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Abstract—Self interference (SI) in full duplex (FD) systems
is the interference caused by the transmission stream on the
reception stream. Being one of the main restrictive factors for
performance of practical full duplex systems, however, not too
much is known about its effect on the fundamental limits of
relaying systems. In this work, we consider the full duplex three-
node relay channel with SI where SI is modeled as an additive
Gaussian noise whose variance is dependent on instantaneous
input power. The classical achievable rates and upper bounds
for the single three-node relay channel no longer apply due to
the structure of SI. Achievable rates for Decode-and-Forward
(DF) and Compress-and-Forward (CF) and upper bounds on
the capacity are derived assuming Gaussian inputs and SI.
The deterministic model is also introduced and its capacity
is characterized. The optimal joint source-relay distributions
is discussed. Numerical results are provided comparing the
achievable rates and upper bound.

I. INTRODUCTION

The relay channel, first introduced in [1], has been ex-
tensively studied since as the building block of the cooper-
ative communication. Many results are available regarding the
achievable rates, converses and capacity theorems for single
relay channels [2], [3] and for multiple relay cooperative
networks [4]. Although the capacity is unknown for the general
case, the capacity can be proven for some special cases such as
degraded, semi-degraded and deterministic channels. Various
cooperative strategies have been developed for the channel
such as DF, CF and Amplify-and-Forward (AF) as well as
converse bounds based on cut-set bound [2]. Recent researches
has focused on the tightness of the gap between the achievable
rates and converse bounds for low and high Signal-to-Noise
Ratio (SNR), or for all SNRs [5]–[8]. Most of the time,
the channels have been considered in their general form in
the previous information theoretic works. Particularly, with
the assumption of FD system with complete self interference
cancellation (SIC), no extra theoretical effort is needed to
take the results in network information theory, and to apply
it in FD setting. However, practical FD systems have not
been developed only until recently. Indeed, one of the main
prohibitive factors was SI, namely the interference caused by
the transmission stream into the reception stream, hindering
the channel quality in a drastic way. This has been overcome
by devising analog as well as digital SIC mechanisms for
suppressing SI in a significant way. As long as SIC is
perfect, no additional information theoretic effort is needed
for understanding FD communication. However, this is far
from truth in practical systems. Not only SI is not perfectly
removed, but also it essentially changes the channel in a

way that the classical information theoretic results, such as
optimality of Gaussian inputs for single user channels, might
no longer apply. SI caused by the transmission of X on
the received signal Y has been modeled in different ways
in the literature. One model represents SI as i.i.d. Gaussian
noise with variance proportional to the transmission power
as β2E[X2]. In this case, SI acts as another independent
additive noise, adding up with Gaussian thermal noise. The
information theoretic analysis of this model does not involve
any additional difficulty (see [9]). In another model, the effect
of A/D saturation is considered. If the self-interference is not
too high, it can be perfectly canceled but otherwise it causes
the saturation of A/D. The saturation effect acts as clipper
which leads to a non-linear channel. This is modeled by the
indicator function 1(Y ≤ Pth). A similar model on peak
power limited channel shows that the optimal input distribution
is discrete and unique [10]. However if SI is mainly caused by
imperfect channel estimation, and the channel estimation error
is modeled as Gaussian random variable, the residual SI is also
a Gaussian random variable with the variance proportional to
instantaneous transmission power X2 rather than its expected
power. In this case, the noise power is input dependent and
new analysis is need. To the knowledge of the authors, first
step in this direction has been made by authors in [11]. They
consider a FD two-hop relay channel with SI where the relay
employs DF. Drawing from the results of [12], they discuss the
optimal input distributions and they show that the conditional
probability distributions of the source input given the relay
input is Gaussian while the optimal distribution of the relay
input is either Gaussian or symmetric discrete with finite
mass points. In this work, we study full-duplex networks with
imperfect SIC in full generality. The achievable rates for DF
and CF are discussed and evaluated. We discuss deterministic
models, constant gap and optimal input distribution. The paper
is organized as follows. In Section II, the system model is
introduced. In Section III, the achievable rates and the converse
bound are derived for FD relay channel. The deterministic
model is discussed in Section IV, where its capacity is shown
to be achievable by DF or source-destination transmission
that ignores the relay. The optimal distribution is discussed
in Section V, and the numerical results are discussed in VI.

II. SYSTEM MODEL

The single relay channel [1], [2] with channel and relay
inputs x1 ∈ X1, x2 ∈ X2, channel and relay outputs y2 ∈
Y2, y3 ∈ Y3, is characterized by the following conditional



probability distribution (PD) PY2Y3|X1X2
. In this channel, a

source wants to send a message W to a destination with the
aid of a relay node. To send this message, the code described
in the following definition is used.

Definition 1 (code and achievability): A code for the single
relay channel consists of:

• An encoder mapping {ϕ :W 7−→X n
1 },

• A decoder mapping {ψ : Y n
3 7−→ W},

• A set of relay functions {f2,i}ni=1 such that {f2,i :
Y i−1

2 7−→X n
2 }ni=1,

for a finite set of integers W =
{

1, . . . ,M
}

. The rate of such
code is defined by 1

n logM . The average error probability is
defined as

P (n)
e

(
ϕ,ψ, {f2,i}ni=1

)
= Pr {ψ(Y3) 6= W and W is sent} .

The rate r is achievable if there is a code for which:

lim
n→∞

P (n)
e = 0 and lim inf

n→∞

1

n
M ≥ r.

The supremum of achievable rates is called capacity.

A. Gaussian Relay Channel

In the special case of Gaussian relay channel, an additive
noise is added to each received signal and each signal is af-
fected by a channel gain between transmitter and the receiver.
The model for full-duplex relay channel with Perfect SIC is
as follows:

Y2 = g12X1 + Z2 (1)
Y3 = g13X1 + g23X2 + Z3 (2)

where Z2 and Z3 are Gaussian noises of zero-mean and
variance N2 and N3. As power constraint for the inputs, we
have E[X2

i ] ≤ Pi for i = 1, 2. For the case of imperfect
SIC, the destination channel (2) remains as such however the
source-relay channel (1) should be modified to include the
effect of imperfect SIC, namely the residual self-interference.
In this paper, we focus on the additive input-dependent noise
model. The Gaussian relay channel with imperfect SIC is
defined as follows:

Y2 = g12X1 + ZSI2 + Z2 (3)
Y3 = g13X1 + g23X2 + Z3. (4)

where ZSI2 is the Gaussian noise with variance β2X2
2 .

III. FULL DUPLEX GAUSSIAN RELAY CHANNEL WITH
SELF-INTERFERENCE

In this section, the achievable rates and converse bounds
are derived. We drop the subscript of the density functions for
conciseness. We define C(x) = 1

2 log(1 + x).

A. DF Achievable Rates

Consider a simple DF scenario. The achievable rate [2] is
well known and is given as follows:

RDF = sup
PX1X2

min{I(X1;Y2|X2), I(X1, X2;Y3)}. (5)

In this section, we take the model in (3) and (4) assuming
random variables on real numbers R.

Theorem 1 (DF achievable rate with Gaussian inputs): The
rate R is achievable for a FD relay channel with imperfect
SIC using DF with Gaussian inputs if:

R ≤ max
p2≤P2

ρ∈[0,1]

min

{
EX2

[
C

(
G12(1− ρ2)P1

N2 + β2X2
2

)]
,

C

(
G13P1 +G23p2 + 2ρ

√
G13G23P1p2

N3

)}
, (6)

where Gij = g2
ij are channel gains.

Proof: To evaluate the achievable rate, we first calculate
the first term I(X1;Y2|X2) and start with h(Y2|X1, X2).
Note that conditioned on X2, the total noise ZSI2 + Z2 is a
Gaussian noise of variance N2 +β2X2

2 . With this conditioning
technique, the conditional entropy is evaluated easily for an
arbitrary input distributions on X1, X2.

h(Y2|X1, X2) = EE[− log gZSI2 +Z2
(ZSI2 + Z2)|X2]

=
1

2
E[log(2πe(N2 + β2X2

2 ))] (7)

where by g we denote the Gaussian distribution. This is valid
in full generality regardless of input distribution choice. For
the rest, we stick to Gaussian inputs. To evaluate h(Y2|X2),
X1, similar to [2], is defined as follows:

X1 = XA + ρ

√
P1

p2
X2,

where XA ∼ N (0, (1 − ρ2)P1) and the relay input is X2 ∼
N (0, p2). Given this choice, h(Y2|X2) is evaluated as follows:

h(Y2|X2)

= E[h(Y2|X2)|X2)]

= E[h(g12X1 + ZSI2 + Z2|X2)|X2]

=
1

2
E
[
log(2πe

(
N2 + β2X2

2 +G12(1− ρ2)P1

)]
. (8)

Hence (7) and (8) together yield the first term and the second
term I(X1X2;Y3) is evaluated exactly as in [2].

Note that it is important to maximize with respect to p2 ≤
P2, since increasing the transmit power of the relay p2 has two
opposing effects. Namely, it increases the relay-destination rate
but also increases residual SI. Thus, it is not generally optimal
to transmit at power P2 from the relay.

One way to look at the source-relay channel is to consider it
as set of parallel channels with different noise levels. Since the
relay input is known at the source, the noise level is also known
and one can expect that, using a scheme similar to waterfilling
can boost the achievable rate. The following theorem more



generally states the achievable rate of DF with conditionally
Gaussian X1 given X2, as in [11].

Theorem 2 (DF achievable rate with conditional Gaussian
distribution): A rate R is achievable using DF with condi-
tionally Gaussian X1 given X2 in a FD relay channel with
imperfect SIC if

R ≤ max
ρ∈[0,1]

PX2
,p2≤P2

max
P1(X2)

min

{
EX2

[
C

(
G12P1(X2)

N2 + β2X2
2

)]
,

EX2

[
C

(
G13P1(X2)

N3

)]
+ I(X2;Y3)

}
, (9)

where Gij = g2
ij are channel gains, and the power allocation

function P1(X2) is chosen such that E[P1(X2)] = (1−ρ2)P1.
The DF achievable rate in (9) is optimal.

Proof: It has been shown that (7) is valid in full generality.
For h(Y2|X2), we first find an upper bound as follows:

h(Y2|X2) = E[− log f(g12X1 + ZSI2 + Z2|X2)]

= EE[− log f(g12X1 + ZSI2 + Z2|X2)|X2]

≤ 1

2
E
[
log(2πe

(
N2 + β2X2

2

+G12(E[X2
1 |X2]− E[X1|X2]2)

)]
. (10)

The last equality is obtained by choosing PX1|X2
as Gaussian

distribution with variance P1(X2) = E[X2
1 |X2]−E[X1|X2]2.

Note that E[P1(X2)] = P1 − EE[X1|X2]2 ≤ P1. We denote
EE[X1|X2]2 by ρ2. Using these evaluations, we can see that:

I(X1;Y2|X2) ≤ 1

2
E
[
log

(
1 +

G12P1(X2)

N2 + β2X2
2

)]
s.t. E[P1(X2)] = (1− ρ2)P1. (11)

This has been obtained by the choice of arbitrary input
distribution for X2 and the bound can be achieved by choosing
conditional Gaussian distribution for PX1|X2

. Using similar
argument, we can bound I(X1;Y3|X2) as follows:

I(X1;Y3|X2) ≤ 1

2
E
[
log

(
1 +

G13P1(X2)

N3

)]
s.t. E[P1(X2)] = (1− ρ2)P1. (12)

Using (11) and (12), the DF achievable rate can be bounded
from above. The bound is also achievable.

The previous theorem, although general, does not mention
the specific choice of P1(X2) and also not the choice of PX2

.
For conventional relay channels (β = 0), it can be proved that
the Gaussian choice is optimal with P1(X2) = (1 − ρ2)P1.
Namely, an upper bound on (9) can be derived by using
Gaussian X2 and using Jensen’s inequality to interchange log
and E; a bound that can be achieved using Gaussian X2. This
cannot be done if β 6= 0 due to presence of β2X2

2 as noise
variance in the denominator. The optimal choice of P1(X2) is
known for some cases. For the case of two hop relay channels,
i.e. g13 = 0, the authors in [11] prove that the optimal power
allocation function P ∗1 (X2) is given by:

G12P
∗
1 (X2) =

(
λ−N2 − β2X2

2

)+

where (u)+ = u1(u ≥ 0) and the parameter λ is given by:∫ √
λ−N2
β2

−
√
λ−N2
β2

PX2
(x2)

(λ−N2 − β2X2
2 )

G12
dx2 = (1− ρ2)P1.

This has been obtained by applying Lagrange optimization
to I(X1;Y2|X2). This will not work for our case, because
P1(X2) appears also in the second term in (9), and hence, a
max-min optimization problem should be solved instead.

B. CF Achievable Rates

There are different expressions for CF rate. However, these
expressions achieve the same rate. We make use of the
expression presented in [3]. The CF achievable rate can be
written generally as:

RCF = sup
PX1

PX2
PŶ2|X2,Y2

min
{
I(X1;Y3, Ŷ2|X2),

I(X1, X2;Y3)− I(Y2; Ŷ2|X1, X2, Y3)
}
. (13)

Its evaluation yields the following theorem.
Theorem 3 (CF achievable rate for Gaussian inputs): The

rate R is achievable using CF if

R ≤ max
N̂2,p2≤P2

min

{
EX2

[
C

(
G12P1

N2 + β2X2
2 + N̂2

+
G13P1

N3

)]
,

C

(
G13P1 +G23p2

N3

)
− EX2

[
C

(
N2 + β2X2

2

N̂2

)]}
.

Proof: The proof follows the similar steps as [4] by
choosing independent X1 and X2 and taking Ŷ2 = Y2 + Ẑ2

where Ẑ2 ∼ N (0, N̂2). One only should pay attention that
conditional entropies should be evaluated similar to (7).

C. Upper Bound

The upper bound on the capacity of single relay channel is
given by the cut-set bound as [2]:

RCB ≤ sup
PX1X2

min{I(X1;Y2, Y3|X2), I(X1, X2;Y3)}.

The following theorem provides an evaluation of the bound.
Theorem 4 (Cut-set Bound): If the rate R is achievable for

the FD relay channel with imperfect SIC then:

R ≤ max
PX1X2

,ρ∈[0,1]
max
P1(X2)

min

(
1

2
E
[
log

(
1 +

G12P1(X2)

N2 + β2X2
2

+
G13P1(X2)

N3

)]
,

1

2
E
[
log

(
1 +

G13P1(X2)

N3

)]
+ I(X2;Y3)

)
(14)

where the power allocation function P1(X2) is chosen such
that E[P1(X2)] = (1− ρ2)P1.

Proof: The proof is essentially the same as that of
Theorem 2 with a new evaluation, although using the same
technique, of h(Y2, Y3|X2).

The evaluation in Theorem 4 involves finding the optimal
P1(X2) and PX1X2 . The conditional Gaussian might not be the



optimal choice for I(X2;Y3). The following corollary provides
a looser but more tractable upper bound on the capacity.

Corollary 1: If the rate R is achievable in the FD relay
channel with imperfect SIC then

R ≤ max
ρ∈[0,1]
p2≤P2

min

(
max
PX2

E
[
C

(
1 +

G12P
∗
1 (X2)

N2 + β2X2
2

+
G13P

∗
1 (X2)

N3

)]
,

C

(
1 +

G13P1 +G23p2 + 2ρ
√
G13G23P1p2

N3

))
where P ∗1 (X2) is given by P ∗1 (X2) = (λ−Nt(X2))

+ and
the parameters Nt(X2) and λ are given by

G12

N2 + β2X2
2

+
G13

N3
=

1

Nt(X2)
, (15)∫ X∗2

−X∗2
PX2(x2)(λ−Nt(x2))dx2 = (1− ρ2)P1, (16)

with X∗2 the solution of λ = Nt(X
∗
2 ).

Proof: First of all, I(X1, X2;Y3) can be bounded similar
to [2]. This process removes its dependence on P1(X2), and
therefore power allocation should be done only for the first
term in the cut-set bound.

IV. THE LINEAR DETERMINISTIC FD RELAY CHANNEL

We first write the equivalent linear-deterministic (LD) model
corresponding to the channel using the approach of Avestimehr
et al. [5]. Let us write Y2 as follows

Y2 = g12

√
P1X̄1 + β

√
P2X̄2Z̄

SI
2 +

√
N2Z̄2, (17)

where X̄1, X̄2, Z̄SI2 , and Z̄2 denote X1√
P1

, X2√
P2

, ZSI2

βX2
, and

Z2√
N2

, respectively. Note that E[X̄2
i ] ≤ 1, i = 1, 2. Similarly,

we write Y3 as

Y3 = g13

√
P1X̄1 + g23

√
P2X̄2 +

√
N3Z̄3. (18)

Due to the dependence of the channel on the instantaneous
values of X̄2, we will write the LD channel model for a given
X̄2. Using the LD approximation [5], we can approximate this
channel as a binary q-dimensional vector channel, with inputs
x1 and x2 and outputs y2 and y3, all in Fq2. This LD channel
has the following input-output relations

y2 = Sq−(n12−nβ)+x1, (19)

y3 = Sq−n13x1 ⊕ Sq−n23x2, (20)

where n12 =
⌈

1
2 log

(
G12P1

N2

)⌉
, n13 =

⌈
1
2 log

(
G13P1

N3

)⌉
,

n23 =
⌈

1
2 log

(
G23P2X̄

2
2

N3

)⌉
, nβ =

⌈
1
2 log

(
β2P2X̄

2
2

N2

)⌉
, and S

is a downwards shift matrix
[
0Tq−1 0

Iq−1 0q−1

]
. To have meaningful

results, we assume that P1 and P2 are large enough so that
G12P1

N2
, G13P1

N3
, G23P2

N3
, and β2P2

N2
are much larger than 1.

This provides the LD model of the channel for a given X̄2.
It can be seen from (19)-(20) that we can fix q = max{n12−
nβ , n13, n23} without loss of generality. As common in the
LD approximation, we replace the constraint on X̄2 given by
E[X̄2

2 ] ≤ 1 by the more stringent |X̄2| ≤ 1.

A. The Cut-set Bound

Applying the cut-set bound to this channel, its capacity can
be bounded by

CLD ≤ min{I(X1;Y 2,Y 3|X2), I(X1,X2;Y 3)}
≤ max
|X̄2|≤1

min{I(X1;Y 2,Y 3|X2), I(X1,X2;Y 3)}.

Note that I(X1;Y 2,Y 3|X2) ≤ H(Y 2,Y 3|X2) ≤
max{(n12 − nβ)+, n13}, and that I(X1,X2;Y 3) ≤
H(Y 3) ≤ max{n13, n23}, where the last step in both cases
follows since the entropy of a binary vector is maximized by
the i.i.d. equi-probable Bernoulli distribution. Therefore, we
can write

CLD ≤ max
|X̄2|≤1

min{max{(n12 − nβ)+, n13},max{n13, n23}}

= max
|X̄2|≤1

max{n13,min{(n12 − nβ)+, n23}}

= max{n13, max
|X̄2|≤1

min{(n12 − nβ)+, n23}}.

This upper bound is achievable by simple schemes. Namely,
it is achievable by using DF or by ignoring the relay.

B. Achievability

Since n13 is achievable by simply switching the re-
lay off, we only need to prove the achievability of
max|X̄2|≤1 min{(n12 − nβ)+, n23}. Let us use DF at the
relay, with B transmission blocks, and backward decoding
at the destination. In each block b = 1, · · · , B − 1, the
source sends x1(b) = [aT (b), 0Tq−p]

T where a(b) ∈ Fp2
for some p ≤ q, and the relay decodes a(b) and sends
x2(b) = [aT (b − 1), 0Tq−p]

T . In block b = B, the relay
sends x2(B) = [aT (B − 1), 0Tq−p]

T . The destination waits
until the end of block B, where it decodes a(B − 1) from
x2(B). Then it proceeds to block B − 1 where it subtracts
the contribution of x1(B − 1) from its received signal, and
decodes a(B− 2) from x2(B− 1). The destination continues
decoding backwards in this fashion until reaching block b = 2
where it decodes a(1) from x2(2).

Here, p represents the number of bits that can be passed
from the source to the destination via the relay. According to
the system model (19)-(20), we have that p ≤ (n12−nβ)+ and
p ≤ n23. Therefore, we can set p = min{(n12 − nβ)+, n23}.
Since both nβ and n23 depend on |X̄2|, this achievable rate
can be maximized by adjusting |X̄2| leading to the achievable
rate max|X̄2|≤1 min{(n12−nβ)+, n23}. Therefore, the cut-set
bound is achievable. Let us now discuss the optimal |X̄2|. First
note that if nβ > n12, then min{(n12−nβ)+, n23} = 0. Thus,
for maximizing the capacity, it suffices to consider |X̄2| such
that nβ ≤ n12 so that min{(n12 − nβ)+, n23} = min{n12 −
nβ , n23}. Since n12−nβ decreases in |X̄2| and n23 increases
in |X̄2|, then the maximum of min{n12−nβ , n23} is achieved
at |X̄2| where n12 − nβ = n23 if such |X̄2| is smaller than
1. Otherwise, min{n12−nβ , n23} is maximized by |X̄2| = 1.
The former case leads to X̄2

2 ≈
g12
√
P1

g23βP2
. Thus the optimal X̄2

2



is min{1, g12
√
P1

g23βP2
}, and the capacity is

CLD = max{n13, max
|X̄2|≤1

min{(n12 − nβ)+, n23}} (21)

≈ max

{
n13,min

{
n12 + n̄23 − n̄β

2
, n̄23

}}
, (22)

where n̄β =
⌈

1
2 log

(
β2P2

N2

)⌉
and n̄23 =

⌈
1
2 log

(
G23P2

N3

)⌉
.

This approximation becomes fairly tight as P1 and P2 increase.
This result allows characterizing the capacity of the Gaussian
case at high SNR within a constant gap, left as future work.

V. ON OPTIMAL INPUT DISTRIBUTION

Because of the presence of SI, it is no longer guaranteed
that the optimal input distribution for the case of DF and
for the upper bound is Gaussian. For these channels, the
existence of optimal solution, its uniqueness and its structure
should be discussed in detail. A good example is the case
of non-coherent Rayleigh fading channel where the optimal
distribution is known to be discrete with finite mass points
and a point in zero [12]. In general, the existence of op-
timal distribution follows from weak∗ compactness of the
set Ω and the weak∗ continuity of the achievable rate, or
the upper bound, in Ω. Compactness of Ω follows from
consecutive application of tightness of the set Ω, its relative
compactness according to Prokhorov’s theorem, its sequential
compactness and Lévy metrizability of the weak∗ topology
Ω, shown in [12]. Although Ω is a convex set, the strict
concavity of DF rate and upper bounds cannot be established
in general. Therefore no unique distribution exists as optimal
one. Using Lagrangian and notion of weak derivation, the
optimal distribution can be discussed. As it can be seen in
[11], the optimal distribution might be continuous or discrete
depending on the situation. One main difference with the
two hop case is that, the term I(X2;Y3) is replaced by
I(X1X2;Y3). Even if the goal is optimizing this term alone,
it is not clear whether Gaussian is the optimal choice given
the structure of optimal conditional distribution. Therefore
results of [11] are not applicable in this case. Note that the
continuity of I(X1X2;Y3) in PX1X2 ∈ Ω is not trivial for i.i.d.
Gaussian noise. Moreover, although the Gaussian conditional
distribution PX1|X2

increases I(X1;Y2|X2), it might decrease
I(X2;Y3) and it might not be optimal in general. The main
path is to investigate the structure of optimal distribution for
different cases such as low or high SNR, a rigorous proof of
existence and uniqueness discussion.

VI. NUMERICAL RESULTS

Here we consider full duplex Gaussian relay channels with
coherent transmission and given channels gains. For simplicity,
we assume that X2 is also Gaussian random variable and
therefore we can use Theorem 1. Moreover we assume that all
nodes lie in a line. In this model we have Gij = 1

dαij
with α =

2 as path loss exponent, d12 = d and d23 = 1−d. Transmission
powers are all set to 10. Power allocation function P1(X2)
is chosen trivially as fixed (1 − ρ2)P1. Upper bound is only
valid for Gaussian inputs. The numerical result is presented

Fig. 1. Achievable Rates and Upper Bounds

and compared with the similar scenario in [4] for DF,CF and
upper bounds for full duplex cases with and without perfect
SIC. An interesting observation is that, although a similar
relation can be seen between different rates, the region where
DF performs better shrinks down and its performance degrades
rapidly outside this region.
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