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Abstract—In this paper we address the linear pre-
coding and decoding design problem for a bidirectional
orthogonal-frequency-division-multiplexing (OFDM) com-
munication system, between two multiple-input-multiple-
output (MIMO) full-duplex (FD) nodes. The effects of
hardware distortions, leading to residual self-interference
and inter-carrier leakage, are taken into account. In the
first step, the operation of a FD MIMO OFDM transcei-
ver is modeled under the impact of known hardware
impairments. An alternating quadratic convex program
(AltQCP) is then provided to obtain a minimum-mean-
squared-error (MMSE) design for the defined system. The
proposed design is then extended to maximize the system
sum rate, applying the weighted-MMSE (WMMSE) met-
hod. The proposed AltQCP methods result in a monotonic
improvement, leading to a necessary convergence to a
stationary point. Finally, the performance of the defined
system is evaluated under various system conditions, and
in comparison to the other approaches in the literature.
A significant gain is observed via the application of
the proposed method as the hardware inaccuracy, and
consequently inter-carrier leakage, increases.

I. INTRODUCTION

Full-duplex (FD) transceivers are known for their
capability to transmit and receive at the same time
and frequency, and hence have the potential to enhance
the spectral efficiency [1]. Nevertheless, such systems
suffer from the inherent self-interference from their
own transmitter. Recently, specialized self-interference
cancellation (SIC) techniques, e.g., [2], have demon-
strated an adequate level of isolation between transmit
(Tx) and receive (Rx) directions to facilitate a FD
communication and motivated a wide range of related
studies, see [1]. Nevertheless, such methods are not
perfect in a realistic environment mainly due to i)
aging and inherent inaccuracy of the hardware (analog)
elements, as well as ii) inaccurate channel state informa-
tion (CSI) in the self-interference path, due to limited
channel coherence time. In this regard, inaccuracy of
the analog hardware elements used in subtracting the
dominant self-interference path in RF domain may
result in severe degradation of SIC quality. This issue
becomes more relevant in a realistic scenario, where
unlike the demonstrated setups in the lab environment,
analog components are prone to aging, temperature

fluctuations, and occasional physical damage.
In order to combat the aforementioned issues, a FD

transceiver may adapt its transmit/receive strategy to
the accuracy of the chain elements, e.g., by dedicating
less task to the chains with noisier elements. In this
regard, a widely used model for the operation of a
multiple-antenna FD transceiver is proposed in [3],
assuming a single carrier communication system, where
the impact of hardware impairments are taken into
account. A gradient-projection-based method is then
proposed in the same work for maximizing the sum rate
in a FD bidirectional setup. Building upon the proposed
benchmark, a convex optimization design framework is
introduced in [4] by defining a price/threshold for the
self-interference power, assuming an accurate transcei-
ver operation. While this approach reduces the design
computational complexity, it does not provide a reliable
performance under the impact of hardware impairments.
Consequently, the consideration of transceiver error in
a FD bidirectional system is further studied in [5]–[7]
by maximizing the system sum rate, and in [8]–[10]
for minimizing the system power consumption under a
required quality of service.

The aforementioned works focus on modeling and
design methodologies for single-carrier FD bidirectional
systems, under frequency-flat channel assumptions. In
this regard, the importance of extending the previous de-
signs for a multi-carrier (MC) system with a frequency
selective channel is threefold. Firstly, due to the incre-
asing rate demand of the wireless services, the usage
of larger bandwidths becomes necessary. This, in turn,
invalidates the usual frequency-flat assumption and calls
for updated design methodologies. Secondly, unlike the
half-duplex (HD) systems where the operation of dif-
ferent subcarriers can be safely separated in the digital
domain, an FD system is highly prone to the inter-carrier
leakage due to the impact of hardware distortions on
the strong self-interference channel1. This, in particular,
calls for a proper modeling of the inter-carrier leakage

1For instance, a high-power transmission in one of the subcarriers
will result in a higher residual self-interference in all of the sub-
carriers due to, e.g., a higher quantization and power amplifier noise
levels.



as a result of non-linear hardware distortions for FD
transceivers. And finally, the frequency diversity on the
frequency selective channels shall be opportunistically
exploited to enhance the system performance.

In this paper we study a bidirectional FD MIMO
OFDM system, where the impacts of hardware distorti-
ons are taken into account. In Section II the operation of
a FD MC transceiver is modeled, where explicit impact
of hardware inaccuracies on the inter-carrier leakage is
formulated in relation to the intended transmit/receied
signal. In Section III, an alternating quadratic convex
program (QCP), denoted as AltQCP, is proposed in
order to obtain a minimum weighted MSE transceiver
design. The weighted-minimum-MSE (WMMSE) met-
hod [11] is then utilized to extend the AltQCP frame-
work for maximizing the system sum rate. A monotonic
performance improvement is observed at each step,
leading to a necessary convergence. Numerical results
show that the gain of utilizing a design which takes into
account the impacts of inter-carrier leakage, becomes
significant as transceiver inaccuracy increases.

II. SYSTEM MODEL
We consider a bidirectional OFDM communication

system between two MIMO FD transceivers. Each com-
munication direction is associated with Ni transmit and
Mi receive antennas, where i ∈ I, and I := {1, 2}
represents the set of the communication directions. The
desired channel in the communication direction i and
subcarrier k ∈ FK is denoted as Hk

ii ∈ CMi×Ni where
K is the number of subcarriers. The self-interference
channel from i to j-th communication direction is de-
noted as Hk

ji ∈ CMj×Ni . All channels are quasi-static2,
and frequency-flat in each subcarrier. The transmitted
signal in the direction i, subcarrier k is formulated as

xki = Vk
i s
k
i︸ ︷︷ ︸

=:vk
i

+ekt,i,
∑
k∈FK

E
{
‖xki ‖22

}
≤ Pi, (1)

where FK := {1, . . . ,K}, and ski ∈ Cdi ,Vk
i ∈ CNi×di

and Pi ∈ R+ respectively represent the vector of the
data symbols, the transmit precoding matrix, and the
maximum affordable transmit power. The number of the
data streams in each subcarrier, and in direction i is de-
noted as di, and E{ski ski

H} = Idi . Moreover, vki ∈ CNi

represents the desired signal to be transmitted, where
ekt,i models the inaccurate behavior of the transmit chain
elements, i.e, transmit distortion, see Subsection II-A for
more details. The received signal at the destination can
be consequently written as

yki = Hk
iix

k
i + Hk

ijx
k
j + nki︸ ︷︷ ︸

=:uk
i

+ekr,i, (2)

where nki ∼ CN
(
0Mi

, σ2
i,kIMi

)
is the additive thermal

noise. Similar to the transmit signal model, ekr,i repre-
sents the receiver distortion, and models the inaccu-
racies of the receive chain elements. The known, i.e.,
distortion-free, part of the self-interference signal is then

2It indicates that the channel is constant in each communication
frame, but may vary from one frame to another frame.

subtracted from the received signal. This is formulated
as

ỹki : = yki −Hk
ijV

k
j s
k
j = Hk

iiV
k
i s
k
i + νki , (3)

where ỹki is the received signal in direction i and
subcarrier k, after the self-interference cancellation.
Moreover, the aggregate interference-plus-noise term is
denoted as νki ∈ CMi where

νki = Hk
ije

k
t,j + Hk

iie
k
t,i + ekr,i + nki , j 6= i. (4)

Finally, the estimated data vector is obtained at the
receiver as

s̃ki =
(
Ui

k
)H

ỹki , (5)

where Uk
i ∈ CMi×di is the linear receive filter.

A. Limited dynamic range in an FD OFDM system

The inaccurate function of the transmit chain ele-
ments, e.g., digital-to-analog converter (DAC) error,
power amplifier noise and oscillator phase noise, are
jointly modeled for each antenna as an additive distor-
tion, and written as xl(t) = vl(t) + et,l(t), see Fig. 1,
such that

et,l(t) ∼ CN
(
0, θtx,lE

{
|vl(t)|2

})
, (6)

et,l(t)⊥vl(t), et,l(t)⊥et,l′ (t), et,l(t)⊥et,l(t
′
),

l 6= l
′
∈ LT , t 6= t

′
, (7)

where vl, xl, and et,l ∈ C respectively represent the
intended transmit signal, the actual transmit signal, and
the additive transmit distortion at the l-th transmit chain,
and t denotes the instance of time. The set LT represents
the set of all transmit chains. Moreover, θtx,l ∈ R+

represents the distortion coefficient for the l-th transmit
chain, relating the collective power of the distortion
signal, over the active spectrum, to the intended transmit
power. A detailed elaboration of the used distortion
model is given in [12, Section II].

In the receiver side, the combined effect of the
inaccurate hardware elements, i.e., ADC error, oscilla-
tor phase noise and automatic gain control noise, are
presented as additive distortion terms and written as
yl(t) = ul(t) + er,l(t) such that

er,l(t) ∼ CN
(
0, θrx,lE

{
|ul(t)|2

})
, (8)

er,l(t)⊥ul(t), er,l(t)⊥er,l′ (t), er,l(t)⊥er,l(t
′
),

l 6= l
′
∈ LR, t 6= t

′
, (9)

where ul, yl, and er,l ∈ C respectively represent the
intended (distortion-free) receive signal, additive receive
distortion, and the received signal from the l-th receive
antenna. The set LR represents the set of all receive
chains. Similar to the transmit chain characterization,
θrx,l ∈ R+ is the distortion coefficient for the l-th
receive chain, see Fig. 1.

In this work we consider a general framework where
the transmit (receive) distortion coefficients are not
necessarily identical for all transmit (receive) chains
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Figure 1. A FD transceiver model. Limited dynamic range is modeled
by injecting additive distortion terms at each transmit or receive chain.

belonging to the same transceiver, i.e., different chains
may hold different accuracy due to occasional damage
and aging. This assumption is important in practice
since it enables the design algorithms to reduce commu-
nication task on the chains with noisier elements. The
statistics of the distortion terms, introduced in (1), (2)
can be hence inferred as

ekt,i ∼ CN
(
0Ni

,Θk
tx,iPtx,i

)
, Θk

tx,i := BkΘtx,i/Btot,
(10)

ekr,i ∼ CN
(
0Mi

,Θk
rx,iPrx,i

)
, Θk

rx,i := BkΘrx,i/Btot,
(11)

and

Ptx,i :=
∑
k∈FK

diag
(
E
{

vki v
k
i

H
})

, (12)

Prx,i :=
∑
k∈FK

diag
(
E
{

uki u
k
i

H
})

, (13)

where Bk and Btot respectively represent the band-
width associated with each subcarrier, and the total
bandwidth of the system. In the above formulations,
Θtx,i ∈ RNi×Ni (Θrx,i ∈ RMi×Mi ) is a diagonal
matrix including distortion coefficients θtx,l (θrx,l) for
the corresponding chains3. Similarly, Ptx,i (Prx,i) is a
diagonal matrix with each diagonal element represen-
ting the intended transmit (receive) signal power at the
corresponding chain.

Via the application of (10)-(13) on (4) we conclude

Σk
i := E

{
νki ν

k
i

H
}

=
∑
j∈I

Hk
ijΘ

k
tx,jdiag

(∑
l∈FK

Vl
jV

l
j

H

)
Hk
ij

H

+ Θk
rx,idiag

( ∑
l∈FK

(
σ2
i,lIMi

+
∑
j∈I

Hl
ijV

l
jV

l
j

H
Hl
ij

H
))

+ σ2
i,kIMi

, k ∈ FK , (14)

where Σk
i ∈ CMi×Mi is the covariance of the received

collective interference-plus-noise signal, and is obtained
considering 0 ≤ θrx,l � 1, 0 ≤ θtx,l � 1, and
hence ignoring the terms containing higher orders of
the distortion coefficients in (14). As expected, the role
of the distortion signals on the residual self-interference,
including the resulting inter-subcarrier leakage, is evi-
dent from (14). This is the main goal of the remaining
parts of this paper to incorporate and evaluate this
impact on the design of the defined MC system.

3A simpler mathematical presentation can be obtained by assuming
the same transceiver accuracy over all antennas. In such a case, the
defined diagonal matrices can be replaced by a scalar.

III. LINEAR TRANSCEIVER DESIGN FOR FD
MULTI-CARRIER COMMUNICATIONS

Via the application of Vk
i and Uk

i , as the linear
transmit precoder and receive filters, the mean-squared-
error (MSE) matrix of the defined system is calculated
as

Ek
i := E

{(
s̃ki − ski

)(
s̃ki − ski

)H}
+ Uk

i

H
Σk

i Uk
i

=
(
Uk

i

H
Hk

iiV
k
i − Idi

)(
Uk

i

H
Hk

iiV
k
i − Idi

)H
, (15)

where Σk
i is given in (14). In the following we propose

two design strategies for the defined system, proposing
an alternating QCP framework.

A. Weighted MSE minimization via Alternating QCP

An optimization problem for minimizing the weig-
hted sum MSE is written as

min
V,U

∑
i∈I

∑
k∈FK

tr
(
Sk
i Ek

i

)
(16a)

s.t. tr
(
(INi + Θtx,i)

∑
l∈FK

Vl
iV

l
i

H
)
≤ Pi, ∀i ∈ I, (16b)

where X := {Xk
i , ∀i ∈ I, ∀k ∈ FK}, with

X ∈ {U,V}, and (16b) represents the transmit power
constraint. It is worth mentioning that the application
of Ski � 0, as a weight matrix associated with Ek

i is
two-folded. Firstly, it may appear as a diagonal matrix,
emphasizing the importance of different data streams
and different users. Secondly, it can be applied as an
auxiliary variable which later relates the defined weig-
hted MSE minimization to a sum-rate maximization
problem, see Subsection III-B.

It is observed that (16) is not a jointly convex
problem. Nevertheless, it holds a QCP structure sepa-
rately over the sets V and U, in each case when other
variables are fixed. In this regard, the objective (16a)
can be decomposed over U for different communication
directions, and for different subcarriers. The optimal
minimum MSE (MMSE) receive filter can be hence
calculated in closed form as

Uk
i,mmse =

(
Σk
i + Hk

iiV
k
i V

k
i

H
Hk
ii

H
)−1

Hk
iiV

k
i . (17)

Nevertheless, the defined problem is coupled over Vk
i ,

due to the impact of inter-carrier leakage, as well as the
power constraint (16b). The Lagrangian function, cor-
responding to the optimization (16) over V is expressed
as

L (V, ι) :=
∑
i∈I

(
ιiPi (V) +

∑
k∈FK

tr
(
Sk
i Ek

i

))
, (18)

Pi (V) := −Pi + tr
(
(INi + Θtx,i)

∑
l∈FK

Vl
iV

l
i

H
)
, (19)

where ι := {ιi, i ∈ I} is the set of dual variables. The
dual function, corresponding to the above Lagrangian
is defined as F (ι) := min

V
L (V, ι), where the optimal



Vk
i is obtained as

Vk
i

?
=
(
Jki + ιi (INi

+Θtx,i)+Hk
ii

H
Uk
i S

k
iU

k
i

H
Hk
ii

)−1
×Hk

ii

H
Uk
i S

k
i , (20)

and

Jki : =
∑
l∈FK

∑
j∈I

(
Hk
ji

H
diag

(
Ul
jS

l
jU

l
j

H
Θl

rx,j

)
Hk
ji

+ diag
(
Hl
ji

H
Ul
jS

l
jU

l
j

H
Hl
jiΘ

l
tx,i

))
. (21)

Due to the convexity of the original problem (16) over
V, the defined dual problem is a concave function over
ι, with Pi(V) as a subgradient, see [13, Eq. (6.1)]. As a
result, the optimal ι is obtained from the maximization

ι? = argmax
ι≥0

F (ι) , (22)

following a standard subgradient update, [13, Sub-
section 6.3.1].

Utilizing the proposed optimization framework, the
alternating optimization over V and U is continued
until a stable point is obtained. Note that due to the
monotonic decrease of the objective in each step, and
the fact that (16a) is non-negative and hence bounded
from below, the defined procedure leads to a necessary
convergence.

B. WMMSE design for sum rate maximization

Via the utilization of Vk
i as the transmit precoders,

the resulting communication rate for the k-th subcarrier
and for the i-th communication direction is written as

Iki = Bklog2
∣∣∣Idi + Vk

i

H
Hk
ii

H(
Σk
i

)−1
Hk
iiV

k
i

∣∣∣ , (23)

where Bk and Σk
i are defined in (10) and (14). The

sum rate maximization problem can be written as

max
V

∑
i∈I

∑
k∈FK

Iki , s.t. (16b). (24)

The optimization problem (24) is intractable in the
current form. In the following we propose an iterative
optimization solution, following the WMMSE method
[11]. Via the application of the MMSE receive filters
from (17), the resulting MSE matrix is obtained as

Ek
i,mmse =

(
Idi + Vk

i

H
Hk
ii

H (
Σk
i

)−1
Hk
iiV

k
i

)−1
.

(25)

By recalling (23), and upon utilization of Uk
i,mmse, we

observe the following useful connection to the rate
function Iki = −Bklog2

∣∣Ek
i,mmse

∣∣ which facilitates the
decomposition of rate function via the following lemma,
see also [11, Eq. (9)].

Lemma III.1. Let E ∈ Cd×d be a positive definite ma-
trix. The maximization of the term −log |E| is equivalent
to the maximization

max
E,S
− tr (SE) + log |S|+ d, (26)

where S ∈ Cd×d is a positive definite matrix, and we
have S = E−1 at the optimality.

Proof: See [14, Lemma 2].

The original optimization problem over V can be
hence equivalently formulated as

max
V,U,S

∑
k∈FK

Bk
∑
i∈I

(
log
∣∣∣Sk

i

∣∣∣+ di − tr
(
Sk
i Ek

i

))
s.t. (16b),

(27)

where S := {Ski � 0, ∀i ∈ I, ∀k ∈ FK}. The
obtained optimization problem (27) is not a jointly
convex problem. Nevertheless, it is a QCP over V
when other variables are fixed, and can be obtained
with a similar structure as for (16). Moreover, the
optimization over U and S is obtained from (17), and
Ski = Ek

i
−1. This facilitates an alternating optimization

where in each step the corresponding problem is solved
to optimality. The defined alternating optimization steps
results in a necessary convergence due to the monotonic
increase of the objective in each step, and the fact that
the eventual system sum rate is bounded from above.

IV. SIMULATION RESULTS
In this section we evaluate the behavior of the

studied FD MC system via numerical simulations.
In particular, we evaluate the proposed AltQCP de-
sign in Section III for different levels of noise,
transceiver accuracy, and transmit power. Commu-
nication channels Hk

ii follow an uncorrelated Ray-
leigh flat fading model with variance ρ. For the self-
interference channel we follow the characterization
reported in [15]. In this respect we have Hij ∼
CN

(√
ρsiKR

1+KR
H0,

ρsi
1+KR

IMi ⊗ INj

)
where ρsi repre-

sents the self-interference channel strength, H0 is a
deterministic term,4 and KR is the Rician coefficient.
The overall system performance is then averaged over
100 channel realizations. Unless otherwise is stated, the
following values are used to define our default setup:
K = 4, KR = 10, M := Mi = Nj = 2, ρ = −20 dB,
ρsi = 1, σ2

n := σ2
i,k = −30 dB, Pmax = Pi = 1,

di = 2, κ = −50 dB where Θk
rx,i = κIMi

and
Θk

tx,i = κINi , ∀i, j ∈ I, k ∈ FK . The implemented
comparison benchmarks are defined in deatil in [12,
Subsection VI.B].

In Fig. 2 (a) the average convergence behavior of
the AltQCP algorithm is depicted. Note that due to the
alternating solution structure, the convergence behavior
is meaningful both for validating the algorithm function,
as well as an indicator for the required computational
complexity. In this respect, the objective of the Alt-
QCP algorithm is depicted in Fig. 2 (a) by employing
the right singular initialization (RSM), as well as the
average (AVG) and the minimum value of objective
(Min) among 20 number of random initializations. It
is observed that the used right singular matrix initiali-
zation outperforms the average performance of random

4For simplicity, we choose H0 as a matrix of all-1 elements.
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Figure 2. Average sum rate for different system conditions. The gain of a distortion-aware design is apparent for a high SNR, or a high
distortion region.

initialization, and operates close to the best case, parti-
cularly as κ is small. Moreover, independent from the
used initialization strategy, the algorithm converges in
approximately 15 iterations.

In Fig. 2 (b) the resulting system sum rate is
evaluated for different values of transceiver accuracy.
It is observed that a higher κ results in a smaller sum
rate. Moreover, the obtained gains via the application
of the defined MC design in comparison to the designs
with frequency-flat assumption, and via the application
of FD setup in comparison to HD setup, are evident for a
system with accurate hardware operation. Conversely, it
is observed that a design with consideration of hardware
impairments is essential as κ increases.

In Fig. 2 (c) and (d) the opposite impact of noise
level, and the maximum transmit power are observed
on the system sum rate. It is observed that the system
sum rate increases as noise level decreases, or as the
maximum transmit power increases. In both cases, the
gain of AltQCP method, in comparison to the methods
which ignore the impact of hardware distortions are
apparant for a high SNR region, i.e., as transmit power
increases or as noise level decreases.

V. CONCLUSION

The application of bi-directional FD communication
presents a potential for improving the spectral efficiency.
Nevertheless, such systems are limited due to the impact
of residual self-interference. This issue becomes more
crucial in a multi-carrier system, where the residual self-
interference spreads over multiple carriers, due to the
impact of hardware distortion. In this work we have
presented a modeling and design framework for a FD
MIMO OFDM system, taking into account the impact
of hardware distortions leading to inter-carrier leakage.
It is observed that the application of a distortion-aware
design is essential, as transceiver accuracy degrades.
Moreover, a significant gain is observed compared to
the usual single-carrier design, for a channel with a high
frequency selectivity.
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