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Abstract—Having massive databases about mobile user activ-
ities, cellular network operators can employ data analytics to
extract information about user profiles (e.g. rate requirements,
traffic type, etc) and provide awareness for better adaption of
network parameters and resources. In this paper, it is investigated
how simple data-driven information about users can improve
performance of cellular networks with focus on energy efficiency.
Users are assumed to belong to two classes differing in their
rate requirements in heterogeneous network setting. Both Base
Station (BS) and users are modeled according to independent ho-
mogeneous Poisson Point Process (PPP). Two sleeping strategies
are considered for Small Cell (SC) namely random and strategic
sleeping. Using stochastic geometry framework, it is shown that
using rate-based user classification in devising sleeping strategies
provides better energy consumption and fair resource allocation
compared to oblivious resource allocation for all the users.

I. INTRODUCTION

Unprecedented increase in mobile data traffic has sparked
significant efforts toward improving performances of cellular
networks to cope with new traffic demands. Heterogeneous
network (Heterogeneous Network (HetNet)) architecture[1] is
one of the solutions to this problem, particularly relying on
densification of base stations and leveraging multiple radio
access technologies. However with no information about user
requirements, the network is designed for worst-case situa-
tion, leading to possibly inefficient resource allocation. This
shortcoming can be circumvented by extracting information
from enormous amount of data gathered about mobile users
like Call Detail Records (CDR). Recent breakthrough in
learning algorithms and particularly deep learning, increasing
of computation power and advances in storage capacity have
made possible to extract useful information in real time from
massive datasets. In that respect, user databases in HetNet
can be similarly used by operators for better understanding
of users, their general requirements and their usage pattern as
well as network features such as temporal and spatial traffic
variation. In recent years, there is a growing interest to harness
the potential of big data from industry as well as academia
to operate the network efficiently [2]. One idea is to classify
the users based on usage profile (e.g. rate requirement, type
of traffic, location etc) and allocate the network resources
accordingly [3]. This information seems to lead to better
network performance in terms of quality of service, energy
saving or other relevant performance metrics.

Among plenty of parameters to improve in an increasingly
complex wireless network, one big issue is energy consump-
tion. Studies show that around 5% of CO2 is contributed
by Information and Communication Technology (ICT) alone.
Interestingly it is estimated that wireless technology makes
up around 75% of ICT by 2020 [4]. Hence energy efficiency
has come into priority list for network operators due to global
movement of energy saving. Taking a closer look at wireless
network, studies such as [5] show that most of the energy
consumption takes place at BS. Hence recently sleep strategies
of BSs [6], [7] has become popular approach to save energy
by switching off BSs when traffic demand is low.

In this work, the goal is to provide insights about the ways in
which simple information about users can be utilized for better
network design. The multi-tier heterogeneous network archi-
tecture is considered and similar to [8], [9], [10], the network is
modeled using stochastic geometry framework. Both BSs and
users are assumed to be distributed according to independent
homogeneous PPPs. Further the users are classified into two
classes which differ in their rate requirements. These classes
are modeled by marked PPP from previously defined parent
PPP. It is assumed that operators can derive this information
about the users based on big databases, however we do not
discuss the algorithms behind this task. The goal is to show
how this information can be used to intelligently and fairly
allocate the resources to different users based on their profile.
If an equal resource is allocated to all users regardless of their
actual demand, the fairness problem arises where the network
favors those with less demanding data profile. In this work, the
bandwidth, as the main resource without controlling Signal-to-
Interference-Noise Ratio (SINR) directly, is allocated to users
according to their demand. The variation of rate coverage is
analyzed with respect to bandwidth allocated to the classes. We
further analyze small cell sleeping strategies in heterogeneous
network for two classes of users. Finally two-class system
is compared with single class user system where each user
is obliviously served with maximum rate. Results show that
more energy can be saved when difference between rate
requirements of the classes increases.

The paper is organized as follows. The system model is
discussed in Section II. Section III discusses the rate coverage
probability and Section IV discusses sleeping strategies for
energy efficiency. Numerical results are provided in Section
V where the benefits of users information are demonstrated.



II. SYSTEM MODEL

In this work, a K-tier heterogeneous network is considered
where each tier differs in terms of transmit power and density,
essentially following the work in [9]. Let V = {1, 2, ..K}
denote the set of indices of K tiers where one tier belong
to small cells. Tier i BSs are assumed to be distributed
according to independent homogeneous PPP Φi with density
λi. SC densities are specifically denoted by λK . Mobile users
are also assumed to be distributed according to independent
homogeneous PPP Φu with density λu. In this work, no
single rate threshold is assumed for all users but instead,
users belong to two different classes, say C1 and C2, based on
their rate requirements. Users in each class C1 and C2 require
different rate thresholds, ρ1 and ρ2 respectively. These two
classes are modeled as marked PPP Φu1 and Φu2 from parent
PPP Φu with corresponding densities λu1 and λu2 , such that
λu1

+ λu2
= λu. These classes can be detected by applying

properly trained classification algorithms on CDR data, which
is not considered in this work. The received power from tier i
BS at a distance x is given by Pihx−α, where h is the channel
power gain and α is the path loss exponent. The channel
coefficient is assumed to be Rayleigh distributed with unit
average power, i.e., the channel power gain h is exponentially
distributed, h ∼ exp(1). The noise is assumed to be additive
Gaussian with power σ2. Table I gives quick access to the
symbols used in this work.

TABLE I: List of Symbols
Symbol Description
V set of K-tier BS

Vq
set V with small cell density is reduced from
λK to q × λK , (0 ≤ q ≤ 1)

Vs
set V with small cell density is reduced from
λK to E(S)λK

Cn class n
ρc rate threshold of the user belong to class c

R;R(c) rate coverage of entire system; rate coverage of
class c

Pk Transmit power of tier-k BS

τ ck
SINR threshold of user associated with tier-k
and class c.

N̄ c
k

average number of users in cth class associated
with an BS of tier-k

κ
fraction of total spectrum used to serve first
class users

λuc PPP density of users belong to cth class
W available bandwidth (universal reuse)

It is assumed that users are connected to the BS with
maximum average received power. Suppose Zk denotes the
distance of the user from nearest BS in K th tier, then the user
connects to tier j where j = arg maxk∈V PkZ

−α
k . Without

loss of generality, the user is assumed to be at the origin and
referred to as typical user. The SINR of a typical user with

serving BS that belongs to jthtier at a distance y is given by

SINRj(y) =
Pjhy

−α∑
k∈V

∑
x∈Φk\y Pkhxx

−α + σ2
. (1)

All BSs in all tiers operate in same spectrum of bandwidth
W . Moreover, at each BS, the bandwidth is split to serve two
classes such that κW is allocated to the first class C1 and
(1 − κ)W to the second class C2 where (0 ≤ κ ≤ 1). κ is
called class resource share factor. If the typical user connected
to tier-j BS belongs to C1, its achievable rate is given by

R
(1)
j =

κW

N
1

j

log2(1 + SINRj) (2)

Similarly if the user belongs to C2 connected to tier-j BS,
corresponding rate is given by,

R
(2)
j =

(1− κ)W

N
2

j

log2(1 + SINRj) (3)

where, N
1

j and N
2

j denotes the average number of users served
by tier-j BS of class C1 and C2 respectively. A trivial extension
of [9, Corollary 1] yields

N
1

j = 1 +
1.28λu1

P
2
α
j∑

k∈V λkP
2
α

k

, N
2

j = 1 +
1.28λu2

P
2
α
j∑

k∈V λkP
2
α

k

. (4)

Note that similar to [9], mean load approximation N j has
been used in this work instead of actual load Nj to simplify
the results. By dividing the bandwidth κW and (1 − κ)W ,
two-class HetNet turns into two parallel single class HetNet.

III. RATE COVERAGE FOR TWO CLASSES OF USERS

In this work, the rate coverage is considered as the per-
formance metric for evaluating HetNet. This is defined as
the probability that a random user in (Φu, λu) achieves rate
greater than a certain threshold ρ, in HetNet with tiers V
and bandwidth W . It is denoted by R(λu, ρ,W,V). The rate
coverage probability of a typical user in a single class HetNet
with assumption that users connect to the BS with maximum
average power is derived in [9, Corollary 1] and given by

R(λu, ρ,W,V) =
∑
j∈V

2πλj

∫ ∞
0

y exp

(
−τjσ2yα

Pj

)

exp

(
−π

∑
k∈V

Dj(k, τj)y
2

)
exp

(
−π

∑
k∈V

Gj(k)y2
)

dy

(5)

where

Dj(k, τj) =

(
Pk
Pj

) 2
α

λkZ(τj , α, 1), Gj(k) = λk

(
Pk
Pj

) 2
α

,

Z(a, b, c) = a
2
b

∫ ∞
( ca )

2
b

du

1 + u
b
2

, τj = 2

(
ρNj
W

)
− 1,

N j = 1 +
1.28λuP

2
α
j∑

k∈V λkP
2
α

k

.



For two-class case, it is assumed that κ is fixed for
all BSs. Following theorem provides the rate coverage
probability for two-class HetNet, denoted by Rκ =
R({λui}i=1,2, {ρi}i=1,2, κ,W,V).

Theorem 1. Rate coverage of a typical user in HetNets with
two classes of users and class resource share factor of κ is
given by

Rκ =

(
λu1

λu1 + λu2

)
R(λu1 , ρ1, κW,V)+(

λu2

λu1 + λu2

)
R(λu2 , ρ2, (1− κ)W,V)

(6)

Proof. See Appendix A.

Note that R(λu1
, ρ1, κW,V) and R(λu2

, ρ2, (1 − κ)W,V)
are class-wide rate coverage probabilities, denoted byR(1) and
R(2). It is obvious from equation (2) and (3) that the rates R(1)

j

and R
(2)
j are increasing and decreasing with κ respectively.

The following proposition, provide the Pareto optimal κ, i.e.,
the resource sharing factor for which both classes achieve
equal rate coverage.

Proposition 1. Pareto optimal κ, denoted by κp for bandwidth
allocation among the two classes of users is given by

κp =
ρ1N

1

j

ρ1N
1

j + ρ2N
2

j

. (7)

If λu1
, λu2

� 1, then

κp ≈
ρ1λu1

ρ1λu1
+ ρ2λu2

.

Proof. See Appendix B.

IV. SMALL CELL SLEEPING STRATEGIES

Generally HetNets are analyzed for maximum rate require-
ment. However studies such as [11] show that traffic varies
both in space and in time. Operators can potentially reduce
the energy consumption by switching off BSs when traffic is
low in certain area or in specific times. Similar to [6], two
sleeping strategies for small cells are studied for HetNet with
two classes, namely random sleeping and strategic sleeping.

A. Random Sleeping

Random sleeping strategy for HetNet accounts for the
temporal variation of traffic. If the traffic is not at its peak,
then some BSs can be turned off. Each Small Cell Base
Stations (Small Cell Base Station (SCBS)s) are operated with
probability q and switched off (sleep) with probability 1 − q
independently of other SCBSs. Hence SC density in the system
reduces from λK to qλK after random sleeping strategy is
applied. Objective of this strategy is to adapt the density of
SCBS to traffic variation.

Theorem 2. In a multi-tier system with two user classes using
random sleeping strategy, rate coverage of a random user is
given by

RRS(q) =

(
λu1

λu1 + λu2

)
R(λu1 , ρ1, κW,Vq)+(

λu2

λu1 + λu2

)
R(λu2 , ρ2, (1− κ)W,Vq)

(8)

where Vq is the set V with small cell density reduced from λK
to qλK , (0 ≤ q ≤ 1).
Proof. This is a simple extension of Theorem 1 with updated
SC density. During random sleeping, density of SCBS reduces
from λK to qλK (0 ≤ q ≤ 1) and other tier BS remains the
same.

B. Strategic Sleeping

Strategic sleeping accounts for both temporal and spatial
traffic variation. In this model, similar to [6], the activity
level of each SC is modeled by random variable a ∈ [0, 1]
with density fA. It determines the probability that each user
is active inside its cell. Knowing the activity level a, a
monotonically increasing strategic function S(a) is defined
(also in range [0, 1]) and each SCBS remains active with
probability S(a) and is turned off otherwise. After applying
this sleeping strategy, the remaining SCBS density reduces
from λK to λKE[S] where E[S] =

∫ 1

0
S(a)fA(a)da. The

following theorem characterizes the rate coverage for this case.

Theorem 3. In a multi-tier system with two user classes using
strategic sleeping strategy, rate coverage of a random user is
given by

RSS =

(
λu1

λu1 + λu2

)
RSS(λu1 , ρ1, κW,V, S)+(

λu2

λu1 + λu2

)
RSS(λu2 , ρ2, (1− κ)W,V, S)

(9)

where RSS is given by (25).
Proof. See Appendix C.

C. Optimization to minimize SCBS energy consumption

In this section, we try to minimize energy consumption of
SC for both sleep strategies in HetNet while keeping each
classes necessary QoS. Note that rate coverage probability is
considered as QoS metric.

1) Optimization with Random Sleeping: For HetNet in
which random sleeping is applied for SC, problem can be
formulated as,

min
q

qλKPa + (1− q)λKPs

s.t. R(λu1 , ρ1, κW,Vq) ≥ ε1
R(λu2 , ρ2, (1− κ)W,Vq) ≥ ε2

(11)

Here q denotes the fraction of active SCBS. Moreover Pa and
Ps represents power consumed at SCBS during active and
sleep state respectively. To solve this optimization problem,
similar to conclusions in [12, Theorem 3] or in [6, Corollary
1], it can be seen that the rate coverage increases monotoni-
cally with density of SC, hence with the value of q as well.



R∗SS(λu, ρ,W,V, S) =
AK
E[a]

{
2πλK
AK

TK(τK ,Vs,V)

∫ 1

a∗
afA(a)da+

{ ∑
j∈Vs

2πλ′j Tj (τj ,Vs,Vs)
}∫ a∗

0

afA(a)da

}
+

∑
j∈V/{K}

2πλj Tj(τj ,Vs,V)

(10)

Since rate coverage increase with q, optimum value of q will
be the one which satisfies the constraints tightly. As seen from
Figure 2, value of κ influences the rate coverage as well. Hence
every increase in q, follows search of value of κ in [0, 1] as
well. The main steps are shown in Algorithm 1.

Algorithm 1 Algorithm to find optimum q in random sleeping
Initialize, q=0, κ=0, set step size stpq ,stpκ
repeat

repeat
find R(1) and R(2)

κ← κ+ stpκ
until κ=1 or (R(1) ≥ ε1 and R(2) ≥ ε2)

if (κ=1) then (reset κ=0 and q ← q + stpq)
until q=1 or (R(1) ≥ ε1 and R(2) ≥ ε2)

2) Optimization with Strategic Sleeping: Similarly for
strategic sleeping problem is formulated as,

min
S

E[S]λKPa + (1− E[S])λKPs

s.t. RSS(λu1
, ρ1, κW,V, S) ≥ ε1

RSS(λu2
, ρ2, (1− κ)W,V, S) ≥ ε2

(12)

Here E[S] is the fraction of SC which are active after sleep
strategy is applied. Again, the rate coverage is an increasing
function with the density of SCBS. In case of strategic sleep-
ing, density of SCBS is determined by strategic function S(a).
However for a fixed E[S], it has been proven [6, Lemma 4] that
optimum function of S takes the form of threshold function
based on activity a. That means S(a) = 1 if (a ≥ a∗) where a∗

is a threshold value and S(a) = 0 otherwise. Then constraint
functions in 12 with S(a) as threshold function is given by
10. As function S becomes threshold function, SCBS density
increases with decrease in a∗. Hence optimization problem
reduces to finding value of a∗ that satisfies the constraints
tightly. Similar to random switching case, every new value of
a∗ follows search of all value of κ.

V. NUMERICAL RESULTS

In the following, we consider a heterogeneous network with
3-tiers where one tier belong to SCBS and all the numerical
results are done for the same setting. V = {1, 2, 3} represents
three set of tiers in the network where 3rd tier represents
SCBS. Transmit power for each tier is given by P1 = 43 dBm,
P2 = 38 dBm and P3 = 21 dBm. Original density of each
tiers before any sleeping strategies is applied are λ1 = 1,
λ2 = 5 and λ3 = 10. Path loss exponent α is assumed be to 4
for all the tiers. Bandwidth W is set 10 MHz unless another
value is specified. To make a fair comparison between strategic
sleeping and random sleeping, we choose strategic sleeping

model so that both strategies have same fraction of SCBS
active. For strategic sleeping model, SCs have activity (A)
equal to 1 with probability q, and activity 0 with probability
1 − q. Sleeping strategy (S) is 1 if the activity is 1, else 0.
Figure 1 shows rate coverage of whole system at κp. Figure 2
shows variation of rate coverage of two classes as a function
of κ. Note that κp ≈ 0.6 (in line with Proposition (1)) at
which rate coverage for both user classes is equal. Figure 3
compares required SC density for single class and two classes
system for random sleeping case. This can be found as value
of q by Algorithm 1 by setting λK = 1 and relaxing condition
q = 1 in the outer-loop. Note that we assumed higher value
of bandwidth W to make comparison a bit more fair as two
class system assumes two fixed users per cell where as in
single class only one typical user is assumed per cell. It can
be seen that difference in required SCBS density increases as
the difference in required rate threshold becomes large. Hence
classifying the users clearly has advantage of saving energy
rather than assuming all the users need maximum rate. Finally
figure 4 compares sleep strategies where strategic sleeping
clearly has advantage over random sleeping in terms of energy
efficiency. Energy efficiency is given by,

EE =
λu1

ρ1R(1) + λu2
ρ2R(2)

Et
(13)

where Et is total energy consumption and is given by:

Et =

 ∑
j∈V/{K}

λj(Pj + ∆jPj,0) + qλK(PK + ∆KPK,0)


×W + (1− q)λKPs.

(14)

Total Energy Consumption indicates overall energy con-
sumed at all tiers in unit area. Energy consumption at BS
includes transmit power as well as static power consumption.
Assumed values are P1,0 = 130W,P2,0 = 56W,PK,0 =
6.8W , ∆1 = 4.7,∆2 = 2.6,∆K = 4, Ps = 4.3W , according
to [11].

APPENDIX

A. Proof of Theorem 1

If the rate of typical random user u is denoted by Ru, then
we have

P(Ru ≥ ρ(u)) = P(Ru ≥ ρ1)P(u ∈ C1)

+ P(Ru ≥ ρ2)P(u ∈ C2)

As a result of bandwidth division using κ, P(Ru ≥ ρi) =
R(λui , ρi, κiW,V) for i = 1, 2 and κ1 = κ and κ2 = 1 − κ.
Moreover since each classes are modeled using marked PPP,
the probability that a random user belongs to C1 or C2 is given
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by λu1

λu1
+λu2

or λu2

λu1
+λu2

respectively. Plugging in these results
to the rate coverage, the theorem is obtained.

B. Proof of Proposition 1

Rate coverage for a typical user is actually derived from
SINR coverage in [9, Theorem 1]. Hence rate coverage for
two user class will be same when SINR thresholds for both
classes are the same. This means

τ1
j = τ2

j =⇒
(ρ1N

1

j

κW

)
=
( ρ2N

2

j

(1− κ)W

)
.

Solving this for κ, yields κp =
ρ1N

1
j

ρ1N
1
j+ρ2N

2
j

. Note that since

N
1

j =
1.28λu1P

2
α
j∑

k∈V λkP
2
α
k

+ 1, if λu1
is large enough then N

1

j

can be approximated by
1.28λu1

P
2
α
j∑

k∈V λkP
2
α
k

, and we have κp =

ρ1λu1

ρ1λu1
+ρ2λu2

.

C. Proof of Theorem 3

The rate coverage for single class and single tier system
is obtained in [6]. First, this result is extended to multi-tier
system and then to two user class system. Suppose that the
user density is λu with required rate threshold ρ.

Lemma 1. Association probability, i.e, probability that a
typical user (before any sleep strategy is applied) connects
to tier-J BS is given by,

Aj =
λj∑

k∈V λk

(
Pk
Pj

) 2
α

(15)

Proof. Proof can be obtained from Lemma 2 of [9] (assuming
equal path loss exponent for all tiers).

After strategic sleeping, the density of small cell is reduced
to E(S)λK . The new set of base stations is denoted by Vs and



updated density of tier-j BS is denoted by λ′j . Following theo-
rem characterizes the association probability of a disconnected
typical user of small cell after sleep strategy is applied, i.e.,
probability that a disconnected typical user connects to BS of
tier-j.

Lemma 2. The probability that a typical user who is discon-
nected from a switched off SCBS after strategic sleeping, now
connects to an active tier-j BS is given by

AKj =
λ′j∑

k∈Vs λk

(
Pk
Pj

) 2
α

(16)

where, λ′j denotes the updated density of BS of tier-j after
sleep strategy is applied.
Proof. Suppose that a user is connected to a SCBS at a dis-
tance of ZK . The nearest k-tier BS is placed at Zk. According
to the association policy, it can be given as PKZ−αK ≥ PkZ−αk .
This means nearest active k-tier BS must be at distance

Zk ≥
(
Pk
PK

) 1
α

ZK (17)

Next we find the distance distribution of nearest k-tier BS from
the typical user who was previously connected to a switched-
off SC. Suppose that there is no BS within a distance of d1.
If the distance of nearest k-tier BS is denoted by D, we have
for d > d1

P(D > d|no BS within d1) =

= P(No BS present within d|no BS within d1)

= P (Φk ∩ (B(0, d)− B(0, d1)) = ∅)
= exp(−πλk(d2 − d21))

(18)

where B(0, x) is a ball centered at origin with radius x.
Now density function of distance D is given by,

fD(d|no BS within r1) =
d

dr
{1− P[D > d|no BS within d1]}

= 2πλkd exp(−πλk(d2 − d21)).
(19)

The association probability AKj , the probability of a discon-
nected typical user connects to an active BS of tier-j after
strategic sleeping, is given as:

AKj = P

 ⋂
k∈Vs,k 6=j

{
PjZ

−α
j ≥ PkZ−αk

}
|SC is off at ZK


(a)
=

∏
k∈Vs,k 6=j

P
{
PjZ

−α
j ≥ PkZ−αk |SC is off at ZK

}

=

∫ ∞
s=0

∏
k∈Vs,k 6=j

P

(
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(
Pk
Pj

) 1
α

Zj

)
fZK (s)ds

(b)
=

∫ ∞
s=0

∫ ∞
z=
(
Pj
PK

) 1
α s∏

k∈Vs,k 6=j

P

(
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(
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) 1
α

z

)
fZj (z)dz fZK (s)ds

(c)
=

∫ ∞
s=0

2πλ′j

∫ ∞
z=
(
Pj
PK

) 1
α s

z

∏
k∈Vs,k 6=j

exp

(
−πλk

((
Pk
Pj

) 2
α

z2 −
(
Pk
PK

) 2
α

s2

))

exp

(
−πλ′j

(
z2 −

(
Pj
PK

) 2
α

s2

))
dz fZK (s)ds

(d)
=

∫ ∞
s=0

2πλ′j

∫ ∞
z=
(
Pj
PK

) 1
α s

z

exp

(
−π

∑
k∈Vs

λk

((
Pk
Pj

) 2
α

z2 −
(
Pk
PK

) 2
α

s2

))
dzfZK (s)ds

(e)
=

λ′j∑
k∈Vs λk

(
Pk
Pj

) 2
α

(20)

where, fZK (s) is given by [9, Lemma 4]:

fZK (s) =
2πλK
AK

s exp

(
−π

∑
k∈V

λk

(
Pk
PK

) 2
α

s2

)
(21)

(a) follows from independence of Φk,∀k ∈ V . Lower limit in
inner integral of (b) follows from equation (17). First exponen-
tial and second exponential in (c) follow from equation (18)
and (19). With simplification of expression we get (d). Finally,
substituting distribution fZK (s) and with simplification of
expression, we get (e) or equation (16).
An alternative proof follows easily from [9, Lemma 2] by
reducing density from V to Vs, however this derivation cor-
roborates the independence property of PPPs.

Lemma 3. Approximated mean number of disconnected small
cell users after strategic sleeping connects to active BS of tier-j
is given by,

N̄K
j = N̄K

(
λK
[
1− E[S]

])AKj
λ′j

1∫
0

afA(a)da (22)

Proof. Association probability AKj can be interpreted as
fraction of disconnected SC users connected to tier-j BS.
Since we assume that activity of a SC is independent of other
SC, switched off SCs can be interpreted as marked PPP with
density λK

[
1 − E[S]

]
. Because marked PPPs and PPPs are

ergodic, average number of disconnected users associating to
active tier-j BS can be approximated in an unit area (similar
to Remark(2) in [9]). Along with the activity of small cells,



average number of users can be approximated as,

N̄K
j = N̄K

(
λK
[
1− E[S]

])AKj
λ′j

1∫
0

afA(a)da

where, N̄K denotes the average number of SCBS users before
sleep strategy is applied. λK

[
1 − E[S]

]
denotes the number

of switched off SC in an unit area. λ′j denotes the updated
density of BS of tier-j after sleep strategy. Finally integration
in equation follows from taking into account the activity of
the SC users.

Lemma 4. Rate coverage of a typical user connected (exclud-
ing disconnected users) to a BS of tier-j is given by,

Pj(R ≥ ρ) =
2πλj
Aj

∫ ∞
y=0

y exp

(
−τjσ2yα

Pj

)
exp

(
−π

∑
k∈Vs

Dj(k, τj)y
2

)
exp

(
−π

∑
k∈V

Gj(k)y2
)

dy

(23)

where, τj = 2

(
ρN̄

χ
j

W

)
− 1 with N̄χ

j = N̄j + N̄K
j

N̄j = 1 +
1.28λuAj

λj

Proof. Result can be easily obtained from extending equation
(26) in [9] by dividing the resource with extra associated SC
users. Note that second exponential term represents Laplace
transform of aggregated interference and hence has updated
density of BS Vs. Third exponential term corresponds to
distance distribution. Distance distribution remains same in
this case mainly because sleep strategy is applied for only
small cell and small cells are assumed to be transmitting with
least transmit power. Hence any typical user connected to tier-
j BS (excluding switched off SC user) remains connected to
same BS even after sleep strategy is applied.

Lemma 5. Rate coverage of a disconnected typical user given
it is connected to active BS of tier-j (after sleep strategy is
applied) is given by,

PKj (R ≥ ρ) =
2πλ′j
AKj

∫ ∞
y=0

y exp

(
−τjσ2yα

Pj

)
exp

(
−π

∑
k∈Vs

Dj(k, τj)y
2

)
exp

(
−π

∑
k∈Vs

λk

(
Pk
Pj

) 2
α

y2
)

dy

(24)

where, τj = 2

(
ρN̄

χ
j

W

)
− 1 with N̄χ

j = N̄j + N̄K
j

N̄j = 1 +
1.28λuAj

λj

Proof. Proof is obtained similar to Lemma 4. Note that
distance distribution (third exponential term) changes and can
be simply obtained from reducing densities (as points of PPP
are independent).

Now, using the previously stated results, conditioning on the
activity of typical SC and with total law of probability, overall
rate coverage of a typical user in the system is derived:

RSS(λu, ρ,W,V, S)
(a)
=

AK
E[a]

∫ 1

0

aPK(R ≥ ρ|a)fA(a)da+∑
j∈V/sc

AjPj(R ≥ ρ)

=
AK
E[a]

∫ 1

0

{
aPK(R ≥ ρ|SC is actv)P(SC is actv)

+ aPK(R ≥ ρ|SC is Inactv)P(SC is Inactv)

}
fA(a)da

+
∑

j∈V/sc

AjPj(R ≥ ρ)

=
AK
E[a]

∫ 1

0

{
aPK(R ≥ ρ|SC is actv)S(a)

+ aPK(R ≥ ρ|SC is Inactv)(1− S(a))

}
fA(a)da

+
∑

j∈V/sc

AjPj(R ≥ ρ)

(b)
=

AK
E[a]

∫ 1

0

{
aPK(R ≥ ρ|SC is actv)S(a)

+ a

{ ∑
j∈Vs

AKj PKj (rate ≥ ρ|SC is inactive)

}
(1− S(a))

}
fA(a)da

+
∑

j∈V/sc

AjPj(R ≥ ρ)

(c)
=

AK
E[a]

{
2πλK
AK

TK(τK ,Vs,V)

∫ 1

0

aS(a)fA(a)da

+

{ ∑
j∈Vs

2πλ′j Tj (τj ,Vs,Vs)
}∫ 1

0

a(1− S(a))fA(a)da

}
+

∑
j∈V/sc

2πλj Tj(τj ,Vs,V) (25)

where,

Tj(τj , v1, v2) =

∫ ∞
0

y exp

(
−τjσ2yα

Pj

)
exp

(
−π

∑
k∈v1

Dj(k, τj)y
2

)

exp

(
−π

∑
k∈v2

Gj(k)y2

)
dy

τj = 2

(
ρN

χ
j

W

)
− 1 N

χ

j ≈ N j +N
K

j

and (a) shows conditioning on the load ’a’ of SC. (b) follows
by offloading disconnected users from switched-off SC (due
to sleep strategy) to other active tier BSs. Since we offload
switched off SC users, other active cells share its resources
to serve offloaded users. Hence total mean number of users
served by a BS of tier-j is given by N

χ

j . Finally (c) follows



by substituting and simplifying derived result in this Appendix.
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