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Abstract—The censored channel is one of the fundamental
channels in information theory, which belongs to the class of
non-linear channels. It is modeled by cascading an additive noise
channel with a clipping operator. This paper is concerned with
the information theoretic capacity of this channel. A necessary
and sufficient condition for optimality of the input distribution
is derived and it is shown that the capacity-achieving input
distribution for the amplitude-limited censored channel has only
a finite number of mass points. This result holds for a large class
of noise distributions including additive Gaussian noise.

I. INTRODUCTION

It is well-known that the information theoretic capacity
of additive white Gaussian noise channels is attained by a
discrete input distribution under amplitude constraints [1]. The
extension of this statement to other channels is not straight-
forward, since fading and non-linear effects hamper some of
the mathematical derivations and proof techniques. Especially
in presence of censoring and truncation of information, even
the determination of mutual information requires sophisticated
mathematical techniques [2]. Many relevant communication
channels involve non-linear operations, e.g., output quantiza-
tion [3]–[5] or hinge channel [6]. One can refer for instance to
clipping operation resulting from saturation effects of ampli-
fiers. Unlike additive Gaussian channels, the received signal
cannot have an arbitrary large amplitude in general and the
output of the noisy channel can cause saturation of amplifiers
in the receiver chain from above and below. Therefore there
are two clipping thresholds, restricting the received signal to
an interval. This can be modeled by cascading a clipping
operator to a usual additive noisy channel. This model, called
censored channel, can be considered as a more realistic model
for this type of noisy communication. For the censored channel
the mutual information along with an upper bound on the
unknown capacity are derived in [7]. In general, no constraint
is assumed on the input of censored channel. However, in [8]
it is shown that for a very large class of noise distributions, it
is possible to consider inputs supported on a bounded interval
and at the same time to obtain sharp estimates for the channel
capacity. The continuity of mutual information and existence
of optimal input distribution have also been discussed in [8].
The question about the discreteness and finiteness of the
optimal input-distribution has remained an open problem.

Determining the capacity of a channel is nothing but opti-
mizing the mutual information over a set of probability mea-
sures. Smith was the first to consider the capacity of peak and

average power-constrained Gaussian channels from this point
of view [1]. His method consists of first discussing existence
of an optimal input-distribution by proving the continuity of
mutual information and compactness of the corresponding set
of probability measures. He introduced the notion of weak
derivation for mutual information to provide necessary and
sufficient condition for optimality of an input distribution.
Finally, tools from complex analysis such as analytic extension
and the identity theorem have been used to study the struc-
ture of input distribution. The problem of characterizing the
capacity-achieving distribution has been considered later by
many authors. Shamai and Bar-David [9] proved the finiteness
of support of the input distribution for peak and average-power
limited quadrature Gaussian channels. General conditions for
discreteness of the optimal distribution are also discussed
in [10] for non-Gaussian noise. The author in [11] proved
the finiteness of the support of the optimal distribution for
amplitude limited channels under some general assumptions
about the noise. Conditionally Gaussian channels are discussed
in [12] which includes also rigorous proofs of used techniques.
The authors in [13] proved the discreteness of the optimal
distribution with finite points for Rayleigh fading channels.

In the present paper we show the discreteness of the
optimal input-distribution and prove, that for a wide range of
noise distributions the number of mass points is finite under
amplitude constraint. The proof techniques are similar to [1].
Like in [11], our results are proven for a wide-class of noise
distributions instead of particular ones. After introducing the
channel model in Section II, some of the previous results, for
instance on continuity of mutual information, are discussed
in Section III. The main theorem is stated in Section IV and
the sketch of the proof is given by using a series of lemmas.
These lemmas are proven later in Section V.

II. SYSTEM MODEL

The censored channel is depicted in Figure 1. The input ran-
dom variable X is assumed to be real-valued and is disturbed
by additive random noise W . Both X and W are assumed
to be stochastically independent and time-discrete. The noisy
signal Z = X + W is then censored below 0 and above 1
while in between the transition is linear. The output will be the
random variable Y . Note that any other censored channel, with
a different slope in the linear region and different censoring
levels, can be transformed to the specific one described in the
present paper, cf. [8].



Fig. 1. The system model: a real input X is subject to additive noise W
and then is censored at 0 and 1 to yield Y .

In [7] we have presented the mutual information IX;Y (F ) =
hY (F ) − hY |X(F ) of the censored channel, as a function of
the input-distribution F (x), for a given continuous noise dis-
tribution Φ(w) with density φ(w) (not necessarily Gaussian),
by deducing the output entropy

hY (F ) = ρ

(∫ ∫ 0

−∞
φ(u− x) dudF (x)

)
+ ρ

(∫ ∫ ∞
1

φ(u− x) dudF (x)

)
+

∫ 1

0

ρ

(∫
φ(u− x) dF (x)

)
du

(1)

and the conditional entropy

hY |X(F ) =

∫
ρ

(∫ 0

−∞
φ(u− x) du

)
dF (x)

+

∫
ρ

(∫ ∞
1

φ(u− x) du

)
dF (x)

+

∫ 1

0

∫
ρ
(
φ(u− x)

)
dF (x) du .

(2)

Note that the weighted self-information ρ(q) = −q log q,
q ≥ 0, is a strictly concave function of its argument q and
the logarithm is of general base. Because of the concavity of
ρ, mutual information is a concave function w.r.t. the input-
distribution F .

For the sake of compactness, we use the short forms

`(x) =

∫ −x
−∞

φ(w) dw , L(F ) =

∫
`(x) dF (x) ,

r(x) =

∫ ∞
1−x

φ(w) dw , R(F ) =

∫
r(x) dF (x) ,

and α(u;F ) =
∫
φ(u−x) dF (x) to enable a slightly different

representation of the entropies hY (F ) and hY |X(F ) as

hY (F ) =− L(F ) logL(F )−R(F ) logR(F )

−
∫ 1

0

α(y;F ) logα(y;F ) dy (3)

and

hY |X(F ) =−
∫
`(x) log `(x) dF (x)

−
∫
r(x) log r(x) dF (x)

−
∫ (∫ 1−x

−x
φ(w) log φ(w) dw

)
dF (x), (4)

respectively.

III. CONTINUITY AND EXISTENCE OF THE SOLUTION

In this section, we review some of the relevant results in
the context of the censored channel. The following proposition
from [8] establishes the continuity of mutual information.

Proposition 1 ([8, Prop. 3]). Assuming an absolutely con-
tinuous noise distribution with bounded density, the mutual
information IX;Y (F ) is continuous in F ∈ Ω.

The proof of continuity in F is based on showing that for
each sequence of probability distributions Fn

w∗

→ F , conver-
gence in weak∗ topology, the function IX;Y (Fn) converges to
IX;Y (F ). The proof utilizes dominated convergence theorem
and properties of convergence of measures.

The existence of optimal distribution is guaranteed if it can
be shown that Ω is weak∗ compact. If one of the moments of
the input-distribution is bounded, the Markov inequality can
be used to show that the set Ω is tight. Tightness is a necessary
condition for the relative compactness1 of Ω using Prokhorov’s
theorem [14]. In that case, the sequential compactness of Ω
can be shown by proving that the limits of sequences belong
to Ω. Finally, compactness would follow by the metrizability
of the weak∗ topology by Lévy metric. In the above model, no
constraint was assumed on the input and therefore tightness
will not hold in general for Ω.

One possibility to circumvent this problem is to show that it
is enough to consider only a compact subset of R to find the
capacity or at least approximate it. This has been discussed
in [8]. If the noise has a density with bounded support, a
compact set can indeed be found for this purpose.

Proposition 2 ([8, Prop. 4]). If the support of the noise W lies
in the set [−K,K] for some K ∈ R, then for every choice of
the input-distribution F , there is an input-distribution F̃ such
that IX;Y (F ) = IX;Y (F̃ ) and F̃ is supported on [−K−δ,K+
1 + δ] for an arbitrary δ > 0 independent of F .

Consequently one can limit the search for optimal input
distribution to a compact set. In this case, the optimal input
distribution exists but evidently it will not be unique. In
general, common noises like Gaussian noise do not have
density with bounded support. But it is known that for each
probability measure P on R and for each ε > 0, there exists a
number K > 0 such that P([−K,K]) > 1 − ε . In other
words, each probability measure on R is tight. This is a
simple conclusion of [14, Thm. 1.3] by using the fact that
R is complete and separable under standard topology. The
following proposition shows that considering bounded support
can still be useful to approximate the capacity.

Proposition 3 ([8, Cor. 8]). For the noise density φ(x) suppose
that

∫K
−K φ(x)dx ≥ 1−ε. If the noise has a probability density

function with bounded derivative on R, there exists an input-
distribution F̃ , which maximizes the mutual information on
the bounded support [−K − δ,K + 1 + δ] for δ > 0 and
approaches the capacity of the censored channel within the
O(ε1/4) gap.

1Relative compactness means that every sequence of probability distribu-
tions Fn has a sub-sequence converging to a probability distribution F .



The bound on the absolute value of the derivative of φ is
used to show that the noise probability density function φ(w)
over (−∞,−K)∪(K,∞) is bounded by a function of ε. Note
that the capacity gap is only a function of ε, which is in turn
a function of K. In other words, the gap can be fixed a priori
regardless of optimal input distributions by choosing K from
the noise probability density function. These results justify
considering an amplitude limited channel since it can closely
approximate the capacity of censored channel without input
constraints. For the rest of this paper, the censored channel
is assumed to be with amplitude constraint. Therefore the
set Ω of probability distributions with amplitude constraint
is compact and the optimal distribution exists [8].

IV. ON FINITENESS OF INPUT DISTRIBUTION

As a result of the previous section, suppose that input distri-
butions are supported on [−A,A] for a choice of A > 0. The
main result of this paper is that an optimal input distribution
has finite number of mass points supported on [−A,A].

Theorem 1. Let the noise distribution be an absolutely contin-
uous measure with a continuous bounded and strictly positive
density φ(x) with the following additional properties:

1) φ(x) has a nowhere zero analytic extension on the set
Dδ

∆
= {z ∈ C : |Im(z)| < δ}.

2) There is a nonincreasing function U : [T,∞) → R+

such that |φ(z)| ≤ U(|Re(z)|).
3) The function U is integrable over [T,∞).

Then the optimal input distribution over the interval [−A,A]
has a finite support.

Proof:
The proof is presented through a series of lemmas. The

proof sketches of the lemmas are presented in the next section.
The proof consists of first finding the necessary and sufficient
conditions for optimal input distributions. Next, similar to [1],
[11], [12], the optimality condition provides zeros of a certain
function, which is proven to have an analytic extension on
an open set. These zeros correspond to the points of increase
of the optimal distribution. Subsequently it is shown that if
the number of zeros, i.e., the number of points of increase
of the optimal distribution, over a set, say [−A,A], is infinite
and hence the zeros have an accumulation point, the identity
theorem [15, Thm. 4.8] shows that the function should be zero
over the whole open set. Finally it is shown that if this function
is totally zero over the open set, a contradiction is found and
therefore the input distribution must have a finite number of
points of increase over [−A,A], due to Bolzano-Weierstrass
theorem.

Lemma 1. Let a(x) be defined as

a(x) =`(x) log `(x)
L(F0) + r(x) log r(x)

R(F0)

+

∫ 1

0

φ(y − x) log φ(y−x)
α(y;F0) dy . (5)

For the censored channel, if F0 is a capacity achieving input
distribution with IX;Y (F0) = C, then a(x) ≤ C for x ∈
[−A,A]. Equality holds at all points of increase of F0.

The above lemma is obtained by applying necessary and
sufficient conditions for optimality of an input distribution
based on weak derivative of mutual information and will be
discussed in the next section. Note that the function a(x) is
equal to C for all points of increase of F0.

Lemma 2. Suppose that the noise density φ(x) satisfies the
conditions (1), (2) and (3) of Theorem 1. Then a(z), z ∈ C
is analytic over Dδ .

The reason behind choosing Dδ , similar to [11], is to assure
that φ(z) remains analytic under translation along the real line.

Lemma 3. If the points of increase of F0 are infinite over
[−A,A], then a(x) = C for all x ∈ R.

In the above lemma, the points of increase, if infinite, have
an accumulation point in [−A,A]. But the points of increase
are zeros of a(z) − C and if the zero set of a(z) − C on a
compact set admits an accumulation point, then according to
the identity theorem [16, Theorem 10.18] and [15, Theorem
4.8], a(z) − C should be constant zero over the whole real
line, i.e., a(x) = C for x ∈ R. We show that this leads to a
contradiction and therefore the input distribution must have a
finite number of points of increase over [−A,A].

Suppose that a(x) = C for x ∈ R. Therefore lim
x→∞

a(x) =

C. We have

lim
x→∞

[
`(x) log `(x)

L(F0) + r(x) log r(x)
R(F0)

+

∫ 1

0

φ(y − x) log φ(y−x)
α(y;F0) dy

]
(a)
= log 1

R(F0) + lim
x→∞

∫ 1

0

φ(y − x) log φ(y−x)
α(y;F0) dy

(b)
= log 1

R(F0) ,

where the step (a) follows from lim
x→∞

`(x) = 0 and
lim
x→∞

r(x) = 1. The step (b) follows from the dominated
convergence theorem by showing that the expression inside the
integral has bounded absolute value. This can be done using
the fact that φ(y − x) and α(y;F0), which is the convolution
of F0 and φ(x), are nonzero and bounded over [0, 1]. After
taking the limit inside the integration, it can be seen that
lim
x→∞

φ(y − x) = 0 from (2) and (3) and therefore the whole

limit is zero. The above limit shows that log 1
R(F0) = C.

Using the same argument for the case x → −∞, we have
lim

x→−∞
a(x) = log 1

L(F0) = C. Therefore L(F0) = R(F0).
Using this result, it can be seen that

C = a(x) = `(x) log `(x) + r(x) log r(x)

+ (`(x) + r(x)) log 1
L(F0) +

∫ 1

0

φ(y − x) log φ(y−x)
α(y;F0) dy

< C +

∫ 1

0

φ(y − x) log φ(y−x)
α(y;F0) dy

where the inequality follows from r(x), `(x), `(x) + r(x) ∈
(0, 1). Therefore the integral on the right hand side should be



always positive . However since α(y;F0) has a non-zero min-
imum over [0, 1], for sufficiently large x, φ(y−x) < α(y;F0)
for y ∈ [0, 1] and hence the integral would be negative and
hence we have a contradiction.

Note that the conditions of Theorem 1 are satisfied by vari-
ety of distributions including Gaussian distribution. Moreover
the amplitude limited assumption is only needed in two places,
first for proving compactness of the set of input distributions
and second for showing that there exists an accumulation point
in [−A,A].

V. SKETCH OF PROOFS

A. Proof of Lemma 1

The notion of weak derivative was introduced in [1] which
can be used to derive both the necessary and sufficient
conditions for optimality of an input distribution.

Definition 1 (Weak Derivative). Let f(µ) : Ω → R be a
real valued function on the space of probability measures. The
function f is weakly differentiable at the point µ0 along the
line between µ0 and µ1, if the limit

Dµ1f(µ0) = lim
θ→0

f((1− θ)µ0 + θµ1)− f(µ0)

θ
.

exists. The weak derivative of f is denoted by Dµ1f(µ0).

The following proposition provides some useful properties
of the weak derivative. The proofs are standard.

Proposition 4. The following properties hold for the weak
derivative Dµ1

f(µ0) defined above.
1) Dµ1(g · f)(µ0) = Dµ1g(µ0) · f(µ0) + g(µ0) ·Dµ1f(µ0)
2) Dµ1

(g ◦ f)(µ0) = Dµ1
f(µ0) · g′(f(µ0))

Finally the relation between weak derivative and optimality
is given in the following proposition.

Proposition 5. Let f(µ) be a concave function over a subset Ω
of the space of probability measures. The probability measure
µ maximizes f(µ), if and only if, for any probability measure
ν ∈ Ω, the inequality Dνf(µ) ≤ 0 holds.

The proof is omitted here and can be found in [12, p. 2076].
Note that the mutual information is a concave function of the
input-distribution and therefore satisfies the condition of the
above proposition.

It remains to find the weak derivative of the mutual infor-
mation of censored channels. First of all, since hY |X(F ) is a
linear function of F , it can be seen that

DF1hY |X(F0) = lim
θ→0

hY |X((1− θ)F0 + θF1)− hY |X(F0)

θ
= hY |X(F1)− hY |X(F0).

Now consider hY (F ) which consists of three terms. Consider
the first and the second term, namely −L(F ) logL(F ) and
−R(F ) logR(F ). L(F ) and R(F ) are linear functions of F .
Using Proposition 4, we get

DF1
(−L(F0) logL(F0)) = −(L(F1)− L(F0)) log eL(F0)

and

DF1
(−R(F0) logR(F0)) = −(R(F1)−R(F0)) log eR(F0).

Let us consider the last term −
∫ 1

0
α(y;F ) logα(y;F ) dy

with its weak derivative

DF1

∫ 1

0

α(y;F0) logα(y;F0) dy

= −
∫ 1

0

α(y;F0) logα(y;F0) dy

+ lim
θ→0

∫ 1

0

α(y;F1) logα(y;Fθ) dy

+ lim
θ→0

1− θ
θ

∫ 1

0

α(y;F0) log
α(y;Fθ)

α(y;F0)
dy.

Note that given the conditions of Theorem 1, the function
α(y;F ) is continuous for each F and bounded by 0 < mF ≤
α(y;F ) ≤ MF over the compact set [0, 1] for some positive
numbers mF and MF . Therefore mF1

log min(mF1
,mF0

) ≤
α(y;F1) logα(y;Fθ) ≤ MF1 log max(MF1 ,MF0). Using
dominated convergence theorem, we deduce

lim
θ→0

∫ 1

0

α(y;F1) logα(y;Fθ) dy =

∫ 1

0

α(y;F1) logα(y;F0) dy.

Using a similar argument, the term inside the last integral
is bounded by finite values and hence the limit can be taken
inside the integral in the last term. Using l’Hôpital’s rule, the
last term can be simplified as

lim
θ→0

1− θ
θ

∫ 1

0

α(y;F0) log
α(y;Fθ)

α(y;F0)
dy

=

∫ 1

0

α(y;F1) dy −
∫ 1

0

α(y;F0) dy. (6)

Therefore the weak derivative of hY (F ) writes as

DF1
hY (F0) =− (L(F1)− L(F0)) log eL(F0)

− (R(F1)−R(F0)) log eR(F0)

+

∫ 1

0

α(y;F0) dy −
∫ 1

0

α(y;F1) dy

+

∫ 1

0

α(y;F0) logα(y;F0) dy

−
∫ 1

0

α(y;F1) logα(y;F0) dy

Using Proposition 5, if IX;Y (F0) = C, then
DF1

IX;Y (F0) ≤ 0 for all F1. Pick a step function for
F1 at x and the expression of Lemma 1 follow using standard
manipulations. Finally the fact that Dνf(µ) = 0 for points of
increase of F0, follows from [1, Cor. 1].

B. Proof of Lemma 2

In [11], the analyticity of the terms in mutual information
is proved using Morera’s theorem. The following lemma can
also be proven using a similar argument.

Lemma 4 ([15, Thm. 5.4]). Let F (z, y) be defined over Ω×
[0, 1] where Ω is an open set in C. If F is analytic in z for each



y and is continuous on Ω × [0, 1], then the function f(z) =∫ 1

0
F (z, y)dy is analytic.

An important issue is the choice of Dδ . For this choice, if
φ(z) is analytic on Dδ , then any shifted version of the function
along the real axis, φ(y − z), is also analytic. To show a(z)
is analytic, we show that each term is analytic. Since φ(z)
is analytic and nowhere zero, φ(y − z) log φ(y − z) is also
analytic in z and continuous on y ∈ [0, 1]. Therefore according
to Lemma 4, the integral

∫ 1

0
φ(y − z) log φ(y − z)dy is also

analytic. Next consider that, since φ(z) is nowhere zero and
analytic, the logarithm of the output density logα(y;F0) is
also continuous. Therefore φ(y−z) logα(y;F0) is continuous
in y and analytic in z. Hence

∫ 1

0
φ(y − z) logα(y;F0) dy is

analytic according to Lemma 4. It remains to show that `(z)
and r(z) are analytic and nowhere zero. It is enough to prove
this only for

`(z) =

∫ 0

−∞
φ(y − z)dy.

Since φ(z) is nowhere zero, so is `(z). We show that `(z) is
analytic using Morera’s theorem. Suppose that zk → z and
B(z, ε) is a closed ball such that for a N > 0, it contains zk’s
for k > N and lies inside Dδ . It yields∫ 0

−∞
|φ(y − zk)|dy ≤

∫ 0

−∞
max

ξ∈B(z,ε)
|φ(y − ξ)|dy

=

∫
−(T+|z|+ε)<y<0

max
ξ∈B(z,ε)

|φ(y − ξ)|dy

+

∫
−∞<y≤−(T+|z|+ε)

max
ξ∈B(z,ε)

|φ(y − ξ)|dy

≤M0 − (T + |z|+ ε)

+

∫
−∞<y≤−(T+|z|+ε)

max
ξ∈B(z,ε)

U(|y − Re(ξ)|)dy

≤M0 − (T + |z|+ ε)

+

∫
−∞<y≤−(T+|z|+ε)

U(|y| − |z| − ε)dy <∞.

The last step follows from the assumption of integrability of
U . Using dominated convergence theorem, we have

lim
zk→z

`(zk) = `(z),

which implies the continuity of `(z). To use Morera’s theorem,
it should be shown that for all triangles ∆ with the perimeter
length |∆|, we have: ∫

∂∆

`(z)dz = 0.

Note that similar to the argument above,
∫
∂∆
|`(z)|dz < ∞.

Now we have:∫
∂∆

∫ 0

−∞
φ(y − z) dydz =

∫ 0

−∞

∫
∂∆

φ(y − z) dzdy = 0,

where the order of integrals are changed using Fubini’s theo-
rem and analyticity of φ(y− z) implies

∫
∂∆

φ(y− z) dz = 0.
Therefore `(z) is analytic using Morera’s theorem.

VI. CONCLUSIONS AND FUTURE WORKS

In this work, it has been proven that the optimal input
distribution for the censored channel with amplitude constraint
has finite support. The proof is based on using weak derivative
to derive necessary and sufficient condition for optimality. This
condition provides the zero set of a function a(x)−C at points
of increase of the optimal distribution. After extending the
function a(x)−C to an analytic function, the identity theorem
implies that a(x) = C for all x ∈ R, if the zero set is infinite.
It is shown that it leads to a contradiction and hence the
zero set should be finite. Future works will involve numerical
evaluations of different input distributions of finite support and
optimizations of their parameters to approach the capacity.
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