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Abstract—In this paper we address a sum secrecy rate maxi-
mization problem for a multi-carrier and MIMO communication
system. We consider the case that the receiver is capable of full-
duplex (FD) operation and simultaneously sends jamming signal
to a potential eavesdropper. In particular, we simultaneously
take advantage of the spatial and frequency diversity in the
system in order to obtain a higher level of security in the
physical layer. Due to the non-convex nature of the resulting
mathematical problem, we propose an iterative solution with
a guaranteed convergence, based on block coordinate descent
method, by re-structuring our problem as a separately convex
program. Moreover, for the special case that the transmitter
is equipped with a single antenna, an optimal transmit power
allocation strategy is obtained analytically, assuming a known
jamming strategy. The performance of the proposed design is then
numerically evaluated compared to the other design strategies,
and under different system assumptions.

Keywords—Full-duplex, wiretap channel, secrecy rate, jamming,
multi-carrier, MIMO.

I. INTRODUCTION

Full-Duplex transceivers are known for their capability to
enhance various aspects of wireless communication systems,
e.g., achieving higher spectral efficiency and physical layer
security, due to the simultaneous transmission and reception
capability on the same channel [1]. Nevertheless, such systems
suffer from the inherent self-interference (SI) from their own
transmitter. Recently, specialized cancellation techniques, e.g.,
[2]–[4], have demonstrated an adequate level of isolation
between Tx and Rx directions to facilitate a FD communication
and motivated a wide range of related studies, see, e.g., [5].
As an interesting use case of such capability, it is known that a
FD receiver can significantly enhance the security of a wireless
system in physical layer, by simultaneously transmitting a
jamming signal to a potential eavesdropper, while receiving
the useful information from the legitimate transmitter. Note
that the information security of the current communication
systems are typically addressed by distributing secret keys,
using cryptographic approaches. This approach mainly relies
on the assumption that a potential eavesdropper has a limited
computational power and hence may not break the exchanged
secret key. On the other hand, this assumption is increasingly
undermined due the advances in the production of digital pro-
cessors, and leads to a growing interest to ensure the security
of information systems in the physical layer. In this regard, the
concept of the wiretap physical channel is introduced in [6],
including a legitimate transmitter, namely Alice, a legitimate
receiver, namely Bob, as well as an eavesdropper, namely Eve.
In this regard, the secrecy capacity of a wiretap channel is de-
fined as the information capacity that can be exchanged among

the legitimate users, without being accessible by Eve. The
secrecy capacity of the defined wiretap model have been since
extensively studied for various systems, regarding performance
bounds, channel coding and information theoretic aspects, as
well as the system design and resource optimization, see [7]
and the references therein.

The application of FD capability for secrecy rate maxi-
mization in a wiretap channel is studied in [8] where a FD
Bob is capable of transmitting jamming signal, considering a
single antenna Alice and a passive eavesdropper. In particular
the utilization of a FD jammer reduces the need to external
helpers, which are commonly used to degrade the reception
capability of the eavesdropper via cooperative jamming [9],
[10], without having to trust external nodes, or demanding
additional resources. The studied system [8] is then extended
to a setup where all nodes are equipped with multiple antennas
[11], [12]. Moreover, extensions on the operation the FD Bob
is introduced by considering a simultaneous information and
jamming transmission, i.e., operating as a base station [13],
and considering a FD jamming Bob that simultaneously relays
information to a third node, i.e., operating as a jamming
relay [14]. The consideration of a joint FD operation of
both Alice and Bob, i.e., a bi-directional wiretap channel, as
well as the possibility of the FD operation at Eve, i.e., an
active eavesdropper, is respectively studied in [15], [16], and
in [17], targeting at sum-secrecy rate maximization in both
communication directions.

The aforementioned works study different system possibil-
ities considering a single-carrier, frequency-flat channel model
for all of the physical links. In contrast, the consideration of
a frequency selective, multi-carrier system in the context of
sum secrecy rate maximization is extensively studied for a
wireless system with half-duplex links, see [18]–[21]. In this
respect, extension of the prior works with FD transceivers to a
frequency-selective and multi-carrier design is interesting. This
is since the usual flat-fading assumption of the previous studies
limits the usability of the proposed designs. Furthermore, in a
frequency selective setup, the frequency diversity in different
subcarriers can be opportunistically used, both regarding the
jamming and the desired information link to jointly enhance
the resulting secrecy capacity. In this respect, a power-auction
game is proposed in [22] for maximizing the sum secrecy rate
in a FD and multi-carrier system, where all nodes are equipped
with a single antenna. However, such studies are not yet
extended for a system with multiple-antenna FD transceivers.

In this paper we address a joint power and beam op-
timization problem for sum secrecy rate maximization in a
multi-carrier and MIMO wiretap channel. We consider the



Figure 1. The studied multi-carrier wiretap channel, including Alice (legit-
imate transmitter), Bob (legitimate receiver) and Eve (eavesdropper). Bob is
capable of FD operation. Upper-index n is the subcarrier index.

case that the receiver is capable of full-duplex (FD) opera-
tion and simultaneously sends jamming signal to a potential
eavesdropper. In particular, we simultaneously take advantage
of the spatial and frequency diversity in the system in order
to obtain a higher level of security in the physical layer. In
Section II, the system model is presented. In Section III the
corresponding optimization strategy is defined. Due to the non-
convex nature of the resulting mathematical problem, we pro-
pose an iterative solution with a guaranteed convergence, based
on block coordinate descent method [23, Subsection 2.7], by
re-structuring our problem as a separately convex program.
Moreover, for special case that the transmitter is equipped with
a single antenna, an optimal transmit power allocation strategy
is obtained analytically, assuming a known jamming strategy.
The performance of the proposed design is then numerically
evaluated in Section IV.

A. Mathematical Notation:

Throughout this paper, column vectors and matrices are
denoted as lower-case and upper-case bold letters, respec-
tively. Mathematical expectation, trace, inverse, determinant,
transpose, conjugate and Hermitian transpose are denoted by
E{·}, tr(·), (·)−1 | · |, (·)T , (·)∗ and (·)H , respectively. The
Kronecker product is denoted by ⊗. The identity matrix with
dimension K is denoted as IK and vec(·) operator stacks
the elements of a matrix into a vector. 0m×n represents an
all-zero matrix with size m × n. ⊥ represents the statistical
independence. diag(·) returns a diagonal matrix by putting the
off-diagonal elements to zero. The sets of real, non-negative
real, complex and natural numbers are respectively denoted by
R, R+, C and N. ‖ · ‖F represents Frobenius norm. {a}+ is
equal to a ∈ R if a ≥ 0, and zero otherwise.

II. SYSTEM MODEL

We consider a classic wiretap channel: Alice transmits a
massage to Bob while Eve intends to eavesdrop the transmitted
message. Moreover, we consider a multi-carrier and MIMO
system, where Bob is capable of FD operation by sending
a jamming signal to Eve while receiving the message from
Alice, see Fig. 1. Alice and Eve are respectively equipped
with Ma and Me transmit and receive antennas, where Bob
is equipped with Mbt (Mbr) transmit (receive) antennas. In
each subcarrier, channels are assumed to follow a quasi-
stationary and flat-fading model. In this regard, channels from
Alice to Bob (desired communication channel), Alice to Eve

(information leakage channel), Bob to Bob (SI channel), and
Bob to Eve (jamming channel) are respectively denoted as

H
(n)
ab ∈ CMbr×Ma , H

(n)
ae ∈ CMe×Ma , H

(n)
bb ∈ CMbr×Mbt and

H
(n)
be ∈ CMe×Mbt , where n ∈ N , and N is the index set of

all subcarriers. The transmit signal from Alice can be written
as

x(n) = V(n)s(n), (1)

where s(n) ∼ C (0d×1, Id) and V(n) ∈ CMa×d respectively
represent the vector of data symbols to be transmitted, and
the transmit precoder for subcarrier n. Moreover, d ∈ N
is the number of data streams which are transmitted in
parallel. On the other hand, the jamming signal transmitted
by Bob is described as w(n) ∼ CG (

0Mbt×1,W
(n)

)
, where

W(n) ∈ CMbt×Mbt is the jamming transmit covariance, and
G represents Gaussian distribution. Note that the transmitted
jamming signal by Bob impacts the wiretap channel in two
opposite directions. Firstly, the jamming signal impacts the
signal received by Eve as an additional interference term,
and degrades the Alice to Eve channel. Secondly, due to the
imperfect SI cancellation, the residual interference terms lead
to the degradation of the communication channel between
Alice and Bob. Since the aforementioned effects impact the
achievable system secrecy in opposite directions, a smart
design of the jamming strategy is crucial. The received signal
by Eve is written as

y(n)
e = H(n)

ae x(n) +H
(n)
be w(n) + n(n)

e , (2)

where n
(n)
e ∼ CG

(
0Me×1, N

(n)
e IMe

)
is the additive white

noise on Eve. Similarly, the received signal at Bob is formu-
lated as

y
(n)
b = H

(n)
ab x(n) + n

(n)
b + z

(n)
b , (3)

where n
(n)
b ∼ CG

(
0Mbr×1, N

(n)
b IMbr

)
is the additive white

noise on Bob, and z
(n)
b ∈ CMbr is the baseband representation

of the residual SI signal in subcarrier n, remaining from the
SI cancellation process.

A. Residual SI model

We recognize three different sources of error considering
the state-of-the-art SI cancellation methods [24]. This includes
inaccuracy of the channel state information (CSI) regarding SI
path as well as the inaccuracy of the transmit/receive chain
elements in the analog domain. In the following we study the
impact of each part separately.

1) Linear SI cancellation error: The estimation accuracy
of the CSI in the SI path is limited, particularly in the
environments with limited channel coherence time, see [25,
Subsection 3.4.1], [26, Subsection V.C]. In this respect, the
error of the CSI estimation regarding the SI path is defined as

E
(n)
bb , such that E

(n)
bb = D

(n)
bb Ē

(n)
bb where Ē

(n)
bb is matrix of zero-

mean i.i.d. elements with unit variance, and D
(n)
bb incorporates

spatial correlation, see [24, Equation (8), (9)].

2) Transmitter distortion: Similar to [24], the inaccuracy
of the analog (hardware) elements in the transmit chains,
e.g., digital-to-analog converter error, power amplifier noise
and oscillator phase noise, are jointly modeled by injecting
an additive Gaussian distortion signal term for each transmit



chain. This is written as ql(t) = et,l(t)+wl(t), see Fig. 2 such
that

et,l(t) ∼ CG
(
0, κE

{
wl(t)wl(t)

∗})
,

et,l(t)⊥wl(t), et,l(t)⊥et,l(t
′), et,l(t)⊥et,l′ (t), (4)

where wl, et,l, and ql ∈ C respectively represent the intended
(distortion-free) transmit signal, additive transmit distortion,
and the actual transmit signal from the l-th transmit chain, and t
denotes the instance of time1. Moreover, we have t �= t

′
, l �= l

′
,

and κ ∈ R+ is the distortion coefficient, relating the collective
power of the distortion signal to the intended transmit power.

3) Receiver distortion: Similar to the transmit chain, the
combined effect of the inaccurate hardware elements, e.g.,
analog-to-digital converter error, oscillator phase noise and
automatic gain control noise, are presented as an additive
distortion term q̃l(t) = er,l(t) + ul(t) such that

er,l(t) ∼ CG
(
0, βE

{
ul(t)ul(t)

∗})
,

er,l(t)⊥ul(t), er,l(t)⊥er,l(t
′
), er,l(t)⊥er,l′ (t), (5)

where ul, er,l, and , q̃l respectively represent the intended
(distortion-free) receive signal, additive receive distortion, and
the received signal from the l-th receive antenna. Moreover,
β ∈ R+ holds a similar role as κ regarding the distortion
signal variance in the receiver side.

Note that the defined model for transmit/receive distortion
terms follow two important intuitions. Firstly, unlike the usual
thermal noise model, the variance of the distortion terms are
proportional to the transmit/receive signal power in each chain.
Secondly, the distortion signal is statistically independent to the
intended transmit/receive signals. Such statistical independence
also holds for distortion signal terms at different chains, or
at different time instance, i.e., they follow a spatially and
temporally white statistics, see [24, Subsection II.C], and [24,
Subsection II.D]. Consequently from (5) and (4), the covari-
ance of the aggregate noise-plus-residual-interference signal on
Bob is obtained as

Σ
(n)
b = E

{(
n
(n)
b + z

(n)
b

)(
n
(n)
b + z

(n)
b

)H
}

= N
(n)
b IMbr

+ trace
(
W(n)

)
D

(n)
bb D

(n)
bb

H

+H
(n)
bb

(
κ(n)

∑
n∈N

diag
(
W(n)

))
H

(n)
bb

H

+ β(n)diag

(∑
n∈N

H
(n)
bb W(n)H

(n)
bb

H

)
, (6)

where κ(n) (β(n)) represents the transmit (receive) distortion
coefficient relating the collective power of the intended trans-
mit (receive) signal to the distortion signal variance in the n-th
subcarrier2.

It is worth mentioning that the impacts of the discussed

inaccuracies, i.e., et,l, er,l,E
(n)
bb , become significant for a FD

transceiver due to the strong SI channel. For instance, the
transmit distortion signals pass through the strong SI channel

H
(n)
bb and become comparable to the desired signal from

1Note that the signal representation in time domain includes the superposi-
tion of signal parts in all subcarriers.

2The distortion coefficients associated with different subcarriers may be
different if, e.g., the subcarrier spacing is not equal over all bands, or the
power spectral density of the distortion signals are not completely flat.

Figure 2. FD transceiver inaccuracy model. The impact of the limited
transmitter/receiver dynamic range is modeled as additive distortion terms.

Alice which is passing through a much weaker channel H
(n)
ab .

Nevertheless, such inaccuracies are ignorable in the other links
which do not involve an SI path, i.e., κ 	 1, β 	 1 and∥∥∥E(n)

bb

∥∥∥
F
	

∥∥∥H(n)
bb

∥∥∥
F

.

B. Transmit power constraints

It is common to assume that the average transmit power
from each device is practically limited due to, e.g., limited
battery and energy storage. This is written as

trace

(∑
n∈N

X(n)

)
≤ Xmax, trace

(∑
n∈N

W(n)

)
≤Wmax,

(7)

where

X(n) = E

{
x(n)x(n)H

}
= V(n)V(n)H (8)

is the transmit covariance from Alice in the subcarrier n. More-
over, Xmax,Wmax ∈ R+ respectively represent the maximum
transmit power from Alice, and the maximum transmit power
from Bob, i.e., jamming power.

C. Sum secrecy capacity

The secrecy capacity of the defined system, for the subcar-
rier n is written as

I(n)sec =
{
I(n)ab − I(n)ae

}+

=

{
log2

∣∣∣∣Id +V(n)HH
(n)
ab

H (
Σ

(n)
b

)−1

H
(n)
ab V(n)

∣∣∣∣
− log2

∣∣∣∣Id +V(n)HH(n)
ae

H
(
Σ(n)

e

)−1

H(n)
ae V(n)

∣∣∣∣
}+

,

(9)

where I(n)sec is the resulting secrecy rate in subcarrier n, and

I(n)ab , I(n)ae respectively represent the information capacity of
Alice-Bob and Alice-Eve paths. In the above formulation,

Σ
(n)
e = N

(n)
e IMe + H

(n)
be W(n)H

(n)
be

H
is the covariance of

the received noise-plus-interference signal at Eve and Σ
(n)
b is

calculated from (6).

Consequently, the sum-secrecy capacity of the defined
multi-carrier system is obtained as

Isum =
∑
n∈N

I(n)sec . (10)

D. Remarks

i) Unlike the information-containing signal from Alice, the
jamming signal from Bob contains artificial noise, see [27,
Equation (5)]. This is to prevent Eve to decode the jamming
signal.



ii) We consider a case where Alice is not contributing in
the jamming process. This is to simplify the task of Alice as a
usual end-user device. The extension of the considered system
to a setup with different jamming strategies is a goal of our
future research.

iii) In this work we assume the availability of CSI on
Alice-Bob, Alice-Eve, and Bob-Eve channels. Other than sce-
narios where the position of Eve is stationary and known,
this assumption does not hold in practice. The sensitivity
of the resulting system performance to the CSI accuracy is
numerically evaluated in Section IV.

III. SUM SECRECY RATE MAXIMIZATION

In this part our goal is to maximize the defined sum secrecy
rate of the system over all subcarriers, see (10), considering
the transmit power constraints for Alice and Bob, see (7). The
corresponding optimization problem is written as

max
X,W

Isum s.t. (7) (11)

where X (W) represents the set of X(n) � 0 (W(n) � 0),
∀n ∈ N . By recalling (9) and known matrix identities [28,
Eq. (516)] the defined problem is reformulated as

max
X,W

∑
n∈N

{
log2

∣∣∣Σ(n)
b +Θ

(n)
b

∣∣∣− log2

∣∣∣Σ(n)
b

∣∣∣
− log2

∣∣∣Σ(n)
e +Θ(n)

e

∣∣∣+ log2

∣∣∣Σ(n)
e

∣∣∣
}+

(12a)

s.t. trace (Θ) ≤ Xmax, trace (Σ) ≤Wmax, (12b)

where Θ :=
∑

n∈N X(n), Θ
(n)
b := H

(n)
ab X(n)H

(n)
ab

H
, and

Θ
(n)
e := H

(n)
ae X(n)H

(n)
ae

H
are affine compositions of the

Alice transmit covariance matrices X(n). Moreover, Σ =∑
n∈N W(n), Σ

(n)
e , and Σ

(n)
b are affine compositions of the

transmit jamming covariance matrices X(n). Nevertheless, the
above problem is intractable, due to the {.}+ operation in
the defined secrecy value. Moreover, the maximization of
difference of such log() functions lead to a class of difference-
of-convex (DC) problems which is jointly or separately a non-
convex problem [29]. The following two lemmas transform the
objective function into a more tractable form.

Lemma III.1. At the optimality of (12), the operator {.}+ has
no impact.

Proof: The operator {.}+ impacts the problem only when
the value inside becomes negative, for at least one of the
subcarriers n ∈ N . In such a situation, Alice and Bob can turn
off transmission in the corresponding subcarrier, i.e., choosing
X(n) = 0,W(n) = 0, and contribute the reduced power to

another subcarrier with a positive I(n)sec . Such action results in
the enhancement of Isum and contradicts the initial optimality
assumption.

Lemma III.2. Let R ∈ Cl×l be a positive definite matrix. The
maximization of the term −log |R| is equivalent in terms of the
optimal R and objective value to

max
R�0,Q�0

log |Q| − tr (QR) + l, (13)

where Q ∈ Cl×l.

Proof: Since (13) is an unconstrained concave maximiza-
tion over Q for a fixed R, the corresponding optimal R is
obtained by equalizing the derivative of the objective function
to zero. In this way we obtain Q� = R−1. This equalizes the
objective in (13) to the term −log |R| at the optimality of Q,
which concludes the proof, see also [30, Lemma 2].

Via the utilization of the defined lemmas, the problem (12)
can be restructured as

max
X,W,Q,L

∑
n∈N

(
log

∣∣∣Σ(n)
b +Θ

(n)
b

∣∣∣+ log
∣∣∣Σ(n)

e

∣∣∣ (14a)

− trace
(
Q(n)Σ

(n)
b

)
− trace

(
T(n)

(
Σ(n)

e +Θ(n)
e

))

+ log
∣∣∣Q(n)

∣∣∣+ log
∣∣∣T(n)

∣∣∣
)

(14b)

s.t. trace (Θ) ≤ Xmax, trace (Σ) ≤Wmax, (14c)

where log() is natural logarithm, Q(n) ∈ CMbr×Mbr and
T(n) ∈ CMe×Me are introduced as auxiliary variables, and the
sets Q and T are defined similar to that of X, W. Following
Lemma III.2 optimal values of the auxilliary variables are
obtained as

T(n)� =
(
Σ(n)

e +Θ(n)
e

)−1

, (15)

Q(n)� =
(
Σ

(n)
b

)−1

. (16)

Please note that the obtained problem structure (14) is
not a jointly convex problem. Nevertheless, it is a convex
problem separately over the sets X,W and Q,T. Hence, we
follow an iterative coordinate ascend update where in each
iteration the original problem is solved over a subset of the
original variable space, see [23, Subsection 2.7]. Firstly, the
problem is solved over the variable sets X,W, assuming the
auxiliary variables Q(n) and T(n) are fixed. This results in a
convex sub-problem, where the optimum point is efficiently
obtained using the MAX-DET algorithm [31]. Secondly, the
problem is solved over the auxiliary variable sets Q,T, where
the optimum solution is obtained in closed-form from (15),
(16). This procedure is repeated until a stable point is obtained,
see Algorithm 1. Please note that due to the monotonic increase
of the objective (14a) in each optimization iteration, and the
fact that the system secrecy capacity is bounded from above,
the proposed algorithm leads to a necessary convergence. The
average convergence behavior of Algorithm 1 is numerically
studied in Section IV.

Algorithm 1 Iterative coordinate ascend method for sum secrecy
rate maximization

1: � ← 0; set iteration number to zero
2: X0 ← εIMa ; initialization: equal power in different subcarriers

and uniform spatial beam
3: W0 ← 0Mbt ; initialization: initialize with zero jamming power
4: Q0,T0 ← 0; initialization with zero matrices
5: repeat
6: � ← �+ 1;
7: X�,W� ← solve MAX-DET (14), with [31]
8: Q�,T� ← calculate (15) and (16)
9: until a stable point, or maximum number of � reached

10: return {X�,W�,Q�,T�}

A. Optimal power allocation on Alice (Ma = 1)

In this part we study a special case where Alice is equipped
with a single antenna, and hence the problem of finding



X(n) reduces into a transmit power allocation problem among
different subcarriers. In this regard, we focus on finding an op-
timal transmit strategy from Alice assuming a known jamming
strategy. This approach is particularly interesting where a joint
design for Bob and Alice is not possible due to, e.g., feedback
delay and overhead, computation complexity. Moreover, the
obtained power allocation solution may also serve as a basis
for a low-complexity sub-optimal design for a general case
where Alice is facilitated with multiple antennas.

The resulting power allocation problem on Alice, assuming
a known jamming covariance is formulated as

max
X(n)≥0, ∀n∈N

∑
n∈N

fn

(
X(n)

)
s.t.

∑
n∈N

X(n) ≤ Xmax,

(17)

where

fn

(
X(n)

)
:= log

(
1 + α(n)X(n)

1 + β(n)X(n)

)
. (18)

In the above formulation fn
(
X(n)

)
is the realized secrecy

capacity in the sub-carrier n, α(n) := H
(n)
ab

H (
Σ

(n)
b

)−1

H
(n)
ab

and β(n) := H
(n)
ae

H (
Σ

(n)
e

)−1

H
(n)
ae , where α(n), β(n) ∈ R+.

Note that a similar power allocation approach for sum secrecy
rate maximization, in the context of HD broadcast multi-
carrier systems is studied in [20], [32]. Nevertheless, due to
the presence of FD jamming in our system, the impact of
the residual SI at Bob as well as the impact of the received
jamming signal at Eve are respectively incorporated in α(n)

and β(n). Referring to a similar mathematical structure as
given in [20, Subsection III.A], in the following, we summarize
necessary steps to obtain an optimal solution to (17).

It is observable from (18) that for α(n) ≤ β(n) we
have X(n)� = 0. On the other hand, for α(n) > β(n), the
function fn

(
X(n)

)
is a concave and increasing composition

of a concave and increasing function in X(n), and hence is
a concave function, see [29, Subsection 3.2.4]. As a result,
we obtain the necessary and sufficient optimality conditions of
(17) by via the corresponding KKT conditions. This results in
a water-filling solution structure and can be expressed as in
(20), where λ > 0 holds the concept of water level, c.f. [20,
Equation (17)]. Moreover we have

0 ≤ λ� ≤
(

max
n

α(n) − β(n)(
1 + α(n)Xmax

) (
1 + β(n)Xmax

)
)

=: λmax,

(19)

which provides a feasible range for λ� and is directly obtained
from the KKT conditions. Hence, by choosing λ as a search
variable, the optimal power allocation solution can be obtained
with a water-filling procedure, see Algorithm 2 for the detailed
procedure.

IV. SIMULATION RESULTS

In this section we numerically evaluate the resulting
sum secrecy rate of the defined system, comparing differ-
ent system aspects and design strategies. In this respect,

we assume that the channels H
(n)
X are following an un-

correlated Rayleigh distribution, with variance ηX for each

element, where X ∈ {ab, ae, be}. Furthermore, H
(n)
bb ∼

CN
(√

KR

1+KR
H0,

1
1+KR

IMbr
⊗ IMbt

)
, following [33], where

Algorithm 2 Water-filling optimization algorithm based on
binary search

1: h← λmax, see (19)
2: l← 0, see (19)
3: repeat
4: λ← (h+ l)/2
5: X(n) ← see (20)
6: X̃ ←∑

n∈N X(n)

7: if (Xmax − X̃) < 0 then
8: l← λ
9: else

10: h← λ
11: end if
12: until 0 ≤ Xmax − X̃ < ε0
13: return X(n)
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Figure 3. Average convergence behavior of the proposed iterative method.
The proposed method converges to a stable point within 10-20 optimization
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Figure 4. Obtained sum secrecy rate vs. maximum jamming power from
Bob.

H0 is a matrix with all elements equal to 1 and KR is the
Rician coefficient. The resulting system performance is then
averaged over 200 channel realizations. Unless otherwise is
stated we use the following values to define our default setup:
Ma = 4, Me = 4, Mb = Mbt = Mbr = 4, |N | = 4,
KR = 10, Xmax = Wmax = 1, κ = κ(n) = −30 dB,

β(n) = β = −30 [dB], Ne = N
(n)
e = 0.1, Nb = N

(n)
b = 0.1,

ηab = ηae = ηbe = 0.01.
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Figure 5. Obtained sum secrecy rate vs. maximum transmit power from
Alice.
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Figure 6. Obtained sum secrecy rate vs. transceiver dynamic range κ = β.
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Figure 7. Average convergence behavior of the proposed iterative method. The
proposed method converges to a stable point within fewer than 10 optimization
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In Fig. 3 the average convergence behavior of the proposed
iterative method is depicted. As it is observed, the conver-
gence is obtained within 10-20 optimization iterations, which
indicates the efficiency of the proposed iterative algorithm in
terms of the required computational effort.

In Figs. 4-6 the resulting sum secrecy rate is depicted con-
sidering different design strategies. In this respect, ’Optimal-
FD’ represents the proposed design in Section III, supporting a
FD jamming receiver. ’Optimal-HD’ represents a similar setup
with a HD Bob. ’Equal-FD’ (’Equal-HD’) is the setup with no
optimization, i.e., a uniform power and beam allocation in all
subcarriers for a system with an FD (HD) Bob. Furthermore,
’Equal-X, Optimal-W’, represents the case with equal power
and beam allocation over all subcarriers for Alice together
with an optimal design of the jammer. Conversely, ’Equal-W,
Optimal-X’ represents the case with equal power and beam
allocation for Bob together with an optimal design for Alice.

In Fig. 4 the impact of the maximum jamming power from
Bob is depicted. A considerable gain is observed in this respect
for a system with optimized jamming. Nevertheless, such gain
is limited as Wmax increases. This stems from the fact that
while jamming results in the degradation of Alice-Eve channel,
the secrecy rate is bounded due to the limited Alice-Bob chan-
nel capacity. Moreover, it is observed that such jamming gain
is only obtained by applying an optimally designed jamming
transmit strategy. This emphasizes the impact of residual SI
on the Alice-Bob communication, which should be controlled
via jamming optimization. As a result, for a system with no
jamming optimization, a high Wmax results in a significantly
lower secrecy rate due to the impact of residual SI.

In Fig. 5 the impact of the maximum transmit power
from Alice on the obtained sum secrecy rate is depicted.
Is is observed that as Xmax increases, the system obtains a
higher sum secrecy rate. The performance gain, due to the
optimization of transmit strategies, and due to the jamming
capability at Bob is observed.

In Fig. 6 the impact of the transceiver dynamic range is
depicted. It is observed that as κ(= β) increases, the jamming
gain decreases due to the impact of residual SI. In this respect,
for a transceiver with large values of κ = β the jamming
is turned-off for an optimally-designed system. On the other
hand, a high κ results in a sever degradation of the system
performance due to the impact of residual SI, if the jamming
strategy is not optimally controlled.

A. Sensitivity to CSI error

In Fig. 7 the sensitivity of the proposed design, in terms
of the resulting sum system secrecy rate, is observed with

respect to the CSI error. The CSI error is modeled as H̃
(n)
X =

H
(n)
X + E

(n)
X , X ∈ {ab, ae, be}, where E

(n)
X is modeled as

a matrix with Gaussian i.i.d. elements with variance σ2
error.

It is observed that as the CSI accuracy decreases, the per-
formance of the proposed design decreases. Nevertheless, the
performance converges to its minimum level as σ2

error increases,
as a high σ2

error, is equivalent of having no knowledge of the



communication channels. Moreover, a system with a higher
power level is more sensitive to CSI accuracy, compared to a
system with a smaller Wmax = Xmax. This stems in the fact
that as the transmit power decreases, the significance of the
user noise increases and acts as the dominant factor in the
system. In this respect, the impact of the CSI error becomes
less significant, as noise acts as the dominant source of signal
uncertainty.

V. CONCLUSION

In this paper we have studied a joint power and beam
optimization problem for a multi-carrier and MIMO wiretap
channel, where Bob is capable of FD jamming. It is observed
that for a system with an adequately high SI cancellation
capability, an optimal jamming strategy results in a significant
improvement of the sum secrecy capacity. In particular, in a
frequency selective setup, the frequency diversity in different
subcarriers can be opportunistically used, both regarding the
jamming and the desired information link, to jointly enhance
the resulting secrecy capacity. Nevertheless, it is observed that
a jamming strategy with no power and/or beam optimization
may lead to a reduced system secrecy, particularly as the SI
cancellation capability decreases.
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