2
k uk

∣
∣
∣
∣

, we can reformulate (19) as

maximize
ũk

τk =
X̃kũ

H
k P

− 1
2

k AkP
− 1

2

k ũk

ũH
k

(
X̃kP

− 1
2

k BkP
− 1

2

k +NkI|Lk|
)
ũk

(20a)

s.t. ũH
k ũk = 1. (20b)

The resulting problem follows the well-known Rayleigh-
quotient structure, where the optimal ũk is obtained as

ũ�
k = Pmax {Yk} , τ�k = P̄max {Yk} ,

Yk :=
(
X̃kP

− 1
2

k BkP
− 1

2

k +NkI|Lk|
)−1

X̃kP
− 1

2

k AkP
− 1

2

k

(21)

where Pmax{·} and P̄max{·} respectively obtain the dominant
eigenvector and eigenvalue. Please note that τ�k represents the
optimal value for τk, i.e., the objective value in (19). It is
interesting to observe that the solution to the decomposed
problem for each cluster follows a similar structure compared
to a signal-to-noise maximization beamforming problem in
a synchronized relay network, see [19, Section IV]. Never-
theless, the obtained structure is not sufficient to achieve an
optimal inter-cluster resource allocation, which appear as a
result of the coupled constraint in (18c). In the following, we
aim at obtaining an explicit relation between the value of the
X̃k, and the resulting optimal objective value in (19), i.e., τ�k .
It is known that the maximum eigenvalue operator is a convex
function. In this way, τ�k can be presented as a convex and
non-decreasing composition of a concave and non-decreasing
function over X̃k. Unfortunately, such a composition does not
lead to a concave (or convex) function in general. Nevertheless,
by taking advantage of the rank-1 nature of Ak, we provide
a concave representation of τ�k with respect to X̃k in the
following Lemma.

Lemma 1. Let WkΣkW
H
k be the singular-value decomposi-

tion of the matrix P
− 1

2

k BkP
− 1

2

k , where wk,l represent the l-th
column of Wk and σk,l = [Σk]ll. Then we have

τ�k =
∑
l∈Lk

X̃kw
H
k,lP

− 1
2

k AkP
− 1

2

k wk,l

X̃kσk,l +Nk

. (22)

Proof: See Appendix.

Please note that (22) is a concave function over X̃k.
Consequently, the optimization problem for power allocation
over different clusters can be formulated as

maximize
X̃k,k∈K

∑
k∈K

∑
l∈Lk

X̃kηk,l

X̃kσk,l +Nk

. (23a)

s.t. X̃k ≤ Xmax,k,
∑
k∈K

X̃k ≤ Xtot, (23b)

which is a maximization of a jointly concave function over X̃k,

with affine constraint, and ηk,l := wH
k,lP

− 1
2

k AkP
− 1

2

k wk,l. As a
result, (23) holds a convex optimization problem structure, can
be solved using the famous numerical solvers, e.g., SeDuMi,
SDPT3, see [20]. The optimal amplification coefficients, and
the optimal fusion weights can be obtained via the utilization
of (19), and subsequently (16).

4. SIMULATION RESULTS

In this part we investigate the performance of the defined
system via numerical simulations. We simulate a network
including a source, a FC, and 256 SNs, see Fig. 2. All sensing
and communication channel coefficients are flat-fading, zero-
mean and follow a Gaussian distribution. The variance of the
channel between two nodes, is determined as the d−ζ , where
d represents the distance between two nodes, and ζ is the path
loss exponent. Unless stated otherwise, the given values in
Table I are used as the default network parameters. In order
to identify the sensor clusters, we assume that a cluster can
be made by the neighboring SNs in a squared-shape area.
In this respect we consider 5 different scenarios, where the
sensor clusters are defined as square-shaped groups including
|Lk| ∈ {1, 4, 16, 64, 256} sensors, see Table II. For each
set of channel realizations, i.e, hk,l, gk,l, 10000 realizations
of r, nk,l,mk,l are generated, following the defined statistics,
to evaluate the network performance. The resulting network
performance is then averaged over 100 channel realizations.

In Fig. 3 the resulting estimation accuracy, in terms of
RV −1 [dB], is depicted for different noise intensity on the
sensing and communication channels. It is observed that the
higher noise intensity results in the reduced estimation accu-
racy. Furthermore, a significant beamforming gain is observed
for different noise intensities, in the comparison between
Scenario 1, i.e., where all SNs contribute to the distributed
beamforming setup within a single cluster, and Scenario 5 with
no coordinated sensor group. Furthermore, it is observed that
the gain of distributed beamforming on the estimation accuracy
is monotonically increasing with the sensor cluster size, i.e.,
|Lk|, see Scenario 1 to Scenario 5. In the other words, more
coordination among SNs, and hence larger sensor clusters,
result in higher estimation accuracy.

In Fig. 4 and Fig. 5 the resulting estimation accuracy, in
terms of RV −1 [dB], is depicted for different noise intensity
on the sensing channel, i.e., Mk, l and on the communication
channel Nk, respectively. Similar to Fig. 3, it is observed that
the higher noise intensity results in the reduced estimation
accuracy. Moreover, it is observed that the coordination among
the SNs, and performing distributed beamforming increases
the resulting estimation accuracy. Nevertheless, while the
aforementioned gain increases as the Nk increases (and vice
versa), it remains rather constant for different values of Mk.
This is expected since, while the distributed beamforming
among sensors significantly enhances the communication pro-
cess by aligning the useful signal components at the FC,
the performance is still limited by the quality of the sensing
process. Furthermore, similar to Fig. 3, the comparison among
Scenario 1 to Scenario 5 reveals that the more coordination
capability among SNs, i.e., larger cluster sizes |Lk|, result in
a higher estimation accuracy.



Table II. SCENARIOS FOR SN CLUSTERS

Scenario Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Set size |K| = 1, |Lk| = 256 |K| = 4, |Lk| = 64 |K| = 16, |Lk| = 16 |K| = 64, |Lk| = 4 |K| = 256, |Lk| = 1

Table I. REFERENCE SIMULATION PARAMETERS

R Xmax,k Xtot ζ Mk,l Nk

1 |Lk| 100 2.5 0.1 0.1

Figure 2. The simulated network, including a source, a network of 256 SNs
(16× 16 setup), and a FC.
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Figure 3. The resulting estimation accuracy in terms of RV −1 [dB] vs. Noise
variance at both sensing and communication channels Nk = Mk,l, ∀k ∈
K, l ∈ Lk . Significant distributed beamforming gain is observable for
different noise intensities.

5. CONCLUSION

In this paper we have studied a system of passive dis-
tributed radar sensor network, where the sensors in each cluster
are capable of distributed beamforming. In this respect, we
have provided an optimal linear fusion strategy for the observa-
tion of different sensor clusters, together with an optimal power
allocation among different clusters under a total network power
constraint. Numerical simulations show that a significant gain
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Figure 4. The resulting estimation accuracy in terms of RV −1 [dB] vs.
Noise variance at the sensing channel Mk = Mk,l, ∀l ∈ Lk . Significant
distributed beamforming gain is observable for different noise intensities.
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Figure 5. The resulting estimation accuracy in terms of RV −1 [dB] vs.
Noise variance at the communication channel Nk, ∀k ∈ K. Larger distributed
beamforming gain is observable as Nk increases.

is achieved in terms of the resulting estimation accuracy,
by enabling optimal distributed beamforming within sensor
clusters. The aforementioned gain is increased for a network
with higher noise intensity on the communication channel.



APPENDIX

Firstly, let UdΣdU
−1
d be the eigenvalue decomposition for

a general rank-1 square matrix D. We can easily observe that

P̄max {D} = tr (Σd) = tr
(
ΣdU

−1
d Ud

)
= tr

(
UdΣdU

−1
d

)
= tr (D) . (24)

By applying the result from (24) into (21) we have

τ�k = tr (Yk)

= tr

((
X̃kWkΣkW

H
k +NkI|Lk|

)−1

X̃kP
− 1

2

k AkP
− 1

2

k

)

= tr

((
Wk

(
X̃kΣk +NkI|Lk|

)
WH

k

)−1

X̃kP
− 1

2

k AkP
− 1

2

k

)

= tr

(
Wk

(
X̃kΣk +NkI|Lk|

)−1

X̃kW
H
k P

− 1
2

k AkP
− 1

2

k

)

= tr

((
X̃kΣk +NkI|Lk|

)−1

X̃kW
H
k P

− 1
2

k AkP
− 1

2

k Wk

)

=
∑
l∈Lk

X̃kw
H
k,lP

− 1
2

k AkP
− 1

2

k wk,l

X̃kσk,l +Nk

. (25)
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