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Abstract—The censored channel is the cascade of an additive
noise channel with a clipping operator that restricts the signal to
the interval [0, 1]. In this paper, after discussing the generality of
the considered model, the mutual information of the censored
channel is proven to be a continuous function of the input
probability distribution whenever the probability density of the
noise is bounded. Moreover, there is an input-distribution of
bounded support that achieves capacity for a class of noise
distributions with bounded support. For a more general class of
noise distributions, the capacity can be approximated arbitrarily
close using only input-distributions of bounded support. This
support is determined only based on the noise distribution and
the desired approximation error. These results constitute a first
step for characterization of the capacity of censored channels.

I. INTRODUCTION

Many practical communication channels involve non-linear
operations. A common example is the clipping operation
which in practice is the result of saturation effects, e.g.,
by stimulation of amplifiers with high input power. Unlike
additive white Gaussian noise (AWGN) channels with power
constraint, with well-known capacity characterization, these
non-standard channels involve additional difficulties. It is in
general unclear whether the capacity can be achieved by an
input-distribution and whether it is unique. The structure of
the optimal distribution is also unknown in general. It turns
out that for some cases of noise distributions, the optimal
input-distribution is discrete with bounded support. Despite
these difficulties, the censored channel can be considered as
a more realistic model for noisy communication. The output
of the noisy channel can cause saturation of amplifiers in
the receiver chain from above and below. Therefore there
are two cutting points that restrict the value of the received
signal to an interval. This can be modeled by cascading a
clipping operator to a usual additive noisy channel. In this
paper, we focus on these type of channels while assuming
general continuous noise distributions. The censored channel
was introduced in [1], where the expression of the mutual
information and an upper bound for the capacity have been
derived. Indeed, even if no restriction is put on the input,
like power or energy constraints, the capacity is still finite.
Nevertheless, the structure of an optimal input-distribution as
well as its existence and uniqueness are highly non-trivial.
The characterization of the capacity is indeed an optimization
problem which makes the investigation of information
theoretical aspects hard. The optimization is usually performed
over the space of probability measures, which is an infinite
dimensional metric space. A metric on such spaces can be
very intricate while some useful properties, like compactness

Fig. 1: The system model: some real input X is subject to
additive noise W and is censored at 0 and 1 to yield Y .

of sets, are established without using a metric. The familiar
relations between linearity, convexity and continuity are also
lost. On the other hand, the objective function, i.e., the mutual
information, is described by a complicated integral which
involves the input probability measure in a specific way. This
is in general a challenging problem with inheriting difficulties
from calculus of variations and geometric measure theory.

Probably, the research on non-standard channels dates
back to the paper by Smith [2], where he has considered the
capacity of peak and average power-constrained Gaussian
channels. He has discussed both the existence and uniqueness
of an optimal input-distribution, and derived some features for
optimizing the input. The notion of weak derivation for mutual
information was also discussed therein. Shamai and Bar-David
later worked on a similar problem [3]. General conditions for
discreteness of optimal distribution is also discussed in [4]
and [5] for average and peak power constraints. Conditionally
Gaussian channels are discussed in [6], although the authors
in [7] prove the discreteness of optimal distribution with finite
points for Rayleigh fading channels. Another non-standard
channel is the one-bit quantizer, which is investigated in [8].

Following the model in [1], the censored channel is again
considered in the present paper without any restriction on
the input power or energy. By removing restrictions on the
input, the set of acceptable input-distributions is not compact
anymore and therefore the existence of a capacity-achieving
input-distribution is not guaranteed. However, subject to some
constraints on the noise distribution, it is possible w.l.o.g. to
limit the probability space to a compact subset of probability
distributions to provide the existence of a capacity-achieving
input-distribution. After presenting the model and the expres-
sion for the corresponding mutual information, the continuity
of mutual information is established using similar techniques
as in [2]. Next, for a specific class of noise distributions,
it is shown that a search for an optimal mutual information
can be limited to a compact set in which an optimal input-
distribution exists. Finally, we deduce, that input-distributions
with bounded support can approach capacity with a negligible
error even if the noise distribution has an unbounded support.



II. PRELIMINARIES AND MUTUAL INFORMATION

In our previous paper [1] we have investigated the informa-
tion theoretical properties of a censored channel as is depicted
in Figure 1. The input random variable X is assumed to be
real-valued and is disturbed by additive random noise W . Both
X and W are assumed to be stochastically independent and
time-discrete. The noisy signal Z = X +W is then censored
at 0 and 1 by the function

Q(z) =


0, if z ≤ 0,

z, if 0 < z ≤ 1,

1, if z > 1 .

(1)

Hence, the output signal is represented as

Y = Q(X +W ). (2)

In general one has to deal with the common channel

Q′(z′) =


0, if z′ ≤ 0,
a
b z
′, if 0 < z′ ≤ b,

a, if z′ > b ,

where a and b are arbitrary positive real numbers. In this case
the output Y ′ is given by Q′(X ′+W ′). Normalizing the input
and output signals by X = X′

b , W = W ′

b and Y = Y ′

a leads to
Y ′ = Q′(X ′ + W ′) = Q′(bX + bW ) = aQ(X + W ) = aY .
This shows that we only need to investigate the theoretical
properties of the particular case, which is described by X , W ,
Y and Q, for the sake of clarity.

In [1] we have presented the mutual information IX;Y (F ) =
hY (F ) − hY |X(F ) of the censored channel, as a function
of the input-distribution F (x), for a given continuous noise
distribution Φ(w) with density ϕ(w), by deducing the output
entropy

hY (F ) = ρ

(∫ ∫ 0

−∞
ϕ(u− x) dudF (x)

)
+ ρ

(∫ ∫ ∞
1

ϕ(u− x) dudF (x)

)
+

∫ 1

0

ρ

(∫
ϕ(u− x) dF (x)

)
du

(3)

and the conditional entropy

hY |X(F ) =

∫
ρ

(∫ 0

−∞
ϕ(u− x) du

)
dF (x)

+

∫
ρ

(∫ ∞
1

ϕ(u− x) du

)
dF (x)

+

∫ 1

0

∫
ρ
(
ϕ(u− x)

)
dF (x) du .

(4)

Note that the weighted self-information ρ(q) = −q log q,
q ≥ 0, is a strictly concave function of its argument q and
the logarithm is of general base. Because of the concavity of
ρ, mutual information is a concave function w.r.t. the input-
distribution F .

For the sake of compactness, we use the short forms

`(x) =

∫ −x
−∞

ϕ(w) dw , L(F ) =

∫
`(x) dF (x) ,

r(x) =

∫ ∞
1−x

ϕ(w) dw , R(F ) =

∫
r(x) dF (x) ,

and

α(u;F ) =

∫
ϕ(u− x) dF (x) ,

to enable a slightly different representation of the entropies
hY (F ) and hY |X(F ).

In addition, the following statements are utilized in the
present work.

Proposition 1: For any density f and arbitrary real numbers
a and b with a < b, the identity

ρ

(∫ b

a

f(u) du

)
−
∫ b

a

ρ
(
f(u)

)
du

= −
∫ b

a

f(ũ) dũ

∫ b

a

ρ

(
f(u)∫ b

a
f(ũ) dũ

)
du

holds.
Proof: By applying the simple identity ρ(pq) = pρ(q) +

qρ(p), for any non-negative real numbers p and q, on the
expression ρ

( f(u)
q q
)

with q =
∫ b
a
f(ũ) dũ we obtain the above

identity.
Proposition 2: Let f and g be non-negative real functions

with bounded integrals
∫ b
a
f(u) du and

∫ b
a
g(u) du for arbitrary

real numbers a and b with a < b. Then the inequality∫ b

a

g(u) ρ

(
f(u)

g(u)

)
du ≤

∫ b

a

g(ũ) dũ ρ

(∫ b
a
f(u) du∫ b

a
g(ũ) dũ

)
holds.

Proof: Since ρ is concave w.r.t. its argument, the above
inequality results from the well-known Jensen’s inequality.

III. COMPARING MUTUAL INFORMATION

By using the identity in Prop. 1 and the inequality in Prop. 2,
we can upper bound the mutual information IX;Y by

+ ρ

(∫ ∫ 0

−∞
ϕ(u− x) dudF (x)

)
−
∫
ρ

(∫ 0

−∞
ϕ(u− x) du

)
dF (x)

+

∫ ∞
0

ρ

(∫
ϕ(u− x) dF (x)

)
du

−
∫ ∞
0

∫
ρ
(
ϕ(u− x)

)
dF (x) du ,

(5)

which is the mutual information of the hinge function, cf. [9].
A further utilization of Prop. 1 and Prop. 2 yields the upper
bound

+

∫ ∞
−∞

ρ

(∫
ϕ(u− x) dF (x)

)
du

−
∫ ∞
−∞

∫
ρ
(
ϕ(u− x)

)
dF (x) du ,

(6)



which is the mutual information of common additive noise
channels. In this way, the mutual information of the censored
channel is less than the mutual information of the hinge
channel. In turn, the mutual information of the hinge channel
is less than the mutual information of additive channels. This
is not surprising, since due to censoring, signal information is
lost and cannot be recovered.

IV. CONTINUITY OF THE MUTUAL INFORMATION

The general formula for the capacity is given by CX;Y =
supF∈F IX;Y (F ). The set F is defined as the set of all
probability distribution functions over the input space and
is equipped with weak∗ topology1. As first step toward the
solution of this problem, we discuss existence and uniqueness
of the solution. A sufficient condition for the existence of the
solution is the compactness of the set F and the continuity of
IX;Y (F ) in F . In this section, we discuss the continuity of
the mutual information.

We prove the continuity for a class of noise distributions,
namely the continuous distributions with a bounded probabil-
ity density function. Note that from Lebesgue’s decomposition
theorem, the noise distribution in general can be decomposed
into the sum of discrete, absolutely continuous and singular
measures. We assume that the noise distribution does not have
any singular and discrete parts. The following proposition
settles the continuity of the mutual information for this class.

Proposition 3: Assuming an absolutely continuous noise
distribution with bounded density, the mutual information
IX;Y (F ) is continuous in F ∈ F .

Proof: To prove the continuity in F , it is enough to show
that for each sequence of probability distributions Fn

w∗→ F ,
the function IX;Y (Fn) converges to IX;Y (F ). We decompose
the mutual information IX;Y (F ) to hY (F ) − hY |X(F ) and
argue for continuity of each term. Fix the sequence of prob-
ability distributions Fn

w∗→ F . The conditional entropy as a
function of F can be written

hY |X(F ) =−
∫
`(x) log `(x) dF (x) (7)

−
∫
r(x) log r(x) dF (x) (8)

−
∫ (∫ 1−x

−x
ϕ(w) logϕ(w) dw

)
dF (x). (9)

To prove the continuity, it is enough to prove boundedness and
continuity of each term inside the integrals in (7), (8) and (9).
If they are bounded and continuous, then the limit of integrals
with respect to the measure Fn is equal to the integrals with
respect to the measure F and the continuity follows.

First, since r(x), `(x) ∈ [0, 1], both terms |r(x) log r(x)|
and |`(x) log `(x)| are bounded by log e

e . Moreover both are
continuous function since r(x) and `(x) are continuous. There-
fore the continuity of (7) and (8) follows.

1Hereinafter, we use the short forms compactness and continuity instead of
weak∗ compactness and weak∗ continuity, respectively.

We use the boundedness assumption of noise probability
density for the third term. If the noise density is bounded,
then |ϕ(w) logϕ(w)| is also bounded by some M , and we
have∣∣∣∣∫ 1−x

−x
ϕ(w) logϕ(w) dw

∣∣∣∣ ≤ ∫ 1−x

−x
|ϕ(w) logϕ(w)|dw

≤
∫ 1−x

−x
M dw = M. (10)

The inequality (10) establishes the boundedness of the term
inside the integral in (9). Morever the integral is continuous
function of x and therefore the continuity of the last term
follows. Therefore hY |X(F ) is continuous in F .

Now consider the expression of the output entropy hY (F ).
Let Yn denote the channel output random variable induced by
the choice of input-distribution Fn. The continuity of hY (F )
amounts to the equality

lim
n→∞

1∫
0

fYn
(y) log fYn

(y) dy =

1∫
0

lim
n→∞

fYn
(y) log fYn

(y) dy.

Note that the output entropy is equal to

hY (F ) =− L(F ) logL(F )−R(F ) logR(F )

−
∫ 1

0

α(y;F ) logα(y;F ) dy. (11)

To prove the continuity of L(F ) logL(F ) and R(F ) logR(F ),
it is enough to prove the continuity of the linear functions
L(F ) and R(F ). This is straightforward since the functions
`(x) and r(x) are both bounded by one and hence uniformly
integrable which implies the continuity of L(F ) and R(F ).

To prove the continuity of
∫ 1

0
α(y;F ) logα(y;F ) dy, we

use dominated convergence theorem for an uniform distribu-
tion on the interval (0, 1). The boundedness assumption on
noise density turns out to be needed here, as well. Bounded
density implies that α(y;F ) =

∫
ϕ(y − x)dF is bounded

and therefore, similar to what discussed previously, α(y;F )
is continuous in F and |α(y;F ) logα(y;F )| is bounded, say
by M . The constant function is integrable with respect to
uniform distribution and therefore it constitutes an integrable
upper bound for |α(y;F ) logα(y;F )|. Hence, the dominated
convergence theorem implies that

lim
n→∞

∫ 1

0

α(y;Fn) logα(y;Fn) dy

=

∫ 1

0

lim
n→∞

α(y;Fn) logα(y;Fn) dy

=

∫ 1

0

α(y;F ) logα(y;F ) dy,

where the last step is justified by the continuity of α(y;F ).
This establishes the continuity of hY (F ) and hence the con-
tinuity of IX;Y (F ).

Note that the assumption on the boundness of the noise
density is essential for the proof of Prop. 3.



V. ON OPTIMAL INPUT-DISTRIBUTION

Existence of an optimal distribution follows if the set F is
weak∗ compact and the mutual information IX;Y (F ) is weak∗

continuous in F . The latter we have proved above. If we
would have a constraint on one of the moments of the input-
distribution, the simple usage of Markov inequality would
imply that the set F is tight. Tightness is important since it is
a necessary condition for the relative compactness2 of F using
Prokhorov’s theorem [10]. The compactness would follow
from the sequential compactness of F and the metrizability
of weak∗ topology by Lévy metric. Unfortunately, the set F
is not compact in general and therefore one cannot argue for
the existence of any solution. However, for some classes of
noise distributions, it is possible to argue that the optimal
distribution lies in a compact subset of F and therefore one
can limit the search to this subset instead. More precisely, we
show that for some classes, we can limit the search to a tight
set of probability distributions. Therefore the existence follows
consequently. Note that within the course of the argument, it
can be seen that the uniqueness of the solution is automatically
ruled out. Many distributions can be optimal but nevertheless
are excluded to guarantee the tightness of the set.

The first result in this direction focuses on the class of noise
distributions with bounded support. We assume that the noise
has a bounded support, say in the set [−K,K] for a fixed
K > 0. The following proposition suggest that one can look
only at input-distributions with bounded support to achieve
capacity.

Proposition 4: If the support of the noise W lies in the
set [−K,K] for some K ∈ R+, then for every choice of the
input-distribution F , there is an input-distribution F̃ such that
IX;Y (F ) = IX;Y (F̃ ) and F̃ is supported on [−K−δ,K+1+δ]
for an arbitrary δ > 0.

Proof: Recall that `(x) = P(W ≤ −x) and r(x) =
P(W ≥ 1− x). If x > K then `(x) = 0 while for x < −K,
`(x) = 1 holds. In both cases, `(x) log `(x) is zero. Similarly,
if x < −K + 1 then r(x) = 0 while if x > 1 + K, then
r(x) = 1. Again, r(x) log r(x) = 0. This implies that the
values of (7) and (8) do not depend on the value of the
input-distribution outside [−K,K+1]. Now consider the term∫ 1−x
−x ϕ(w) logϕ(w)dw. For x > K + 1 and x < −K, the

integral is zero and therefore the value of (9) depends only on
the value of the input-distribution inside [−K,K + 1]. This
implies that hY |X(F ) depends only on the value of the input-
distribution inside [−K,K + 1].

Now consider L(F ) and R(F ). Since `(x) is zero for x ∈
(K,∞), L(F ) does not depend on the value of F on (K,∞).
Moreover since `(x) is one for x ∈ (−∞,K), L(F ) can be
written as

L(F ) =

∫
[−K,K]

`(x)dF + P(X < −K).

2Relative compactness means that every sequence of probability distribu-
tions Fn has a sub-sequence converging to a probability distribution F .

Using a similar argument for R(F ), we can see that:

R(F ) =

∫
[1−K,1+K]

r(x)dF + P(X > K + 1).

Note that for
∫
ϕ(y − x)dF , ϕ(y − x) is zero for x /∈

[−K+y,K+y]. Since y ∈ (0, 1), this means that the integral
depends on the value of F inside [−K,K + 1]. Therefore
hY (F ) depends only on the value of F on [−K,K + 1] and
on both tail probabilities P(X < −K) and P(X > K + 1).
Therefore an arbitrary input-distribution F can be replaced by
another distribution F̃ such that, first IX;Y (F ) = IX;Y (F̃ ) and
second the distribution of F̃ is equal to F on [−K,K+1] with
two mass points on −K − δ and K + 1 + δ with probabilities
P(X < −K) and P(X > K + 1), respectively. With this
choice the mutual information remains the same.

Corollary 5: For the censored channel, if the noise has a
bounded probability density function with bounded support
then there exist an input distribution that maximizes the mutual
information.
Proof: From Prop. 4, one can limit the search on the set of
input-distributions supported on [−K − δ,K + 1 + δ]. The
set of all these probability distributions are trivially tight and
hence compact. The continuity of I implies the existence of a
solution.

The advantage of the last corollary is that a search for
an optimal input-distribution can be limited to a tight set of
distributions. It is more difficult to carry on the same approach
for noise distributions with an unbounded support. One reason
is the difficulty of determining the level-sets of the entropy
function. In other words, it is not clear which probability
distributions in general yield the same entropy. However the
following theorem proves that we can approach the optimal
mutual information arbitrarily close using distributions with
bounded support.

Theorem 6: Suppose that the noise has a probability density
function with bounded derivative on R. Let δ > 0 be
sufficiently small. Then there is an interval Aδ ⊂ R such that
for each choice of the input-distribution F , there exists another
input-distribution F̃ supported on Aδ that approximates3 the
mutual information in the sense∣∣∣IX;Y (F̃ )− IX;Y (F )

∣∣∣ .= O(δ).

Remark 7: In the previous theorem, we find an interval,
e.g., [−K,K], that contains most of the noise probability.
In other words, the probability that the noise belongs to the
set (−∞,−K) ∪ (K,∞) is at most ε � 1. The bound
on the absolute value of the derivative of ϕ is then used
to bound the noise probability density function ϕ(w) it-
self over (−∞,−K) ∪ (K,∞). To see this, suppose that
|ϕ′(w)| is strictly bounded by α. Now consider the line
y = α(w−w0)+ϕ(w0) passing through the point (w0, ϕ(w0))
for w0 ∈ (−∞,K) with slope α. The line will not cross
ϕ(w) in another point w ∈ (−∞,K). If it would cross the

3We use the big O notation to describe the order of the error term in the
approximation.



arbitrary point (w1, ϕ(w1)), then according to the mean value
theorem, there must be a point w2 between w0 and w1, such
that ϕ′(w2) = ϕ(w1)−ϕ(w0)

w1−w0
= α which is contrary to α being

the upper bound. Therefore the line through (w0, ϕ(w0)) will
totally be under ϕ(w) and so is a triangle created by this line,
the x-axis, and the line w = w0. The area of this triangle
is ϕ(w0)

2

2α and is less than ε. Using a similar argument for
w ∈ (K,∞) by using a line with slope −α, we can see that
ϕ is bounded by

√
2αε on all points outside [−K,K].

Proof of Thm. 6: For the sake of compactness of the proof,
w.l.o.g. we make use of the natural logarithm lnx = log x

log e
hereinafter.

To prove Thm. 6 we need to use the fact that for each
probability measure P on R and for each ε > 0, there exists
a number K > 0 such that P([−K,K]) > 1− ε . This means
that each probability measure on R is tight and it is a simple
conclusion of [10, Theorem 1.3] by using the fact that R is
complete and separable. Now this fact can be applied to the
noise distribution Φ to find K > 0 such that P(−K ≤ W ≤
K) > 1−ε. Suppose that the input-distribution is F . hY |X(F )
can be expressed as in (7), (8) and (9). See that `(x) = P(W ≤
−x). If x > K, we have `(x) ≤ ε. This bound along with the
simple inequality −x lnx ≤ 2

√
x

e , can be used to show that

−`(x) ln `(x) ≤ 2

e

√
`(x) ≤ 2

e

√
ε , (12)

and therefore

−
∫
(K,∞)

`(x) ln `(x) dF ≤ 2

e

√
ε . (13)

If x < −K, then `(x) = P(W ≤ −x) ≥ 1− ε. Analogously,
using −x lnx ≤ (1 − x), we can see −`(x) ln `(x) ≤ 1 −
`(x) ≤ ε, which results in

−
∫
(−∞,−K)

`(x) ln `(x) dF ≤ ε. (14)

This basically shows that∫
(−∞,∞)

`(x) ln
1

`(x)
dF

−
∫
[−K,K]

`(x) ln
1

`(x)
dF ≤ 2 + e

e

√
ε . (15)

On the other hand, r(x) = P(W ≥ 1−x). Similarly if 1−x >
K, r(x) ≤ ε and if 1 − x < −K, r(x) ≥ 1 − ε. Equivalent
bounding techniques will show that∫

(−∞,∞)

r(x) ln
1

r(x)
dF

−
∫
[1−K,1+K]

r(x) ln
1

r(x)
dF ≤ 2 + e

e

√
ε . (16)

Finally consider the last term (9) in hY |X(F ). For 1−x < −K
or −x > K, we would like to bound

∣∣∣∫ 1−x
−x ϕ(w) lnϕ(w) dw

∣∣∣.
The starting point is the triangle inequality∣∣∣∣∫ 1−x

−x
ϕ(w) lnϕ(w) dw

∣∣∣∣ ≤ ∫ 1−x

−x
ϕ(w) |lnϕ(w)|dw.

The integral is decomposed into two parts. For the first part,
it is assumed that ϕ(w) ≤ 1. For this assumption we use the
indicator function 1 to obtain∫ 1−x

−x
ϕ(w) |lnϕ(w)|1(ϕ(w) ≤ 1) dw

= −
∫ 1−x

−x
ϕ(w) lnϕ(w)1(ϕ(w) ≤ 1) dw

(a)

≤
∫ 1−x

−x

2

e

√
ϕ(w)1(ϕ(w) ≤ 1) dw

(b)

≤ 2

e

√∫ 1−x

−x
ϕ(w)1(ϕ(w) ≤ 1) dw

√∫ 1−x

−x
dw

≤ 2

e

√
ε ,

where (a) is due to −x lnx ≤ 2
e

√
x and (b) is due to

Cauchy-Schwartz inequality. Using Rem. 7, ϕ(w) is bounded
by
√

2αε. If ϕ(W ) is sometimes larger than 1, then
√

2αε > 1.
Now the assumption ϕ(w) > 1 implies that∫ 1−x

−x
ϕ(w) |lnϕ(w)| 1(ϕ(w) > 1) dw

=

∫ 1−x

−x
ϕ(w) lnϕ(w)1(ϕ(w) > 1) dw

(c)

≤
∫ 1−x

−x

√
2αε ln

√
2αε1(ϕ(w) > 1) dw

≤
√

2αε ln
√

2αε ≤ 2αε ,

where (c) is because x lnx is increasing for x ≥ 1. Using this
decomposition, for 1 − x < −K or −x > K, the following
holds for a constant c1 > 0:∣∣∣∣∫ 1−x

−x
ϕ(w) lnϕ(w) dw

∣∣∣∣ ≤ 2

e

√
ε+ 2αε ≤ c1

√
ε .

Finally the last term is bounded by∣∣∣∣−∫ (∫ 1−x

−x
ϕ(w) lnϕ(w) dw

)
dF

+

∫
[−K,K+1]

(∫ 1−x

−x
ϕ(w) lnϕ(w) dw

)
dF

∣∣∣∣∣ =∣∣∣∣∣−
∫
(−∞,−K)∪(K+1,∞)

(∫ 1−x

−x
ϕ(w) lnϕ(w) dw

)
dF

∣∣∣∣∣
≤ c1
√
ε. (17)

Using (15), (16) and (17), it can be seen that the conditional
entropy hY |X(F ) is mostly resulted from the input-distribution
on [−K,K+ 1]. The rest only perturbs it on the order of

√
ε.

Therefore if another input-distribution F̃1 agrees completely
with F on [−K,K+ 1], then it satisfies all above inequalities
and hY |X(F̃1) agrees with hY |X(F ) for the most part. In this
way, for some constant c2 > 0 we have∣∣∣hY |X(F )− hY |X(F̃1)

∣∣∣ ≤ c2√ε . (18)



Now we consider hY (F ). Similar to above arguments, we
have

∫
x∈[K,∞)

`(x)dF ≤ ε and
∫
x∈(−∞,−K]

`(x)dF ≥ (1 −
ε)P(X < −K). Using them one can bound L(F ) by

L̃(F )− ε ≤ L̃(F )− εP(X < −K) ≤ L(F ) ≤ L̃(F ) + ε,

where L̃(F ) =
∫
x∈[−K,K]

`(x)dF + P(X < −K). The goal
is to show that L̃(F ) ln 1

L̃(F )
is at most O(

√
ε) far from

L(F ) ln 1
L(F ) . Two cases can happen. First if L(F ) < ε, then

0 ≤ L̃(F ) < 2ε. Moreover L(F ) ln 1
L(F ) ≤

2
e

√
ε and also

L̃(F ) ln 1
L̃(F )

≤ 2
e

√
2ε. This yields the intended result. The

second case is when L(F ) ≥ ε. In this case we use the mean
value theorem on ρ to achieve the inequality

−1 = − ln e ≤ ρ(L)− ρ(L̃)

L− L̃
≤ − ln(e ε)

or equivalently |ρ(L) − ρ(L̃)| ≤ |L − L̃|max{1, | ln(e ε)|}.
With |L− L̃| ≤ ε from above and | ln(e ε)| ≤ 2√

e ε
it follows

|ρ(L) − ρ(L̃)| ≤
√
εmax{1, 2√

e
} = 2√

e

√
ε. Using this fact

shows that in both cases, |L(F )− L̃(F )| ≤ ε implies∣∣∣∣L̃(F ) ln
1

L̃(F )
− L(F ) ln

1

L(F )

∣∣∣∣ .= O(
√
ε). (19)

The very same steps can be used to bound R(F ) =
∫
r(x)dF .

Basically
∫
x∈(K+1,∞)

r(x)dF ≥ (1 − ε)P(X > K + 1) and∫
x∈(∞,1−K)

r(x)dF ≤ ε and this implies that

R̃(F )− ε ≤ R(F ) ≤ R̃(F ) + ε,

where R̃(F ) =
∫
x∈[1−K,1+K]

r(x)dF + P(X > K + 1).
Similarly |R(F )− R̃(F )| < ε implies∣∣∣∣R̃(F ) ln

1

R̃(F )
−R(F ) ln

1

R(F )

∣∣∣∣ .= O(
√
ε). (20)

Now consider α(y;F ) for y ∈ (0, 1). Remember that using
Rem. 7, ϕ(w) is bounded by

√
2αε on the points outside

[−K,K]. Hence ϕ(y − x) is bounded by
√

2αε for y − x /∈
[−K,K]. Given that y ∈ (0, 1), we have

∫
x/∈[−K,K+1]

ϕ(y −
x)dF ≤

√
2αε. Therefore α(y;F ) ≤ α̃(y;F ) +

√
2αε

where α̃(y;F ) =
∫
x∈[−K,K+1]

ϕ(y− x)dF . Since |α(y;F )−
α̃(y;F )| <

√
2αε, using the previous techniques leads to∣∣∣∣α(y;F ) ln

1

α(y;F )
− α̃(y;F ) ln

1

α̃(y;F )

∣∣∣∣ .= O(ε1/4),

which in turn yields∣∣∣∣∫ 1

0

α(y;F ) ln
1

α(y;F )
dy −

∫ 1

0

α̃(y;F ) ln
1

α̃(y;F )
dy

∣∣∣∣
.
= O(ε1/4) . (21)

The equations (19), (20) and (21) show that if a measure F̃2

agrees with F on [−K,K+1] and also has the same probabil-
ity on the sets (K + 1,∞) and (−∞,−K) as P(X > K + 1)
and P(X < −K), respectively, then it approximates hY (F )
with an error of order ε1/4. It means that for some constant
c3 > 0,

∣∣∣hY (F )− hY (F̃2)
∣∣∣ ≤ c3ε

1/4. Note that F̃2 also

satisfies all conditions needed for (18). Therefore we finally
have ∣∣∣IX;Y (F )− IX;Y (F̃2)

∣∣∣ .= O(δ) (22)

with δ = ε1/4.
Thm. 6 tells us that if 1−ε of the noise mass is concentrated

on a set A, the capacity of censored channel can be approx-
imated with the error O(ε1/4) using only input-distributions
supported on A, or in other words on a slightly larger and yet
bounded set. More precisely we get the following.

Corollary 8: Let the noise have a probability density func-
tion with bounded derivative on R. There exists an input-
distribution F̃ , which maximizes the mutual information on a
bounded support and approaches the capacity of the censored
channel within O(ε1/4) gap.

VI. CONCLUSION AND FUTURE WORK

In the present paper, we have investigated the censored
channel with respect to its information theoretical properties.
First we have shown that the considered model can com-
pletely describe the transfer function of arbitrary censored
channels. Second we have presented two upper bounds on the
mutual information of the censored channels to make further
comparisons with common channels easier. Third, we have
discussed the continuity of the mutual information and the
existence of an optimal input-distribution to achieve capacity.
We have derived, that capacity-achieving input has a bounded
support whenever the noise distribution is continuous and
has a bounded support, as well. Finally, input-distributions
with bounded support can approach capacity with a negligible
error even if the noise distribution has an unbounded support.
Furture works focus on showing finite support of the capacity-
achieving input-distribution.
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