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Abstract—A two-level cooperative network scheme for 

vehicular communications is proposed in this paper. The 

network architecture consists on a set of deployed RoadSide 

Units (RSU) based on the expected density of nodes in the 

network whereas these nodes are organized as a vehicular ad-

hoc network. The position of the RSUs is obtained using the k-

means algorithm along with the gap statistic to obtain the 

optimal number of base stations. The nodes are clustered using 

spectral clustering based on the geographical position and 

dynamics of each node, subject to their predictable and highly 

correlated behavior with the environment. The head-cluster is 

chosen using concepts of coalitional games in order to extend 

the stability of the cluster. Additionally, using the beacons sent 

by the head-cluster to the RSU, a prediction in the dynamic 

behavior of the clustered nodes is achieved. The RSUs are 

interconnected using LTE links to provide a cooperative 

scheme, granting an optimal selection of the head-cluster, and 

prolonging its lifetime. Finally, the proposed two-level network 

scheme along with the clustering prediction method are 

analyzed and compared with the commonly used clustering 

techniques in a real scenario. The simulation results show the 

positive impact of the cooperative scheme developed predicting 

the movement of the clusters.  

Keywords—VANETs; clustering; cooperative networks; 

vehicular communications  

I.  INTRODUCTION  

Vehicular Ad hoc Networks (VANETs) are increasingly 
gaining importance currently as a way to improve safety and 
reduce latency in transportations systems, specially in urban 
environments where traffic jams and accidents are more 
likely to occur. Recently, the 802.11p/WAVE protocol has 
been approved by the IEEE [1], providing a viable 
technology for vehicle-to-vehicle (V2V) and vehicle-to-
infrastructure (V2I) communications. The main characteristic 
of this protocol is that it is specifically designed for vehicular 
communications granting low-delay and wide range 
communications. However, the main obstacle faced while 
obtaining a low-delay and optimal network is the 
fragmentation and fast variation of the VANET formation. 
Moreover, due to the surrounding environment, i.e., 
buildings and elements from the urban architecture, it is 
difficult to obtain a fully connected network deriving in 
disconnected vehicles which are isolated from the rest of the 
system. Nevertheless, a common way to overcome these 
problems is to allow the nodes of the network to form 
clusters. The usage of clustering techniques reduces the 
number of individual entities in the system and improves the 
network coordination. Therefore, it is important to smartly 
deploy the network elements to obtain a full coverage for all 

the network elements and at the same time allow a fast 
dissemination of the messages. The issue of clustering has 
been approached in different ways in the literature, but with 
the common goal of obtaining the most stable cluster. In [2], 
a method is developed from a density point of view, using 
the density in the graph connections of the nodes as a metric. 
In our two-level network, our aim is not use the density of 
the nodes to cluster the nodes but to obtain an optimal 
location of the RSUs in terms of the number of cars 
connected to them. Using the geographical location of the 
nodes during a time interval, the optimal location of the 
RSUs, which cover all the nodes in the network and allocate 
the resources based on the density, can be obtained.  

Another way to approach the clustering problem is to use 
the mobility of the nodes for this matter. Most of the 
algorithms attempt to reduce the number of reconfigurations 
of the head-cluster which leads to increase the stability of the 
cluster. In [3], the used technique is to select the node which 
is expected to last longer as the head-cluster based on the 
lanes of the road. Using the exact knowledge of the road 
lanes, the nodes broadcast their location and obtain the 
optimal head-cluster. Additionally in [4], a beacon-based 
clustering algorithm was developed. This algorithm uses the 
general scheme implemented by 802.11p/WAVE of 
broadcasting every message to all the elements in the cluster. 
Thereafter the cluster is re-organized using the information 
contained in the beacons. Our two-level network scheme 
presents a network architecture which has not been 
extensively studied so far, since the majority of studies use 
an LTE/802.11p architecture without additional 
infrastructure [5]–[8]. These studies use a node as a head-
cluster where all the information is gathered for short links 
and use the LTE technology to provide the long-range 
communications. The main difference between those studies 
and our two-level scheme is that we do not store all the 
information sent by the nodes in a single node, rather in the 
RSUs, which provides a higher intelligence and cooperative 
scheme to the network. The RSUs are able to predict the 
dynamic profile of the clustered elements and provide an 
optimal head-cluster selection.  

Moreover, in [6] the selection of the head-cluster has 
solely been based on geographical properties, i.e., the 
proximity to the rest of vehicles, which in some cases cannot 
be the optimal choice for the head-cluster. A delay efficient 
network is introduced in [7], where the long-range links are 
based on LTE and the short-range ones between the vehicles 
are implemented using 802.11p/WAVE protocol. The 
manner for clustering the different network nodes in this 
study is similar to the one introduced in [6], where the 
vehicles with the strongest path, i.e., the maximum signal 



strength, were selected as head-cluster to disseminate the 
intra-cluster messages. A multi-hop scheme is described in 
[8] obtaining high connectivity between the network 
elements but at the same time using a large part of the 
network bandwidth for the message dissemination. 

In our approach, the head-cluster is chosen using the 
similarity parameters from all the nodes, and selecting the 
ones that provide a better overall performance using a 
coalitional game-theory approach. Moreover, the information 
from the head-cluster is sent only to the RSUs, decreasing 
the network load. This paper is organized as follows: the 
network architecture and the two-level clustering techniques 
are presented in Section II. The simulation setup and used 
scenario are developed in Section III along with the results 
and their comparison with other common approaches. Finally, 
the conclusion is drawn in Section IV.  

II. SYSTEM MODEL AND CLUSTERING STRATEGIES 

A. Two-level Network Architecture 

The proposed system model is depicted in Fig. 1. The 
network architecture is divided into two layers: nodes 
(vehicles) and RSUs which are inter-connected. The nodes of 
the network form an ad-hoc structure which varies its form 
rapidly due to the high mobility of its elements.  The nodes 
can communicate with each other as well as with the RSU 
using the 802.11p/WAVE technology. Usually, the 
communication range goes from 0-100 meters due to the 
high frequency range used in this technology. The beacons 
sent by each node consists of the triplet  

     

where  is the geographical position,  is the speed 
and   the direction of the node, which is sent directly 
to the RSUs. Due to the use of 802.11p/WAVE protocol, 
typically the messages are broadcasted to all the elements of 
the network, which can cause problems in dense networks 
[9], [10]. However, in our approach the nodes only need to 
transmit their messages to the closest RSU, obtaining a less 
saturated network, i.e., having a cluster formed 
by   nodes, the number of broadcasted 
messages in a typical 802.11p network is   per 
cluster. Nevertheless, in our proposed model, each node 
transmits solely to the RSU giving a total of  

 messages per cluster, which are   messages from the 
nodes to the RSU and one more message sent by the RSU to 
the chosen head-cluster. The cooperation between the 
interconnected RSUs makes it possible to reduce the number 
of messages per cluster.  

The second layer of the network is created by 
interconnected RSUs which collect the beacon messages sent 
by the nodes. These RSUs work both as relays of 
information and as broadcasters. Moreover, the RSUs have 
an information center which acts as sink node of the sent 
messages by the nodes, obtaining the information from the 
triplets and selecting the head-cluster. The methods and 
function of the information center will be explained in detail 
in section II-C along with the head-cluster selection. The 

RSUs are positioned in highly dense places in order to have a 
higher visibility. The placement of the RSUs is explained in 
section II-B. 
 

 
Figure 1.  Network architecture overview 

B. Node Clustering and RSU Placement  

In this section the scheme used for placing the RSUs is 
analyzed. The RSUs are located according to the expected 
density of nodes using real-traffic data. Applying the k-
means algorithm [11], the RSUs are preferentially placed 
where the highest density of nodes appear while, at the same 
time, the number of RSUs is proportional to the number of 
vehicles. For the k-means method only the position  of 
the nodes is used. Each one of the nodes is iteratively 
assigned to its closest cluster centroid which is the optimal 
position of the RSU. As shown in Fig. 2, the density of nodes 
has a shape influenced by the environment.  

 

Figure 2.  RSU deployment based on K-means algorithm 

However, it is known that the k-means method needs the 
number of clusters as input. Since the problem we are 
approaching can be denoted as unsupervised learning, the 
structure of the data does not provide the optimal number of 
clusters. It looks reasonable to choose the highest number of 
possible clusters since it will give us the smallest estimation 
error. However, it has been observed that after a certain 
number of clusters  the error tends to be flattened not 
obtaining any estimation gain by increasing the number of 
clusters. Therefore, we have used the gap statistic in [12] to 
obtain the optimal number of clusters, which yields the best 

  



trade-off between estimation error and number of clusters. 
The gap statistic works well with non-separated data and in 
this case, for the density clustering the two features selected 
from each node are latitude and longitude. However, since 
we plan to deploy an optimal vehicular network for every 
time instant and not only for a single instant t, we have to 
calculate all centroids, i.e., the RSU position each time 
instant and later apply an additional k-means method on 
them to obtain the final positions. Hence, the final 
deployment is obtained using a double k-means approach 
which consists on iteratively applying the k-means algorithm 
for all time instants and later apply an additional k-means 
method to obtain the final positions.  

C. Spectral Clustering for Nodes 

In this section, the set of nodes  
that are assigned to the same RSU are clustered using a sub-
spacial spectral clustering [13]. This clustering method uses a 
metric based on the connection of all the nodes with a 
positive similarity using a full-connected graph form. For 
this method, we apply the Gaussian similarity function to 
obtain the affinity matrix : 

   (1) 

where the parameter  controls the similarity threshold 
between the neighbor nodes, and  are the position of 
the nodes forming the cluster. The spectral clustering works 
well for different dataset structure even when it does not 
have a convex form. Using the top eigenvectors from the 
affinity matrix, the spectral clustering algorithm obtains great 
results in a reduced amount of time due to its simple 
structure. However, since we attempt to cluster the nodes in 
terms of a higher dimensional data, i.e., position, direction 
and speed, in our approach a subspace transformation needs 
to be performed. It is noteworthy that since the dataset that is 
compared for the similarity metric is related to different 
subspaces, the sense of distance becomes meaningless. 
Therefore, the dataset will be transformed using the analogy 
of an intensity matrix as follows: 

        (2) 

         (3) 

     (4) 

After this transformation, all the values in the dataset are 
comparable and hence, the similarity graph and the metric 
associated to it is meaningful. For simplicity the different 
dataset are weighted equally.  

D. Head-Cluster Selection and Dynamics Prediction 

Once the nodes are clustered as described in II-C, the 
next step is to choose the head-cluster with the expected 
longest lifetime. In this section, a scheme to select the head-
cluster based on coalitional games is developed. The main 

goal of a coalitional game is to obtain the maximum payoff 
from the collaboration of all the nodes in a coalition. A 
coalition inside a cluster can be defines as , where 

 is the set of all nodes in the cluster. In 
coalitional games, the maximum output is always given by 
the payoff function obtained by the collaboration of all the 
nodes, creating a grand coalition. In the present approach, the 
coalition  is formed by all the nodes connected to the 
same RSU obtained using the spectral  clustering method. 
Since all the nodes forming the cluster have similar 
properties as mentioned in Section II-C, it is reasonable to 
assume that the nodes will have a common goal that can be 
maximized, obtaining an optimal solution for all the nodes. 
The proposed coalitional game assumes that the RSUs are 
myopic, i.e., the head cluster is selected considering the 
actual status of the cluster. In each round of the algorithm, 
the RSU extracts the information sent in the beacons 

 by the nodes and selects the node which minimizes the 
payoff function. The payoff function is based on the 
similarity concept used to create the cluster and aims to 
obtain the head-cluster which describes the entire cluster 
precisely. Therefore, the payoff function for a time instant 
over all node   in a cluster is as follows:  

 (5) 

where  is defined as the Euclidean distance among the 
different points. The goal is to obtain the minimal value for 
the payoff function in each time instant as 
 

                          (6) 
 

where  denotes the simulation time. Once the head-cluster 
which minimizes the payoff function is selected, it can be 
defined as:  

                  (7) 
     

which also defines the entire cluster. Considering only the 
head-clusters of the network, it is possible to define the 
traffic as macroscopic, i.e., instead of individual cars which 
make the simulation infeasible, choosing the head-clusters to 
obtain the general profile of the traffic. The goal of using a 
macroscopic traffic simulation has two benefits. On the one 
hand, it is too complex to simulate and predict the dynamics 
of each individual car. On the other hand, the bandwidth use 
is reduced grouping the nodes and choosing a head-cluster. 
In road networks, vehicles can be modeled as a fluid which 
help to anticipate traffic phenomena and predict the 
interaction between the network elements [14], [15]. The 
principal goal of this method is to obtain an accurate 
prediction of the geographical properties of the vehicles. 
Generally, the speed of each car  is obtained and 
recorded, however, in our approach we will denominate 

 which is associated to the entire cluster, being  
 the position in space covered by the head-cluster. In 

addition, the same concept will be used for the rest of 
properties, i.e., the direction and position. The principal 
parameters in traffic flow models are: velocity, density of 



traffic and flow. These parameters are addressed by the 
following equation 
 

                                          (8) 
 
which is related to the conservation of cars and the 
relationship between the car velocity and traffic density. 
Using the cooperative scheme due to the interconnected 
RSUs, the head-cluster selection can be modified using the 
dynamics prediction. Applying the knowledge of the head-
cluster from different RSUs, it is possible to predict the next 
position of the cluster, and hence, choose a head-cluster 
which may not be the optimal for the time instant  , but it 
will create a more stable cluster in future time instants.  

III. SIMULATION RESULTS AND ANALYSIS 

A. Scenario Setup 

The vehicular mobility dataset introduced in this paper is 
mainly based on data made available by the TAPASCologne 
project [16], an initiative of the Institute of Transportation 
Systems at the German Aerospace Center (ITS-DLR). The 
available traffic-data records a two-hours traffic movement 
in Cologne, Germany. Since the data shows the traffic in rush 
hour, it presents a good dataset to model the maximum 
capacity of the network, showing the behavior of the two-
level network in these cases. The area of the studied scenario 
is 20 squared kilometers and the simulation is implemented 
using SUMO [17] which works as a macroscopic traffic 
simulator.  

B. Different Clustering Methods 

First, we will analyze the different common methods to 
cluster ad-hoc network in MANET and VANETs.  

1) Lowest-ID [18] consists of selecting as head-cluster 
the node with the lowest ID in range. The IDs are distributed 
to each node once it enters the network and they do not 
change. This clustering scheme works acceptably well in 
networks with a low dynamic profile.  

2) Highest Degree [19] is based on the connectivity 
among the nodes. The algorithm creates a graph scheme to 
select the head-cluster using the broadcasted messages 
among the nodes and selects the node with the highest degree 
of connectivity.  

3) Utility Function [20] uses a similar clustering 
approach as the method introduced in the present work. It 
takes the head-cluster which is closer in distance and speed 
to the rest of nodes in range, and selects it as head-cluster. 
However, it does not use the information from other cluster, 
through RSU connectivity, to optimize the selection. 

C. Number of Beacons 

This parameter is of special importance due to the high 
number of nodes that can be in a cluster simultaneously [10]. 
The protocol 802.11p/WAVE broadcasts the messages to all 
the nodes in the same cluster, however, in our approach this 
is not needed since the infrastructure controls the status of all 
the nodes. As shown in Fig. 3, the number of beacons in the 
three common clustering techniques, Lowest-ID, Highest 

Degree and Utility Function is the same, being it     
with   nodes in the cluster. In our proposed model, the 
number of beacons is much reduced providing a less 
congested network. Nonetheless, the main drawback of this 
approach is the requirement of installing an infrastructure 
which could be logistically difficult and economically 
expensive.  

 

Figure 3.  Number of beacons in a cluster 

D. Head-cluster Stability 

In this section, the results obtained from the head-cluster 

stability are analyzed. 

 

Figure 4.  Cluster Lifetime comparison 

As shown in Fig. 4, the best approach regarding this 
parameter is Lowest-ID. However having an extremely low 
head-cluster variation is a drawback in VANETs, since it 
will not provide an optimal selection for the different 
changes in the network. Highest-Degree performs worse in 
this aspect, having a really volatile head-cluster. This 
frequent changes produce a high number of exchanged 
messages in the network, and as it was mentioned in 
previous section, the number of beacons to select a head-
cluster is remarkably high, which potentially congests the 



network. The last clustering scheme studied is the Utility 
Function using the average speed and position of the cluster. 
It works fairly well obtaining a balance between the 
longevity of the cluster and the adaptation to the cluster 
changes. Analyzing the proposed model in this paper, we can 
observe a better performance than the Utility Function, due 
to the expected prediction of the head-cluster based on the 
dynamics. Moreover, the proposed model adapts itself to the 
dynamic nature of VANETs while providing an acceptable 
head-cluster lifetime.  

E. Cluster Dynamics Prediction 

The proposed model uses the cooperation between the RSUs 

to predict the dynamics of the head-clusters in the future. 

 
Figure 5.  Head-cluster dynamics prediction 

As shown in Fig. 5, the mean error distance between the 
predicted head-cluster and the value obtained from real 
traffic data is around 9 meters. The first step in the 
simulation is the one with the biggest error. Nevertheless, the 
error after this point is stabilized at around 8-10 meters. In 
view of the results obtained from predicting the head-clusters, 
it can be concluded that the idea of modeling the traffic data 
as a fluid works accurately, adding more knowledge to the 
network.  

IV. CONCLUSION 

In this paper, a two-level clustering scheme for vehicular 
communications was developed and analyzed. This model 
creates a hierarchical network where the RSUs are 
interconnected creating a cooperative scheme. The first level 
of the network is composed by the nodes (vehicles) creating 
an ad-hoc network, where the main characteristic is the high 
mobility of the nodes. The fast variation in the elements of 
the network motivates the application of clustering 
techniques. The second level of the network is created by the 
RSUs which are deployed in terms of the expected density of 
nodes. Once the RSUs are deployed, the nodes of the 
network are grouped in clusters in terms of their similarity 
parameters using spectral clustering. This clustering 
technique fits perfectly the aforementioned problem because 
of the similar behavior of the nodes due to the typical 

constraints of the scenario in VANETs. The obtained results 
show an improvement in the average cluster lifetime. This 
improvement in the cluster stability is obtained using a 
smaller part of the spectrum due to the reduced number of 
beacons used in the two-level architecture. Moreover, the 
proposed architecture is capable of predicting with great 
accuracy the future positions of the head-clusters. 

REFERENCES 

[1] IEEE, “Ieee standard for wireless access in vehicular environments 
(wave)–multi-channel operation,” IEEE Std 1609.4-2010 (Revision of 
IEEE Std 1609.4-2006), pp. 1–89, Feb 2011.  

[2] S. Kuklinski and G. Wolny, “Density based clustering algorithm for 
vanets,” in Testbeds and Research Infrastructures for the 
Development of Networks Communities and Workshops, 2009. 
TridentCom 2009. 5th International Conference on, April 2009, pp. 
1–6.  

[3] S. A. Mohammad and C. W. Michele, “Using traffic flow for cluster 
formation in vehicular ad-hoc networks,” in Local Computer 
Networks (LCN), 2010 IEEE 35th Conference on, Oct 2010, pp. 631–
636.  

[4] E. Souza, I. Nikolaidis, and P. Gburzynski, “A new aggregate local 
mobility clustering algorithm for vanets,” in Communications (ICC), 
2010 IEEE International Conference on, May 2010, pp. 1–5.  

[5] A. Vinel, “3gpp lte versus ieee 802.11p/wave: Which technology is 
able to support cooperative vehicular safety applications?” IEEE 
Wireless Communications Letters, vol. 1, pp. 125–128, April 2012.  

[6] R. Sivaraj, A. K. Gopalakrishna, M. G. Chandra, and P. 
Balamuralidhar, “Qos-enabled group communication in integrated 
vanet-lte heteroge- neous wireless networks,” in 2011 IEEE 7th 
International Conference on Wireless and Mobile Computing, 
Networking and Communications (WiMob), Oct 2011, pp. 17–24.  

[7] R. Atat, E. Yaacoub, M. S. Alouini, and F. Filali, “Delay efficient 
cooperation in public safety vehicular networks using lte and ieee 
802.11p,” in 2012 IEEE Consumer Communications and Networking 
Conference (CCNC), Jan 2012, pp. 316–320.  

[8] S. Ucar, S. C. Ergen, and O. Ozkasap, “Multihop-cluster-based ieee 
802.11p and lte hybrid architecture for vanet safety message dissemi- 
nation,” IEEE Transactions on Vehicular Technology, vol. 65, no. 4, 
pp. 2621–2636, April 2016.  

[9] E. M. van Eenennaam, W. Klein Wolterink, G. Karagiannis, and G. J. 
Heijenk, “Exploring the solution space of beaconing in vanets,” in 
First IEEE Vehicular Networking Conference, VNC2009, Tokyo, 
Japan. IEEE Communications Society, October 2009, pp. 261–268.  

[10] A. Vinel, Y. Koucheryavy, S. Andreev, and D. Staehle, “Estimation 
of a successful beacon reception probability in vehicular ad-hoc 
networks,” in Proceedings of the 2009 International Conference on 
Wireless Communications and Mobile Computing: Connecting the 
World Wirelessly, ser. IWCMC ’09. New York, NY, USA: ACM, 
2009, pp. 416–420. 

[11] J. MacQueen, “Some methods for classification and analysis of 
multivariate observations,” in Proceedings of the Fifth Berkeley 
Symposium on Mathematical Statistics and Probability, Volume 1: 
Statistics. Berkeley, Calif.: University of California Press, 1967. 

[12] R. Tibshirani, G. Walther, and T. Hastie, “Estimating the number of 
clusters in a data set via the gap statistic,” Journal of the Royal 
Statistical Society: Series B (Statistical Methodology), vol. 63, no. 2, 
pp. 411–423, 2001. 

[13] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Anal- 
ysis and an algorithm,” in ADVANCES IN NEURAL 
INFORMATION PROCESSING SYSTEMS. MIT Press, 2001. 

[14] M. J. Lighthill and G. B. Whitham, “On kinematic waves. ii. a theory 
of traffic flow on long crowded roads,” Proceedings of the Royal 
Society of London A: Mathematical, Physical and Engineering 
Sciences, vol. 229, no. 1178, pp. 317–345, 1955. 

[15] R. Haberman and R. W. Kolkka, “Mathematical models,” 1977.  



[16] TAPASCologne. Tapascologne project.  

[17] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent 
development and applications of SUMO - Simulation of Urban 
MObility,” International Journal On Advances in Systems and 
Measurements, vol. 5, no. 3&4, pp. 128–138, December 2012.  

[18] J. L. M.Jiang and Y. Tay. (1999) Cluster based routing protocol. 

[19] S. Sivavakeesar and G. Pavlou, “Associativity-based stable cluster 
formation in mobile ad hoc networks,” in Second IEEE Consumer 
Communications and Networking Conference, 2005. CCNC. 2005, 
Jan 2005, pp. 196–201.  

[20] P. Fan, J. G. Haran, J. Dillenburg, and P. C. Nelson, Cluster-Based 
Framework in Vehicular Ad-Hoc Networks. Berlin, Heidelberg: 
Springer Berlin Heidelberg, 2005, pp. 32–42 

 


