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Abstract—In this paper we address a sum power minimization
problem for a bi-directional and full-duplex (FD) communication
system, where the required rate constraints are imposed on the
guaranteed communication rates in each direction. In this regard,
the impact of channel-state information (CSI) error, as well as the
signal distortion due to hardware impairments are jointly taken
into account. In order to ensure backwards compatibility to an
equivalent half-duplex setup, we assume a time-division-duplex
capable system where the FD communication process takes place
in multiple independent time segments. Due to the intractable
structure of the resulting optimization problem, a weighted
minimum mean squared-error based method is applied to cast the
power minimization problem into a separately convex structure,
which can be iteratively solved with a guaranteed convergence.
The resulting computational complexity of the algorithm is then
discussed analytically. Finally, the performance of the proposed
algorithm is numerically evaluated over different levels of rate
demand, CSI error and transmitter/receiver dynamic range.

1. INTRODUCTION

A full-duplex transceiver has the capability to transmit and
receive at the same time and frequency, and hence it has the
potential to enhance the spectral efficiency [1]. Nevertheless,
such systems suffer from the inherent self-interference from
their own transmitter. Recently, specialized cancellation tech-
niques, e.g., [2]–[4], have demonstrated adequate levels of
isolation between transmit (Tx) and receive (Rx) directions
to facilitate a full-duplex (FD) communication and motivated
a wide range of related studies, see, e.g., [1], [5], [6]. The
common idea of such techniques is to cancel/subtract the main
part of self-interference signal in the radio-frequency (RF)
analog domain, so that the remaining signal can be processed
for further interference reduction in the baseband, i.e., digital
domain. Nevertheless, such methods are far from perfect in a
realistic environment due to i) aging and inherent inaccuracy
of the hardware (analog) components, as well as ii) inaccurate
estimation of the CSI in the interference paths due to the
limited channel coherence time, noise, and limited processing
power in digital domain. In this regard, a widely used model
for the operation of a multiple-antenna FD transceiver is
proposed in [7], where the aforementioned inaccuracies are
taken into account. A convex optimization design framework
is proposed in [8]–[10] by defining a price/threshold for the
self-interference power, assuming the availability of perfect
channel state information (CSI) and accurate transceiver op-
eration. While this approach provides a design with relatively
low computational complexity, it does not provide a reliable

performance for a scenario with erroneous CSI, particularly
regarding the self-interference path [11]. Consequently, the
consideration of CSI error in a FD point-to-point (P2P)
transmission is further studied in [12], [13] by maximizing
the average system sum rate, and in [14] by minimizing the
sum mean-squared-error (MSE). Furthermore, the work in
[15] has presented a minimum power consumption design,
where the explicit rate constrains are satisfied for a multiple-
input-multiple-output (MIMO) FD system. Nevertheless, this
approach is not yet extended with the consideration of CSI
imperfection.

In this paper, we extend our previous work in [15] where
a sum power minimization problem is studied under rate
constraints for a TDD-enabled FD-P2P communication system.
In particular, the imperfections of the hardware components,
as well as the CSI estimation error in all links are jointly
taken into account. Please note that as the intensity of the
aforementioned imperfections increases, the performance of an
FD system degrades rapidly and falls below an equivalent half-
duplex (HD) setup, as observed in the related studies [8]–[13],
[16]. This is particularly undesirable for our purpose, as it may
lead to the infeasibility of a required rate constraint for a FD
system, regardless of the available transmit power1. In contrast,
an HD setup can always reach a required communication rate
in both communication directions, by dividing the channel re-
sources via the utilization of time-division duplexing (TDD). In
order to close this performance gap, we present a TDD-capable
FD system, where the FD communication is enabled together
with dividing the channel resource into time-orthogonal sub-
channels. Consequently, independent transmit/receive strate-
gies are utilized in each communication time slot, which in
turn leads to backwards compatibility to a traditional HD setup.

In Section 2 the system model is defined, taking into ac-
count the impact of CSI error, as well as the impact of the hard-
ware inaccuracies. The optimization strategy is then defined
as a sum power minimization problem, with the consideration
of explicit rate requirements. Due to the intractable nature of
the resulting problem, a variation of the weighted minimum
mean-squared error (WMMSE) optimization method [17] is
proposed to cast the problem into a separately convex structure.

1In an FD system with imperfect self-interference cancellation, a higher
rate and consequently higher transmit power in one direction results in
the degradation of the other communication direction due to the residual
interference. This effect leads to the infeasibility of rate constraints, when
required rates in both direction are high.



An alternating optimization procedure is then proposed with
a guaranteed convergence, where semi-definite-programming
(SDP) is applied in each step. The performance of the proposed
method is then numerically evaluated in Section 4 under
different rate requirements, and transceiver/CSI inaccuracy
regimes.

A. Mathematical Notation:

Throughout this paper, column vectors and matrices are
denoted as lower-case and upper-case bold letters, respec-
tively. Mathematical expectation, trace, inverse, determinant,
transpose, conjugate and Hermitian transpose are denoted by
E(·), tr(·), (·)−1 | · |, (·)T , (·)∗ and (·)H , respectively. The
Kronecker product is denoted by ⊗. The identity matrix with
dimension K is denoted as IK and vec(·) operator stacks
the elements of a matrix into a vector. ‖ · ‖2 and ‖ · ‖F
respectively represent the Euclidean and Frobenius norms.
�Ai�i=1,...,K denotes a tall matrix, obtained by stacking the

matrices Ai, i = 1, . . . ,K. Γl
K represents a square matrix

with dimension K, with all zero elements except of the l-th
diagonal element equal to 1. The set of all positive definite
matrices with dimension l is presented as Hl.

2. SYSTEM MODEL

A MIMO and bi-directional communication between two
FD transceivers is considered. Each node is equipped with
Ni (Mi) transmit (receive) antennas, where i ∈ I represents
the index of the communication directions, and I := {1, 2},
see Fig. 1. Moreover, the communication is divided into
multiple independent time slots, where t ∈ T represents the
time slot index, and T := {1, . . . , T}. Hii ∈ C

Mi×Ni and
Hji ∈ C

Mj×Ni respectively represent the desired channel
in the communication direction i and the self-interference
channel from i to j-th communication direction. All channels
are assumed to follow a flat-fading model, and remain constant
during the multiple time slots. Moreover, the CSI matrices are
estimated with limited accuracy. In this respect we follow the
so-called deterministic model [18], where the channel matrices
are located within a known feasible region. This is written as

Hij = H̃ij +Δij , Δij ∈ Dij , i, j ∈ I, (1)

and

Dij :=
{
Δij

∣∣ ‖Δij‖F ≤ ζij
}
, ∀i, j ∈ I, (2)

where H̃ij is the estimated channel matrix, Δij represents
the channel estimation error, and Dij is the norm-2 ball
representing the CSI error feasible region with the radius
ζij ≥ 0, see [18]–[20] for more elaboration on the used error
model. The transmitted signal in the direction i and the time
instance t is written as

xi(t) = vi(t) + et,i(t), vi(t) := Vi(t)si(t), (3)

where si(t) ∈ C
di ,Vi(t) ∈ C

Ni×di , and vi(t) ∈ C
Ni

respectively represent the vector of the data symbols, the trans-
mit precoding matrix and the intended (undistorted) transmit
signal, at the time instance t. The number of the data streams

in direction i is denoted as di, and E{si(t)si(t)H} = Idi
.

Moreover, the inaccurate behavior of the transmit chain ele-
ments is modeled as an additional distortion term et,i(t) such
that

et,i(t) ∼ CN
(
0, κidiag

(
E

{
vi(t)vi(t)

H
}))

,

et,i(t) ⊥ vi(t), (4)

where ⊥ denotes the statistical independence and κi is the
transmit distortion coefficient, see [7, Section II.C]. The re-
ceived signal at the destination can be consequently written
as

yi(t) = Hiixi(t) +Hijxj(t) + ni(t)︸ ︷︷ ︸
=:ui(t)

+er,i(t), (5)

where ni(t) is the additive thermal noise with variance σ2
n,i,

ui(t) ∈ C
Mi is the undistorted received signal, and the additive

distortion term er,i(t) models the inaccuracies in the receive
chains such that

er,i(t) ∼ CN
(
0, βidiag

(
E

{
ui(t)ui(t)

H
}))

,

er,i(t) ⊥ ui(t),

where βi is the receiver chain distortion coefficient, see [7,
Section II.D]. Please note that the distortion terms er,i(t) and
et,i(t) model the combined effects of the chain inaccuracies,
e.g., digital-to-analog and analog-to-digital converter error,
power amplifier noise, oscillator phase noise and the automatic
gain control noise at the respective chains. Hence, unlike
the thermal noise components, the variances of the distortion
terms depend on the power of the intended transmit/receive
signal at each antenna and play an important role in an
FD setup due to the strong self-interference path, see [7],
[21] and the references therein. The known part of the self-
interference signal, i.e, H̃ijvj , can be canceled at the receiver
side, resulting in

ỹi(t) := yi(t)− H̃ijvj = HiiVi(t)si(t) + ni(t) +mi(t).
(6)

where the combined effect of the interference signal in the
direction i is given by

mi(t) = Hijet,j(t) +Hiiet,i(t) + er,i(t) +ΔijVj(t)sj(t).
(7)

Finally, the estimated data vector is obtained at the receiver as

s̃i(t) = Ui(t)
H
ỹi(t), (8)

where Ui ∈ C
Mi×di is the linear receive filter. Please note

that the combined effect of the residual self-interference, does
not necessarily follow a Gaussian distribution. Following [7],
an approximation on the achievable spectral efficiency in the
direction i is written as

Ii =
1

T

∑
t∈T

log2

∣∣∣IMi
+Σ−1

i (t)HiiVi(t)Vi(t)
H
HH

ii

∣∣∣ , (9)

where Ii is the achievable rate, and Σi(t) represents the
combined interference-plus-noise covariance which will be
later defined in (12).



Figure 1. A full-duplex bi-directional system with multiple antennas. The communication quality suffers due to the additive white noise, i.e., ni, inaccuracies
of transmit and receive chains, i.e., et,i and er,i, as well as the CSI estimation error Δij , i, j ∈ {1, 2}.

A. Optimization Problem

Our goal is to obtain a design that guarantees the fulfillment
of our pre-defined rate requirements, while consuming the
minimum total power. Please note that the fulfillment of the
rate constraints can only be guaranteed when the resulting
communication rate remains above the rate demand for any
feasible channel error, defined by (1). This is formulated as
the following semi-infinite minimization

min
V

∑
i∈I

∑
t∈T

tr
(
Vi(t)Vi(t)

H
)

(10a)

s.t. Ii ≥ Rmin,i, ∀Δij ∈ Dij , ∀i, j ∈ I, (10b)

Please note that the semi-infiniteness results from the rate
constraint (10b) that needs to be satisfied for all feasible
CSI error matrices. For notational simplicity we define V :=
{Vi(t), ∀i ∈ I, t ∈ T }. Moreover, Rmin,i is the required
spectral efficiency in the direction i. In the following part
we aim at providing a convex optimization framework for the
above-defined problem, following the WMMSE method [17].

3. WMMSE METHOD FOR WORST-CASE RATE

MAXIMIZATION

The MSE matrix for the communication direction i and
time segment t is formulated as

Ei(t) : = E

{(
s̃i(t)− si(t)

)(
s̃i(t)− si(t)

)H}
=
(
Ui(t)

H
HiiVi(t)− Idi

)(
Ui(t)

H
HiiVi(t)− Idi

)H
+Ui(t)

H
Σi(t)Ui(t), (11)

where Σi(t) is calculated as

Σi(t) =E

{(
ni(t) +mi(t)

)(
ni(t) +mi(t)

)H}
=κjHijdiag

(
Vj(t)Vj(t)

H
)
HH

ij

+ βidiag
(
HijVj(t)Vj(t)

H
HH

ij

)
+ κiHiidiag

(
Vi(t)Vi(t)

H
)
HH

ii

+ βidiag
(
HiiVi(t)Vi(t)

H
HH

ii

)
+ΔijVj(t)Vj(t)

H
ΔH

ij + σ2
n,iIMi

. (12)

The MMSE receive filter can be then calculated as

Ummse
i (t) =

(
Σi(t) +HiiVi(t)Vi(t)

H
HH

ii

)−1

HiiVi(t),

(13)

and the resulting MSE matrix is obtained as

Emmse
i (t) =

(
Idi

+Vi(t)
H
HH

iiΣi(t)
−1

HiiVi(t)
)−1

, (14)

which presents the useful relation to the rate function (9) such
that

Ii =
−1

T

∑
t∈T

log2 |Emmse
i (t)| , (15)

see also [22, Eq. (9)] for similar identities.

Lemma 1. Let E ∈ C
d×d be a positive semi-definite matrix.

The maximization of the term −log |E| is equivalent to the
maximization

max
E,L

− tr (LE) + log |L|+ d, (16)

where L ∈ Hd.

Proof: The proof is given in [23, Lemma 2].

By recalling (11) and (9), utilizing Lemma 1, and de-
composing L = WiW

H
i ,Wi � 0, the original optimization

problem (10) can be equivalently formulated as

min
V

∑
i∈I

∑
t∈T

tr
(
Vi(t)Vi(t)

H
)

(17a)

s.t. min
Δ

max
U,W

(
di −

∑
i∈T

tr
(
Wi(t)

HEi(t)Wi(t)
)

+ 2log |Wi(t)|
)

≥ log(2)TRmin,i, (17b)

Wi(t) ∈ Hdi , Δij ∈ Dij , ∀i, j ∈ I, (17c)

where U is a set defined similar to that of V , W := {Wi ∈
Hdi

∀i ∈ I} and Δ := {Δij , ∀i, j ∈ I}. Please note that the
defined equivalent problem is still intractable due to the inner
maximization in (17b). In order to cast our the problem into
a tractable form, we follow the max-min inequality for (17b),
see [23, Eq. (12)], which ensures the satisfaction of the rate
constraints by replacing a lower bound. This is stated as2

min
Δ

max
U,W

(
·
)

≥ max
U,W

min
Δ

(
·
)

≥ Rmin,i. (18)

2It follows the observation that if a lower bound of the rate function satisfies
the rate constraint for all CSI error matrices, the actual rate constraints are
also satisfied.



Moreover we calculate∑
t∈T

tr
(
Wi(t)

H
Ei(t)Wi(t)

)

=
∑
t∈T

(∥∥∥Wi(t)
H
(
Ui(t)

H
HiiVi(t)− Idi

)∥∥∥2
F

+
∑

l∈FNj

κj

∥∥∥Wi(t)
H
Ui(t)

HHijΓlVj(t)
∥∥∥2
F

+
∑

l∈FMi

βi

∥∥∥Wi(t)
H
Ui(t)

HΓlHijVj(t)
∥∥∥2
F

+
∑
l∈FNi

κi

∥∥∥Wi(t)
H
Ui(t)

HHiiΓlVi(t)
∥∥∥2
F

+
∑

l∈FMi

βi

∥∥∥Wi(t)
H
Ui(t)

HΓlHiiVi(t)
∥∥∥2
F

+
∥∥∥Wi(t)

H
Ui(t)

HΔijVj(t)
∥∥∥2
F

+ σ2
n,i

∥∥∥Wi(t)
H
Ui(t)

H
∥∥∥2
F

)
(19)

=
∑
j∈I

‖cij +Cijvec (Δij)‖22 , (20)

where

cii :=

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vec
(
Wi(t)

H
(
Ui(t)

HH̃iiVi(t)− Idi

))
⌊√

κivec
(
Wi(t)

HUi(t)
HH̃iiΓ

l
Ni

Vi(t)
)⌋

l∈FNi⌊√
βivec

(
Wi(t)

HUi(t)
HΓl

Mi
H̃iiVi(t)

)⌋
l∈FMi

σn,ivec
(
Wi(t)

HUi(t)
H
)

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
t∈T

,

(21)

Cii :=

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Vi(t)
T ⊗

(
Wi(t)

HUi(t)
H
)

⌊√
κi

(
Γl

Ni
Vi(t)

)T ⊗
(
Wi(t)

HUi(t)
H
)⌋

l∈FNi⌊√
βiV

T
i ⊗

(
Wi(t)

HUi(t)
HΓl

Mi

)⌋
l∈FMi

0Midi×NiMi

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
t∈T

,

(22)

cij
i �=j
:=

⎢⎢⎢⎢⎢⎢⎣

⌊√
κjvec

(
Wi(t)

HUi(t)
HH̃ijΓ

l
Nj

Vj(t)
)⌋

l∈FNj⌊√
βivec

(
Wi(t)

HUi(t)
HΓl

Mi
H̃ijVj(t)

)⌋
l∈FMi

0didj×1

⎥⎥⎥⎥⎥⎥⎦
t∈T

,

(23)

Cij
i �=j
:=

⎢⎢⎢⎢⎢⎢⎢⎢⎣

⌊√
κj

(
Γl

Nj
Vj(t)

)T

⊗
(
Wi(t)

HUi(t)
H
)⌋

l∈FNj⌊√
βiVj(t)

T ⊗
(
Wi(t)

HUi(t)
HΓl

Mi

)⌋
l∈FMi

Vj(t)
T ⊗

(
Wi(t)

HUi(t)
H
)

⎥⎥⎥⎥⎥⎥⎥⎥⎦
t∈T

,

(24)

where cij ∈ C
d̃ij ,Cij ∈ C

d̃ij×MiNj such that

d̃ii = T
(
(1 +Ni +Mi) d

2
i +Midi

)
, ∀i ∈ I,

d̃ij = T (1 +Nj +Mi) didj , ∀i, j ∈ I, i = j,

and (21)-(24) are obtained by recalling (11) and (12), and
following the known matrix equalities [24, Eq. (496), (516)].
The resulting problem can be hence written as

min
V,U,W,τ

∑
i∈I

∑
t∈T

tr
(
Vi(t)Vi(t)

H
)

(25a)

s.t.
∑
t∈T

(di + 2log |Wi(t)|)−
∑
j∈I

τij ≥ log(2)TRmin,i,

(25b)(
max

Δij∈Dij

‖cij +Cijvec (Δij) ‖22
)
≤ τij , ∀i, j ∈ I,

(25c)

where τ := {τij , ∀i, j ∈ I}. By applying the Schur’s com-
plement lemma, the norm constraint in (25c) is equivalently
written as[

0 vec (Δij)
H
CH

ij

Cijvec (Δij) 0d̃ij×d̃ij

]
+

[
τij cHij
cij Id̃ij

]
� 0,

∀Δij : ‖vec (Δij) ‖2 ≤ ζij , ∀i, j ∈ I, (26)

where d̃ij is equal to the size of cij .

Lemma 2. Generalized Petersen’s sign-definiteness lemma:
Let Y = YH , and X,P,Q are arbitrary matrices with
complex valued elements. Then we have

Y � PHXQ+QHXHP, ∀X : ‖X‖F ≤ ζ, (27)

if and only if

∃λ ≥ 0,

[
Y − λQHQ −ζPH

−ζP λI

]
� 0. (28)

Proof: See [25, Proposition 2], [26].

By choosing the matrices in Lemma 2 such that X =

vec (Δij), Q =
[
−1, 01×d̃ij

,
]

and

Y =

[
τij cHij
cij Id̃ij

]
,P =

[
0MiNj×1, CH

ij

]
, (29)

the optimization problem in (25) is equivalently written as

min
V,U,W,τ,λ

∑
i∈I

∑
t∈T

tr
(
Vi(t)Vi(t)

H
)

(30a)

s.t.

⎡
⎣ τij − λij cHij 01×MiNj

cij Id̃ij
−ζijCij

0MiNj×1 −ζijC
H
ij λijIMiNj

⎤
⎦

︸ ︷︷ ︸
Θij

� 0,

∀i, j ∈ I, (30b)

where λ := {λij , ∀i, j ∈ I}. This is equivalently written as

min
V,U,W,τ,λ,ptot

ptot (31a)

s.t. Θij � 0, ∀i, j ∈ I, (31b)[
ptot bH

b I

]
� 0, (31c)



where

b =
⌊
�vec (Vi (t))�i∈I

⌋
t∈T . (32)

It can be observed that (31) holds a separately convex structure.
This facilitates an iterative optimization over separated variable
sets, where in each iteration a convex sub-problem is solved.
In this regard, the minimization over V,U can be separately
cast as a general SDP, where the optimization over W can be
efficiently implemented using the MAX-DET algorithm [27].
Moreover, due to the monotonic increase of the objective in
each optimization iteration, and the fact that the consumed
sum-power is necessarily non-negative, i.e., bounded from
below, the algorithm convergences to a stationary point. The
convergence behavior of the proposed algorithm is numerically
evaluated in Fig. 2.

A. Computational Complexity

As mentioned, the power minimization over V,U are cast
as variations of SDP problems. Regarding the calculation of
W , the MAX-DET algorithm is used, which leads to an SDP
as a special case. A general SDP problem is defined as

min
x

, cTx s.t. ‖x‖2 ≤ R,x ∈ Rn,A0 +
n∑

j=1

xjAj � 0,

(33)

where the fixed matrices Aj are symmetric block-diagonal,
with K diagonal blocks of the sizes lk × lk, k ∈ 1, . . . ,K
and define the specific problem structure, see [28, Subsec-
tion 4.6.3]. The arithmetic complexity of ε-solution, i.e., the
convergence to the ε-distance vicinity of the optimum solution
for the defined SDP problem is obtained as

O(1)

(
1 +

K∑
k=1

aK

) 1
2
(
n3 + n2

K∑
k=1

a2k + n
K∑

k=1

a3k

)
digit (ε)

(34)

where digit(ε) is obtained from [28, Subsection 4.6.3], and
affected by the required solution precision. The required
computation of each step is hence determined by size of the
variable space, and the corresponding block diagonal matrix
structure.

1) Calculation of V, τ, λ: The size of the variable space
is given as n = 1 + 4|I| + 2T

∑
i∈I Nidi, K = 2|I| + 1,

ak = 2
(
1 + d̃ij +MiNj

)
, ∀i, j, corresponding to (31b), and

ak = 2 + 2T
∑

i Nidi corresponding to (31c).

2) Calculation of U , τ, λ: The size of the variable space
is given as n = 1 + 4|I| + 2T

∑
i∈I Midi, K = 2|I|, ak =

2
(
1 + d̃ij +MiNj

)
, ∀i, j.

3) Calculation of W, τ, λ: Similar to the last parts we
calculate n = 1 + 4|I| + 2T

∑
i∈I d2i , K = 2|I|, ak =

2
(
1 + d̃ij +MiNj

)
, ∀i, j.

Please note that the discussed complexity refers to the
required arithmetic complexity of each optimization step. The
overall arithmetic complexity is also impacted by the number
of necessary optimization iterations, which is numerically
studied in Section 4.
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Figure 2. Average convergence behavior of the proposed iterative method.
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Higher rate demand results in a higher system power consumption.

4. SIMULATION RESULTS

In this section we numerically evaluate the resulting sum
power consumption of the defined FD bi-directional system,
using the proposed design, where a required communication
rate in each direction needs to be guaranteed. We consider
the case that Hii follows an uncorrelated Rayleigh flat-fading
distribution, with variance 0.01 for each element and Hij ∼
CN

(√
KR

1+KR
H0,

1
1+KR

INj
⊗ IMi

)
, i = j. H0 is a matrix

with all elements equal to 1 and KR is the Rician coefficient.
Unless otherwise stated, we use the following values to the
define our default setup: Nj = Mi = 2, KR = 1, κi =
βj = κ = 0.001, σ2

n,i = 0.1, Dij = I, Rreq,i = Rreq = 1,
ζij = ζ = −15 dB, ∀i, j.

In Fig. 2-3 the consumed sum power of the system is
evaluated. In this respect, ’FD-DoubleTS’ and ’FD-SingleTS’



respectively represent the proposed design in Section 3, with
T = 2, i.e., representing a TDD-capable FD system, and with
T = 1, i.e, an FD setup with no temporal diversity. Moreover,
’HD’ represents the performance of an equivalent HD setup.

In Fig. 2 the average convergence behavior of the proposed
iterative method is depicted. As it is observed, the convergence
is obtained within 10-20 optimization iterations, which verifies
the efficiency of the proposed iterative algorithm in terms of
the required computational effort.

In Fig. 3 the sum power consumption of the system
is evaluated for different values of rate requirements. It is
observed that higher required communication rate results in
a higher system power consumption. On the other hand, while
the application of a TDD-capable setup appears to be gainful
for all cases, a significant gain is observed where the system
suffers from a lower dynamic range.

5. CONCLUSION

While the application of bi-directional FD communication
paradigm presents a potential for improving the spectral ef-
ficiency, such systems are limited due to the imperfect self-
interference cancellation. In this work we have presented
a design with sum power minimization, where a given set
of rate requirements are satisfied. It is observed that the
consideration of both CSI error, as well as the impact of
hardware impairments are necessary in obtaining a reliable
design. Moreover, our design is generalized to a TDD-enabled
FD system with the backwards compatibility to the traditional
HD setup. This capability is observed to be essential, espe-
cially as the transceiver accuracy decreases or as the required
communication rate increases.
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