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Abstract—Joint optimization of associations and precoders in
wireless communication networks has become a crucial problem,
due to the growing density of network infrastructure and users. Fur-
thermore, network operators continue to show interest in improved
energy efficiency and less power consumption. Due to the non-convex
structure of the joint optimization problem, current methods and
solvers struggle to offer satisfactory solutions. In the present paper,
we provide a novel approach for joint optimization of the precoders
and associations in a cooperative network with limited fronthaul
capacity links. The proposed joint optimization method provides
an iterative approximation of the original problem in the form
of a mixed integer quadratic program (MIQP), solved via off the
shelf numerical solvers. The second contribution of our work is a
distributed hybrid association strategy, which serves as an alterna-
tive to the joint optimization framework. The performance of both
methods is evaluated, suggesting that the proposed joint optimization
framework can be used as a benchmark for other heuristic methods,
due to its better performance and higher complexity. Meanwhile,
the hybrid association strategy is deemed suitable for a distributed
implementation in less computationally advanced networks.

I. INTRODUCTION

With the continuous growth of mobile devices and services
globally, the traffic load is set to increase 1000-fold in the
next 10 years [1]. This leaves the network operators facing a
difficult challenge in meeting these demands, as they also aim to
lower their power consumption. With the spectral efficiency of the
developed solutions nearing the Shannon limit, viable methods
for improving services include multiple-input multiple-output
(MIMO) antennas and dense heterogeneous networks [2]. How-
ever, managing the high density of both users and infrastructure
leads to further complications. For instance, base stations (BSs)
not only constitute a considerable portion of a networks’ power
consumption, but their performance is limited by their backhaul
links. Furthermore, with the increasing number of users and
overlapping cells, the association of the users in the interference
limited network is by itself a major challenge. In this regard,
the centralized cloud-radio access network (C-RAN) continues to
emerge as a strong candidate for accommodating future network
generations. By separating the baseband processing units (BBUs)
from the remote radio heads (RRHs), the C-RAN allows for
more efficient resource management and better supports dense
networks. Furthermore, C-RAN brings forth vast opportunities
to implement cooperative solutions, which are long known to

have substantial gains. An example of this, directly involving
associations, is coordinated multipoint-joint transmission (CoMP-
JT), which thrives in interference limited networks.

Joint precoding and association optimization is an interesting
open research problem, which comes at the cost of a non-convex,
combinatorial structure. Therefore, existing works in literature
often choose to neglect one component, in order to obtain a
more desirable mathematical structure. The authors in [3] and [4],
achieve this by assuming that the associations are already given.
In other works, [5]–[7], heuristic solutions are offered to the joint
optimization problem. The authors in [8] study joint precoding
and association optimization in a heterogeneous network, while
making use of BS sleep modes. However, their work does not take
into consideration backhaul (in C-RAN referred to as fronthaul)
limitations. Moreover, obtaining the optimal solution requires an
exhaustive search over all possible BS mode combinations.

Our first contribution in this work is a novel iterative approx-
imation framework for joint precoding and association optimiza-
tion under limited fronthaul capacity. Note that there exists no
similar work in the current literature, deploying such a method
for this problem and using off the shelf solvers for joint pre-
coding and association optimization of a C-RAN with restricted
fronthaul links. The second contribution of this paper, is to
extend our previous work on hybrid association strategies [7]. For
this purpose, a distributed algorithm is proposed for setting the
cooperation threshold values of the RRHs based on their fronthaul
load. The centralized joint precoding and association optimization
framework may serve as a benchmark for heuristic solutions, due
to its lower power consumption and higher percentage of feasible
solutions in high signal-to-interference-plus-noise-ratio (SINR)
requirement scenarios. Meanwhile. the hybrid strategy presents
a purely heuristic alternative with lower complexity, suitable for
distributed implementation. It is also noteworthy that our defined
system model allows for the number of RRH antennas, fronthaul
capacity and power constraints to be defined individually.

Paper Organization: A description of the multi-user C-RAN
system model is first presented. Next, we provide the description
of the original optimization problem and explain our proposed
iterative MIQP approximation optimization strategy. A distributed
method based on the hybrid association is then presented. The
convergence behavior and performance of both developed tech-
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Fig. 1: A typical heterogeneous C-RAN architecture.

niques are investigated via Monte-Carlo simulations and a discus-
sion is provided on their advantages and disadvantages. Lastly,
we summarize the contributions of our work in the conclusion of
this paper.

II. SYSTEM MODEL

In this work we investigate a single cooperative heterogeneous
C-RAN cluster operating in the downlink as depicted in Fig. 1.
The cluster includes MRRH RRHs, equipped with Ni transmit
antennas and a maximum transmit power Pmax,i, where i is the
index of the corresponding RRH. There are MUE co-channel
single antenna users, each with an SINR requirement, denoted
by γj , where j is the index of the corresponding user. The
channel between the i-th RRH and the j-th user is indicated
by hij ∈ CNi and is assumed to adopt the uncorrelated block
flat-fading model. The global channel vector of the j-th user may
subsequently be shown by hj ∈ CNTot , where NTot =

∑
iNi.

Similarly, the concatenation of the individual precoding vec-
tors, wij ∈ CNi , describe the global precoding vector of the j-th
user, as wj ∈ CNTot . The fronthaul link connecting the i-th RRH
to the BBUs, is assumed to have a maximum capacity denoted
by Ci. In this work, we assume perfect channel state information
(CSI) is available, although the model may be simply extended
with minor modifications, in order to cater for imperfect CSI. For
ease of mathematical notation, henceforth we let KUE and KRRH
denote the set of users and RRHs, respectively.

With this, the signal model received by the j-th user can be
shown as

yj = hTj wjxj +
∑
q 6=j

hTj wqxq + zj ,

where xj is the uncorrelated complex zero mean data symbol
transmitted for the j-th user, such that E{|x2

j |} = 1, and zj is
the complex additive white Gaussian noise (AWGN) with zero

mean and variance σ2
j . The achieved SINR for the j-th user is

then given by

|hTj wj |2∑
q 6=j
|hTj wq|2 + σ2

j

, j ∈ KUE .

III. OPTIMIZATION MODEL

A. Original Optimization Problem
In this section, we summarize the optimization strategy for

minimizing the power consumption. The aim of the optimization
problem is to satisfy the RRH fronthaul capacity constraints as
well as the SINR demand of users, with the least overall transmit
power possible. For the purpose of joint optimization, a binary
association variable is introduced, denoted by αij . The association
variable describes the connection between a user and an RRH
as active or inactive. Furthermore, the association also has an
influence on the fronthaul load, since an active association implies
that the users’ data must be present at the RRH. This allows the
following representation of the optimization problem

min
αij ,wj

∑
j

‖wj‖2 (1a)

s.t.
∑
j

‖wij‖2 ≤ Pmax,i, i ∈ KRRH , (1b)∑
j

αij log2 (1 + γj) ≤ Ci, i ∈ KRRH , (1c)

‖wij‖2 ≤ αijPmax,i, i ∈ KRRH , j ∈ KUE , (1d)

wH
j Hjwj− (1e)

(
∑
q 6=j

wH
q Hjwq + σ2

j )γj ≥ 0, j, q ∈ KUE ,

αij ∈ {0, 1}, i ∈ KRRH , j ∈ KUE , (1f)

where Hj = hjh
H
j and Ci is the available fronthaul capacity

normalized to the bandwidth. The objective, (1a), represents
the total network power. Constraints (1b) and (1c), represent
the power and fronthaul capacity constraints, respectively. Con-
straint (1d) formulates the relationship between association and
precoding vectors, i.e., a user is not associated to an RRH should
not be receiving any power. Lastly, the users’ SINR constraints
are represented in (1e). Unfortunately, the above problem is not
mathematically tractable, due to the combinatorial nature imposed
by the discrete association variable, while constraint (1e) repre-
sents a non-convex set.

B. Iterative Approximation
We propose an iterative inner approximation of the above

problem, where at each iteration the approximated sub-problem is
cast as an MIQP and solved via a numerical solver. As the first
term in (1e) is problematic, we write its affine approximation,
shown below

wH
j Hjwj ≥

w◦Hj Hjw
◦
j + (wj −w◦j )

HHjw
◦
j + w◦Hj Hj(wj −w◦j )

− (
∑
q 6=j

wH
q Hjwq + σ2

j )γj ≥ 0, j, q ∈ KUE ,
(2)
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where w◦j is the optimal global precoding vector found in the
previous iteration. Substituting the above approximation for the
constraint (1e), provides us with the MIQP sub-problem.

The general procedure is described in Algorithm 1, where Pt,i,
is the transmit power of the i-th RRH in the initial step. The
numerical solver Gurobi [9], is then capable of solving each
MIQP iteration, with a margin of optimality by employing branch
and bound methods.

C. Convergence

It can be stated that at each iteration, the approximation in (2) is
tight and leads to a global lower bound of the left hand side. With
the monotonic improvement of the objective at each iteration,
and the fact that the problems’ objective is lower bounded from
below by zero, the proposed iterative approximation leads to a
necessary convergence. However, the resulting converging point is
not necessarily the global optimum, due to the combinatorial and
non-convex nature of the original problem. Numerical evaluation
of the convergence behavior and the resulting performance of the
proposed solution is given in Section V.

D. Initialization

For the initialization, a relaxed version of the problem is
solved; with no fronthaul constraints, using a simple precoder,
i.e., maximum ratio transmission (MRT) [10]. An equal power
allocation is assumed in order to construct w◦j for the first
iteration.

Algorithm 1 MIQP iterative approximation

1: Initialize: Associate to closest RRH
2: vij ←

h∗
ij

‖hij‖ ∀i, j
3: Pt,i ← Pmax,i∑

i αij
∀i

4: w◦ij ←
√
Pt,ivij

5: Solve a relaxed problem
6: Repeat
7: Solve approximated MIQP
8: Until Convergence
9: Return wj , αij

IV. COOPERATION BASED ON HYBRID ASSOCIATION

In this section we provide an extension to our previous
work [7], which combined precoding optimization with a hybrid
association strategy. Since the technique offered in the aforemen-
tioned paper separates the association problem from precoding
optimization, by heuristically defining the associations, it repre-
sents a good case of comparison to the novel joint optimization
method proposed in Section III. The hybrid association strategy
proposed taking into consideration the distance of the link as
well as the total resource (transmission power) available at the
RRH, when defining associations. A hybrid quality indicator
was defined, based on the ratio between the power constraint

of the RRH (Pmax,i), and the distance of the link (dij) raised
to the power of the path loss exponent (ρ). This was done in
provision of better load balancing, which is an important notion
for limited fronthaul scenarios. The association of the j-th user
was determined by taking the ratio of the quality indicators to the
best link and comparing that ratio against a cooperation threshold,
denoted by θi. For further details on the approach, we refer the
reader to the original paper. With the hybrid association showing
great potential in improving the energy efficiency performance
of the network, we propose an iterative algorithm for setting
the desirable θi values. The cooperation threshold, of the i-
th RRH, is iteratively increased if its fronthaul constraint is
violated. This results in a reduction in the number of users
associated to the RRH and hence, lowering its fronthaul load. The
power consumption is then minimized with the new associations,
using the semidefinite programming relaxation (SDR) framework
in [11], as shown below

min
W̃j

∑
j

tr(W̃j) (3a)

s.t.
∑
j

tr(ΠiW̃jΠi) ≤ Pmax,i, i ∈ KRRH , (3b)

tr(ΠiW̃jΠi) ≤ αijPmax,i, i ∈ KRRH , j ∈ KUE ,
(3c)

tr(HjWj)− (3d)

(
∑
q 6=j

tr(HjWq) + σ2
j )γj ≥ 0, j, q ∈ KUE ,

W̃j � 0, j ∈ KUE , (3e)

rank(W̃j) = 1, j ∈ KUE , (3f)

where W̃j is the transmit covariance matrix of the j-th user,
while Πi is merely an identity matrix designed to select the
antennas corresponding to the i-th RRH. By dropping the rank
constraint (3f), a relaxation of the above problem is obtained
holding a complex-valued semidefinite programming structure.
The relaxed problem may then be solved via numerical solvers,
e.g., SeDuMi or SDPT3 [12]. Note that if rank(W̃∗

j ) = 1 holds
true for the obtained solutions, then the solutions of the relaxed
problem are also the optimal solutions to the problem (3a)-(3f).
However, it should be noted that since, an optimal solution of rank
one is not in general guaranteed, a general rank covariance matrix
may also be implemented via space time block coding schemes,
such as [13]. Furthermore, it is worth mentioning that studies on
rank constraint solutions for the above problem, i.e., [14], suggest
that an optimal rank one solution is available if

|υ|+ 3 > |ζ| (4)

where υ and ζ denote the number of variables and constraints of
the problem respectively and can are calculated as shown below

υ = |KUE |, (5)

ζ = |KUE |+ |KRRH |+ (|KUE ||KRRH |). (6)
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Note that the aforementioned condition (4) does not imply that an
optimal rank one solution is attainable for any setup, but merely
describes the setups for which the relaxation is tight. Furthermore,
since the product term in equation (6) results from constraint (3c),
we provide a equivalent reformulation, which reduces the number
of constraints and hence, increases the number of possible setups
that satisfy the rank one constraint. The formulation below is
equivalent to constraint (3c)∑

ij

(1− αij) tr(ΠiW̃jΠi) ≤ 0 (7)

with the above formulation, it is possible to reduce the number
of constraints to the following

ζ = |KUE |+ |KRRH |+ 1 (8)

Lastly, it must also be stated that even in the case the above
conditions do not hold and the optimal solution is not rank one,
the obtained optimal covariance matrix has a leading eigenvalue.
This allows a well approximated rank-one solution to be obtained
by rank reduction via singular value decomposition.

It must be noted, that in the proposed hybrid strategy, the
fronthaul constraints and associations are essentially moved from
the optimization problem to the algorithm. This is in contrast to
the MIQP framework, which carries out joint optimization. In the
initial state of the proposed hybrid strategy, the SDR optimization
problem is solved in full cooperation mode, where all the users
are associated to all the RRHs. The fronthaul constraints are
then checked for violation, and if so the cooperation threshold
of the RRH is increased, in order to reduce the number of
users associated, thus reducing its fronthaul load. The cooperation
threshold can be calculated as per RRH with the equation below

θi = 1− exp(−τi(
FronthaulConsumptioni

Ci
)) (9)

where τi grows for each iteration that does not satisfy the fron-
thaul constraint. Note that the update function for the algorithm
should monotonically increase the cooperation threshold from
zero to one. However, the growth of τi can be left up to the
given scenario, for instance smaller increments would result in
the fronthaul constraint being satisfied more tightly at the expense
of slower convergence. The details of the algorithm are presented
in Algorithm 2, while numerical evaluation of its convergence is
demonstrated in Section V.

V. SIMULATION RESULTS & DISCUSSION

In this section, we investigate the performance of the described
iterative MIQP approximation joint optimization framework and
the hybrid strategy via Monte-Carlo simulations, using 500 fea-
sible realizations. The simulation scenarios are setup to follow
the 3GPP LTE specification [15]. The simulated model consists
of three RRHs, each equipped with two antennas and uniformly
distributed in a single cluster. Four single antenna users populate
the cluster with uniform distribution. The channel model between
the i-th RRH and j-th user, is comprised of large scale fading
and small scale fading. The large scale fading consisting of both
path loss and shadowing, whilst the small scale fading follows a

Algorithm 2 Distributed hybrid association algorithm

1: Initialize: Full cooperation, θi ← 0.01, αij ← 1 ∀i, j
2: Φij ← Pmax,i

dρij
∀i, j

3: βj ← max(Φj) ∀j
4: while Any fronthaul constraint violated do
5: if Φij

βj
< θi then

6: αij ← 0

7: end if
8: Increase τi
9: Update θi using (9)

10: Solve (3a)-(3e)
11: end while
12: Return W̃j , αij

complex Gaussian distribution with zero mean and unit variance.
Table I describes the rest of our simulation setup along with the
other system parameters.

TABLE I: Simulation Parameters

Parameter Settings
Carrier Frequency 2GHz
Bandwidth 10MHz
Cluster Radius 250m
Maximum Transmission Power 40dBm
Path Loss (dB), LOS: 103.4 + 24.2 log10 d
d[km] NLOS: 131.1 + 42.8 log10 d

LOS Probability, min( 0.018
d , 1)(1− exp (− d

0.063 ))
d[km] + exp (− d

0.063 )
Shadowing 8dB
Noise level -164dBm/Hz

For the implementation of the distributed algorithm, the path
loss exponent is set to ρ = 3. As the cooperation threshold
should be a low value for the first iteration, in order to impose
full cooperation mode, we set θi = 0.01. Furthermore, our choice
of update function for increasing τi is simply, τi = 5τi, however,
this can be left up to the individual scenario.

The convergence of the iterative MIQP approximation opti-
mization framework is displayed in Fig. 2, with a fronthaul
capacity of 75 Mbps. Since the hybrid association algorithm
aims to find associations such that the fronthaul constraints are
satisfied, its convergence behaviour is studied with the average
RRH fronthaul load as shown in Fig. 3. With an individual
fronthaul capacity constraint of 75 Mbps. It can be seen that in
the case of three users, the fronthaul constraints are satisfied and
hence the hybrid association strategy equates to full cooperation.
It is worth clarifying that the reason behind the converged
fronthaul load being less than the constraint is that the average
is used, which essentially includes instances where an RRH was
not connected to any users, hence lowering the average load. The
resulting power consumption behavior of the distributed algorithm
is investigated in Fig. 4, where it can be seen that the power
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increases until convergence. This is due to the fact that, as the
algorithm reduces cooperation in a bid to reduce the fronthaul
load, the RRHs satisfy the SINR demands by increasing the
transmitted power. A preliminary comparison between Fig. 2 and
Fig. 4, shows the difference between the power consumption
of the two approaches at the point of convergence. It can be
observed that the hybrid strategy consumes 16% more power
relative to the proposed joint optimization approach. It can also
be observed that having the RRHs equipped with more antennas
can reduce power consumption. Furthermore, for both proposed
methods, the complexity of the system does not significantly
impact the number of iterations required for convergence. Instead,
the complexity can be seen to have an impact on the iteration time
as presented in Table II. An advantage of the hybrid strategy is
the faster convergence time, due to the efficiency of the SDR
framework. The convergence studies indicated that the average
iteration time for the MIQP approximation joint optimization
framework is more greatly affected by the complexity of the
system, where the simulations were carried out in MATLAB,
with a single core 2 GHz processor. These findings suggest
that the joint optimization may be used in more computationally
powerful networks or serve as a benchmark to distributed heuris-
tic methods, which are solved more efficiently. The difference
in implementation of the two approaches is also noteworthy,
the hybrid strategy allows the RRHs to decide their level of
cooperation based on their fronthaul load, while with the joint
optimization framework all the decisions will be carried out at
the central unit.
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Fig. 2: Network power consumption vs. iterations. Convergence
of the joint optimization framework, where Ci = 75 Mbps.

TABLE II: Iteration time vs. complexity

Average Iteration Time (s)
Complexity Hybrid Strategy Joint Opt

MUE = 3, Ni = 2 0.94 1.17
MUE = 4, Ni = 2 1.62 3.05
MUE = 4, Ni = 4 2.45 6.21
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Fig. 3: Average RRH fronthaul load vs. iterations. Conver-
gence of the hybrid association strategy framework, where
Ci = 75 Mbps.
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Fig. 4: Network power consumption vs. iterations. The overall
power consumption, using the hybrid association strategy frame-
work, increases as less cooperation is compensated by higher
transmit powers, where Ci = 75 Mbps.

Henceforth, we refer to the proposed iterative MIQP approxi-
mation joint optimization framework as ”Joint Opt”, since cooper-
ation and subsequently the associations are left entirely up to the
framework. The hybrid strategy, indicated by ”Hybrid Strategy”,
serves as a good representation of approaches in literature which
propose a heuristic algorithm for determining the associations,
complemented by an efficiently solvable optimization problem
i.e., SDR power minimization. Two more common heuristic meth-
ods are provided for the purpose of comparison, named ”Single
Association” and ”Full CoMP”, which represent association to
their nearest RRH and full cooperation (association to all RRHs),
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respectively. Furthermore, these two conventional methods repre-
sent two extremes in terms of the incurred fronthaul load, with
single association imposing the least and full cooperation the
most.

In Fig. 5. the total network power consumption of all strategies
were investigated, with varying SINR requirements, neglecting
results with less than 70% feasibility. It is clearly evident that
not only does the Joint Opt outperform other solutions, but it is
able provide more feasible solutions for high SINR demands. In
contrast, single RRH association and full cooperation fall short
in supporting high SINR requirements, due to the effect of heavy
interference and limited fronthaul capacities, correspondingly.
Considering that the heuristic methods are all solved via the SDR
framework, the differences in their performance highlights the im-
pact of associations on the system performance and subsequently,
the potential performance gains of the proposed joint optimization
framework.

Lastly, Fig. 6. studies the feasibility performance of different
methods. It can be seen that for the two conventional methods,
single association and full cooperation, an increase in SINR
requirement results in a rapid reduction of the percentage of
feasible realizations. In contrast the two proposed methods are
able to sustain a high percentage of feasibility for much longer.
Note that this can be regarded as an important metric of perfor-
mance as it indicates the frameworks’ ability to provide feasible
precoding and association solutions for different realizations. It
is also evident that the joint optimization framework outperforms
all others by providing more feasible solutions even when the
users SINR requirements are high.
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Fig. 5: Network power consumption vs. SINR. Joint Opt out-
performs other methods and is able to support higher SINR
requirements, where Ci = 75 Mbps.

VI. CONCLUSION

In this work, we have offered a novel approach towards
joint precoding and association optimization of C-RAN networks
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Fig. 6: Percentage of feasible realizations vs. SINR. The percent-
age of feasible realization scenarios drops rapidly for conven-
tional methods, while the Joint Opt is able to sustain a reasonably
high level, where Ci = 75 Mbps.

with limited fronthaul links. The developed framework jointly
determines the precoders and associations, while minimizing the
networks’ power consumption. Therefore, providing an indispens-
able tool for improving the performance of future generation
networks. Additionally, a faster distributed heuristic algorithm
is developed, providing an alternative for less computationally
advanced networks. Simulation results prove that the proposed
joint optimization framework outperforms other techniques, in
consuming less power as well as offering more feasible real-
izations at high SINRs, and can serve as a benchmark to other
heuristic solutions, especially when the fronthaul capacities are
limited.
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