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Abstract—In this paper we study a wireless passive sensor
network. The sensors are deployed to estimate the true values
of multiple active target signals. The sensors forward their
observation to a fusion center, which processes the observation of
each sensor by a set of fusion rules. One achievement of this paper
is proposing an unbiased estimator with minimized variance of
errors. To do so, we optimize both the power allocation to the
sensor nodes and the fusion rules. The optimal solution to the
fusion rules are attained analytically, while the power allocation
is solved sub-optimally. Finally, our results are reinforced by
numerical simulations.

Index Terms—fusion rule optimization, target detection, clas-
sification, minimum variance unbiased estimator, passive radar

I. INTRODUCTION

In this paper, we extend our previous work [1] and consider
a wireless sensor network to observe L active targets by the
aid of K wireless passive sensors. This means that sensors
remain passive without making use of any sensing power and
only receive the emitted signals of the targets. The sensors
consume power for transmitting their observation towards a
fusion center. The data communication to the fusion center
is subject to individual output power constraints and a sum-
power constraint among all sensors. The fusion center applies
a linear fusion rule to combine the received signals and to
estimate accurately the real value of the targets. A similar
scenario is also considered in another work of ours [2]. The
difference is, nevertheless, the number of fusion rules per
target. While in the other work, estimation is performed by
one scalar fusion coefficient per sensor, here each fusion rule
of each sensor is a vector with number entries equal to number
of targets. The system of consideration is appropriate for de-
ployment with extreme environment conditions where sensor
maintenance is very hard or even impossible. Obviously, in
such environments it is crucial to have an a sensor network
with increased lifespan. As an interesting example, we can
mention the ’IceCube Neutrino Observatory’ at the south
pole, where a sensor network with more than 5000 sensors
is deployed to observe certain characteristics of sub-atomic
particles [3].

The rise of certain applications in the 5th generation wireless
systems (5G) increases drastically the importance of sen-
sor networks for sensing and monitoring the environment.
However, an optimal resource utilization is necessary for
an accurately performed sensing and monitoring task, since
the estimation performance increases with the energy and

power consumption of the network. Hence, the optimization
of power and energy resources for a required performance is
of high interest and studied in many publications, especially
for scenarios with a single target. In [1] we have solved in
closed-form the power allocation problem subject to individual
power limitations of the sensors as well as a given sum-
power constraint. In multi-target scenarios the main topics for
investigations address the tracking and coverage problem. For
example, the focus in [4] is to maximize the lifetime subject
to power constraints and coverage regions. In the present work
we minimize the estimation error instead of maximizing the
lifetime. The authors in [5] use the GaussMarkov mobility
model to formulate the tracking problem as a hierarchical
Markov decision process and is solved with the aid of neu-
rodynamic programming. In contrast, we exploit an heuristic
approach to obtain an accurate suboptimal solution instead of
using sophisticated programming methods. Due to difficulties
of a centralized processing to handle multi-target problems,
the authors in [6] have studied the tracking problem by a
distributed data processing approach. In [7] a special scenario
is considered in which sensor nodes can be put into a sleep
mode with a timer, that determines the sleep duration. By
optimizing the sleep duration they show an improvement of
the tracking performance in sensor networks. In contrast to [6]
and [7], we investigate the centralized scenario and determine
the least reliable sensor nodes to keep them asleep for a
uniform time duration, respectively. It is to mention, that our
approach is more general and it can be used not only for
tracking but also for detection and classification of targets,
cf. [8].

The organization of this paper is as follows: the system
model is described in Sec. II. We propose an unbiased estima-
tor in Sec. III whose variance of error can be further minimized
by optimizing the power allocation among the sensor nodes as
well as optimizing a set of fusion rules (per sensor node) at the
fusion center. The resulting optimization problems are solved
in Sec. IV and V. While the simulation results are presented
in Sec. VI, Sec. VII concludes this paper.

Notations: In this paper, upper and lower case boldface
symbols denote matrices and vectors, respectively. The symbol
N shows the set of natural numbers and the set of all complex
(real) matrices of size k × n is denoted by Ck×n (Rk×n).
The set of all real vectors of size k is also shown by Rk. Trace
of a matrix is shown by tr( · ). While [x]m or xmnotifies the
mth element of vector x, we refer to the entry ij of matrix A



by [A]ij or aij . We use In to show the identity matrix of size
n×n. Moreover, ( · )∗ and ( · )T are Hermitian and transpose
operators, respectively. Note that Hermitian of a scalar is the
same as its complex conjugate. Kronecker product is ⊗, while
1n corresponds to all all-one vector of size n. Moreover, E( · )
is the expected value, while the Kronecker delta function is
shown by

δlm =

{
1 , l = m,

0 , l 6= m.

Also, the operator vec(A) stacks all the columns of the matrix
A into one long vector. While diag(A) refers to a vector
consisting of diagonal entries of A, symbol Λx represents
a diagonal matrix whose diagonal entries are the elements
of vector x. Finally, | · | and ‖·‖ denote absolute value and
Euclidean norm, respectively. Finally, O stands for big O
notation.

II. SYSTEM MODEL

We consider a wireless sensor network which consists of
K ∈ N passive sensor nodes in order to estimate multiple
target signals. The block diagram of such a system is shown in
Fig. 1. We assume that there are L ∈ N targets, i.e., r1, · · · , rL,
whose true values are complex and unknown. The index sets
FK := {1, · · · ,K} and FL := {1, · · · , L} correspond to
sensors and targets, respectively. The power of each target
is assumed to be known, i.e., Rl := E(|rl|2), l ∈ FL and,
furthermore, the targets change slowly. Thus, they are constant
over one round of estimation.

The target signal rl is observed at sensor node k upon
multiplying by sensing channel coefficient gkl ∈ C and also
summing up with measurement noise mk ∈ C. The sensing
channel is assumed to be nearly constant over one round
of estimation, so one can consider it as a time-invariant
deterministic value. The measurement noise is further assumed
to be zero-mean, identically and independently distributed (iid)
with variance of Mk, which is also independent from the target
signals. So, it is correct to state

E(mkm
∗
k′) = δkk′Mk, ∀k, k′, (1a)

E(rlm∗k) = E(rl) E(m∗k) = 0, ∀k, l. (1b)

Each sensor accordingly amplifies its received signal by the
real coefficient uk, k ∈ FK and transmits it towards the fusion
center. The output of sensor k, i.e., xk is represented by

xk = uk

(
mk +

L∑
l=1

gklrl

)
, k ∈ FK . (2)

The output power of sensor K is derived below

Xk := E
(
|xk|2

)
=

(
Mk +

L∑
l=1

|gkl|2Rl

)
u2k, (3)

which is limited due to the physical constraint of the sensors,

Xk ≤ Pk, k ∈ FK . (4)

The transmitted signal from each sensor propagates through
the communication channel and arrives at the fusion center.
We denote this signal by yk which can be derived by:

yk := hkxk + nk = hkuk

(
mk +

L∑
l=1

gklrl

)
+ nk, (5)

where hk is the communication channel coefficient between
the sensor node k and the fusion center. Similarly, the com-
munication channel hk is almost constant during the interval
of estimation, and thus deterministic and time-invariant. Also,
nk represents the additive noise at the fusion center antenna,
which is assumed to be zero-mean and iid with variance Nk.
Therefore, we can write

E(nkn∗k′) = δkk′Nk, ∀k, k′, (6a)
E(mkn

∗
k′) = E(mk) E(n∗k′) = 0, ∀k, k′. (6b)

Let

r =
[
r1, · · · , rL

]′
, (7a)

x = [x1, · · · , xK ]′, (7b)

m =
[
m1, · · · ,mK

]′
, (7c)

y = [y1, · · · , yK ]′, (7d)
u = [u1, · · · , uK ]′, (7e)

then (2) can be recast into the vector form

x = Λu(Gr + m), (8)

where [G]kl = gkl corresponds to entries of the sensing
(channel) matrix G while Λu = diag(u). Also, by using (8)
and defining Λh = diag(h), we can rewrite (5) into the vector
form

y = Λhx + n = ΛhΛu(Gr + m) + n. (9)

The fusion center then multiplies its input with the so-called
fusion matrix V ∈ CL×K which leads to the following
observation vector

r̃ = Vy = Hr + w, (10)

where H := VΛhΛuG is the effective observation channel
and w := VΛhΛum+Vn is the effective observation noise.

We further assume that channel state information is avail-
able at the fusion center. In order to increase the life time of
our sensor network and also to manage the interference, we
assume the existence of a sum power constraint, stated below

K∑
k=1

Xk =

K∑
k=1

(
Mk +

L∑
l=1

|gkl|2Rl

)
u2k ≤ Ptot. (11)
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Fig. 1: Block diagram of the multi-target wireless sensor
network with multiple fusion coefficients per sensor node

III. PROPOSED ESTIMATOR

It is only possible to find an efficient estimator, which is
unbiased and further attains the Cramer-Rao lower bound,
when the probability distribution function of the observation is
known [9]. This does not apply to our problem, since we know
only the first and the second moments of the observation. In
this case even finding a minimum variance unbiased estimator
(MVUE) is impossible. Under such circumstances, it is ideal
to come up with the best linear unbiased estimator (BLUE), r̂,
which delivers E(r̂−r) = 0 and minimizes the error variance.
It is known from the Gauss-Markov theorem that the BLUE
of the linear observation (10) is given by

r̂ = Σr̃ =
(
H∗C−1H

)−1
H∗C−1r̃

= r +
(
H∗C−1H

)−1
H∗C−1w , (12)

where C := E(ww∗) is the covariance matrix of the effective
noise, i.e.,

[C]ij =

K∑
k=1

(|hk|2u2kMk +Nk)vikv
∗
jk . (13)

This results in the total estimation error

tr
((

H∗C−1H
)−1)

. (14)

It is, thus, reasonable to further reduce the estimation error by
solving the following optimization problem

min
V,u

tr
((

H∗C−1H
)−1)

(15a)

s.t.
(
Mk +

L∑
l=1

|gkl|2Rl

)
u2k ≤ Pk, k ∈ FK , (15b)

K∑
k=1

(
Mk +

L∑
l=1

|gkl|2Rl

)
u2k ≤ Ptot. (15c)

Unfortunately, the problem (15) is very hard to solve, because
of its very complicated objective function in (15a). We alterna-
tively resort to an easier, but more tractable estimator. Com-
paring the observation (10) with the optimal estimator (12)
reveals that forcing H to I by optimizing V will result in an
unbiased observation. In turn, the objective (14) approaches
tr(C) which can further be minimized by the aid of u.
Moreover, by replacing H = VΛhΛuG = I into (10) and
using (13) it is easy to show that

f(u,V) =:
K∑

k=1

(
(|hk|2u2kMk +Nk) ·

L∑
l=1

|vlk|2
)
, (16)

or equivalently,

f(u,V) = tr(VΛdV∗), (17)

where [d]k := |hk|2u2kMk + Nk for all k ∈ FK . Therefore,
by solving the following proposed optimization problem, we
first make the observation unbiased and second minimize the
variance of the error:

min
u,V

tr(VΛdV∗) (18a)

s.t. VΛhΛuG = I, (18b)

as well as (15b) and (15c). The unbiasedness is provided by
the constraint in (18b). Note that K ≥ L is required by the
feasibility of the problem (18). This simply means that at least
L sensors must be active for an unbiased estimation in order
to detect L targets. In summary, the feasibility of the system
under consideration, imposes some requirements which are
summarized in the Table I.

TABLE I: Facts and figures of the proposed estimator

Number of channel estimations
(L+ 1)Kper target estimation

Minimum number of sensors L
Number of system variables (L+ 1)K

Minimum number of
(L+ 1)Lsystem variables

IV. OPTIMIZING FUSION RULE

It is worthwhile mentioning that power constraints (15b) and
(15c) are independent from fusion rules, so the optimization
of fusion rules are not constrained by power consumption of
the sensors. The objective function in (18) can be rewritten as

f(u,v) = v∗(Λd ⊗ IL)v, (19)

where v := vec(V). Also using the identity

vec(VΛhΛuG) = (G′ΛhΛu ⊗ IL)v (20)

the constraint (18b) can be easily written in a vector form

Bv =
(
(R + Q)Λu ⊗ IL

)
v = e, (21)

where R,Q ∈ RL×K are the real and imaginary part of
the matrix G′Λh and e = vec(IL). Let us denote real and



imaginary parts of v by vr,vq ∈ RLK , then the v? is the
solution of the optimization problem

min
vr,vq∈RK

v′r(Λd ⊗ IL)vr + v
′
q(Λd ⊗ IL)vq (22a)

s.t. (Br ⊗ IL)vr − (Bq ⊗ IL)vq = e, (22b)
(Br ⊗ IL)vq + (Bq ⊗ IL)vr = 0, (22c)

where Br := RΛu and Bq := QΛu. Let B1,B2 ∈ RL×L be
defined by

B1 := BrΛ
−1
d B′r + BqΛ

−1
d B′q, (23a)

B2 := BrΛ
−1
d B′q −BqΛ

−1
d B′r. (23b)

Similar to [2], the optimal value of the problem (22) is

v?r =
(
Λ−1d B′r ⊗ IL

)
λ? +

(
Λ−1d B′q ⊗ IL

)
η?, (24a)

v?q =
(
Λ−1d B′r ⊗ IL

)
η? −

(
Λ−1d B′q ⊗ IL

)
λ?, (24b)

λ? =

((
B1 + B2B

−1
1 B2

)−1
⊗ IL

)
e, (24c)

η? =
(
B−11 B2 ⊗ IL

)
λ?, (24d)

f(u,v?) = e′
((

B1 + B2B
−1
1 B2

)−1
⊗ IL

)
e, (24e)

where λ and η are the corresponding Lagrangian multipliers.

V. POWER ALLOCATION

At this point our is goal is performing power allocation in
an optimized fashion for two different cases, one with and one
without sum-power constraint, where both cases consider an
individual power constraint.

A. Individual Power Constraint

As B1 and B2 depend on uk, then, they depend on output
power Xk of the sensor nodes k given in (3). Then, B1 and
B2 can be rewritten as

B1 =

K∑
k=1

Xk

Xk + β2
k

1

|hk|2Mk

(
rkr′k + qkq′k

)
, (25a)

B2 =

K∑
k=1

Xk

Xk + β2
k

1

|hk|2Mk

(
rkq′k − qkr′k

)
, (25b)

where rk and qk are kth column of R and Q and

βk :=

√√√√√Nk

(
Mk +

L∑
l=1

GklRl

)
|hk|2Mk

. (26)

By replacing the objective function of (18) by (24e), and using
(3), we achieve the following optimizing problem

min
Xk

k∈FK

e′
((

B1 + B2B
−1
1 B2

)−1
⊗ IL

)
e (27a)

s.t. 0 ≤ Xk ≤ Pk, k ∈ FK . (27b)

Due to difficulty of the objective function (27a) finding the
optimum is not straightforward. Therefore, we try to find a

suboptimal solution. Similar to what we have done in [2], it
is easy to see that the objective function (27a) can be well
approximated by

L∑
l=1

1

bl
, (28)

which leads us to the relaxed optimization problem

min
Xk, k∈FK
bl, l∈FL

L∑
l=1

1

bl
(29a)

s.t. 0 ≤ Xk ≤ Pk, k ∈ FK , (29b)
diag(B1) = b. (29c)

This problem is convex and can be solved easily by relevant
numerical tools. We use CVX [10] to solve this problem.
In order to compare the solution of the relaxed problem
with the original one, we solve the original problem (27)
by two numerical solvers of MATLAB, i.e., fmincon and
patternsearch, whose solutions in our case are very close to
each other. Even though it cannot be claimed that they achieve
the global optimum, but the similarity of solutions gives us the
impression of global/near optimality. Nevertheless, providing
any proof is very hard. In addition, as wee see in the simulation
results, the solution of the relaxed problem is very similar to
the one of the fmincon and patternsearch. In all three solutions,
we observe that each sensor consumes the whole available
individual power, i.e., Xk = Pk, which is in compliance with
the single target case [1] and also with [2].

B. Individual and Sum Power Constraint

It is known that sum-power constraint help a network to
increase its lifespan and also to minimize the overall interfer-
ence. Having such constraint incorporated into our problem,
we achieve

min
Xk

k∈FK

e′
((

B1 + B2B
−1
1 B2

)−1
⊗ IL

)
e (30a)

s.t. 0 ≤ Xk ≤ Pk, k ∈ FK , (30b)
K∑

k=1

Xk ≤ Ptot. (30c)

The solution of this problem is not straightforward, but at this
point we suffice to solve the problem by means of numerical
methods, i.e., fmincon and patternsearch and leave any further
simplification, relaxation or analytical solution to a later time.

VI. SIMULATIONS

At this point, simulation results are presented to evaluate
the performance of proposed estimators. In our simulations
we perform the estimation of the targets several times, each
time with a different observation due to different realizations
of channel and noise. The channel coefficients and noise terms
are complex-valued, iid with Gaussian distribution. We define
the signal-to-noise ration (SNR) by −20 log σ, where σ2 is the
variance of the noise terms. The variances of both sensing and
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Fig. 2: Total estimation error of the proposed estimator (L = 4
K = 16, Pk = 2, Ptot → ∞) over different observations. The power
allocation is performed by solving (27) using fmincon, patternsearch
and also by solving the relaxed optimization problem (29) using
CVX. All three solutions are identical up to a numerical precision.

communication channels are set to one. Also, the power of all
targets are chosen to be one along the simulations.

First of all, we show the simulations for the case with
individual power constraints, i.e., Pk = 32

K , and without sum-
power constraint, i.e., Ptot → ∞ . The individual power
constraints are chosen such that the total available power is
independent of the number of sensors, so one can fairly ex-
amine the influence caused by varying the number of sensors.

Fig. 2 depicts the optimized total estimation error of the pro-
posed power allocation in (27) and also the relaxed proposed
method in (29). As we see in the figure the performances
of all estimators are very close to one another. It does not
prove optimality obviously, though provides an insight that the
solvers do not get stuck in local optima. Moreover, it sheds
light on the fact that the relaxation in (29) barely changes the
performance in one hand, and reduces the complexity on the
other hand.

In Fig. 3 the estimations (blue) of signal targets (red)
are plotted, where each estimation is based on a different
observation related to a different channel and noise realization,
i.e., gkl[i],mk[i], nk[i], i ∈ {1, · · · , 500}. It needs to be men-
tioned that the estimated points are symmetrically distributed
around each constellation point, i.e., within equally spread
balls co-centered with constellation points. Their centers, with
respect to constellation points, are neither rotated, nor shifted,
nor scaled. All the aforementioned facts are direct results of
unbiasedness of the proposed estimator. The SNR variations
surely change the radii of the balls, i.e., in higher SNR the total
estimation error is less and equivalently the balls are smaller.

It is also interesting to observe the simulation results when
power allocation is performed subject to sum-power constraint,
i.e., problem (30), with Ptot = 32 and Pk → ∞. The total
estimation error of the given scenario is depicted in Fig.
4 where fmincon and patternsearch are deployed for doing
the optimization. As we can easily see the total estimation
error of the second solver subtracted by the one of the first
solver is positive for all observations, therefore we conclude
patternsearch is outperformed by fmincon whose estimated
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Fig. 3: Estimation of target signals with proposed estimator (L = 4
K = 16, Pk = 2, Ptot → ∞). Estimation is performed 500 times
from different observations (different realizations). Power allocation
is done by solving (29) using CVX. The constellation of targets are
shown by red, while the estimates are shown by blue dots.
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Fig. 4: Total estimation error of the proposed estimator (L = 4,
K = 16, Pk → ∞, Ptot = 32) over different observations. The
power allocation is performed by solving (30) using fmincon and
patternsearch.

points are shown by blue dots in Fig. 5. One can bring up the
same arguments of unbiasedness that we just did for Fig. 3.

VII. CONCLUSION

In this paper we have considered a sensor network for
estimating multiple targets and have proposed a estimator
which is unbiased without enforcing any assumptions on
the channel and noise distributions. We have additionally
improved the performance of the estimator by optimizing
the power allocation and fusion strategy which in turn result
in minimized total estimation error. As per power allocation
we have considered two different types of constraints, i.e.,
individual and sum-power constraints. A closed-form fusion
strategy is one of our contributions along with numerical
solutions for power allocation. Additionally, in case of only
individual power constraint, we have proposed a low com-
plexity algorithm based on convex relation which reveals a
performance negligibly different from the not-relaxed problem,
yet much less complex.
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Fig. 5: Estimation of target signals with proposed estimator (L = 4,
K = 16, Pk → ∞, Ptot = 32). Estimation is performed 500 times
from different observations (different realizations). Power allocation
is performed by solving (30) using fmincon. The constellation of
targets are shown by red and estimates by blue.
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