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Abstract—In this paper we address the design of a distributed
passive radar sensor network system, including the power allo-
cation among sensors, as well as linear signal fusion, considering
the channel state information (CSI) estimation error. Analytical
solutions are obtained for each case, achieving an optimum
performance. In particular, it is assumed that both sensing
and communication wireless channels are estimated erroneously,
however, with a known error covariance. The performance of the
proposed methods is numerically evaluated over different levels
of thermal noise and CSI error, where a superior performance
is observed compared to the available designs which assume the
availability of perfect CSI.

Index Terms—CSI estimation error, sensor networks, passive
radar

I. INTRODUCTION

The goal of a distributed passive radar is to provide a
reliable estimation of a source signal, by collecting and
combining the individual passive observations from a network
of sensor nodes (SN) in a fusion center (FC). See [1] for
some related applications. In this respect, problems regarding
the optimal power allocation among the SNs and the energy-
aware system design are of interest, due to the weak, and
usually low power budget sensor systems, see [1]–[4], and
the references therein. In [2] an optimal power allocation
and fusion strategy is analytically obtained, assuming the
availability of perfect network information. However, this
assumption is not practical in many related applications, due to
the unreliable and noisy nature of SNs. In [5] a linear system
design is proposed considering the occasional node failure in
the network, assuming that the statistics of SN failure can be
obtained at the FC. In [6] the sensitivity of the proposed design
in [2] is evaluated under the impact of channel estimation error.
However, in all of the aforementioned designs, and the further
related works [7]–[12], the wireless channels are assumed to
be perfectly known in the design process.

Building on the proposed designs in [2], and the insights
obtained from [6], we revisit the optimal linear system de-
sign, in terms of signal fusion at FC, as well as the power
allocation at SNs, taking into account the impact of channel
estimation error. Analytical expressions are obtained in both
cases, achieving an optimum performance. The performance
of the proposed methods are then evaluated via numerical
simulations. A notable gain is observed compared to the case
where CSI error is not considered in the design process, for
a system with a large signal strength, or with a low channel
estimation accuracy.

II. SYSTEM MODEL

g1 = g̃1 + δ
(g)
1

gK = g̃K + δ
(g)
K

h1 = h̃1 + δ
(h)
1

hK = h̃K + δ
(h)
K

Figure 1: System model of the distributed sensor network.

In this section, we consider a network of K amplify and
forward (AF) passive sensor nodes which cooperate to attain
a single observation of a target signal r ∈ C using a FC
as shown in Fig. 1. The target signal is sensed by the SNs
through the sensing channels, and re-transmitted to the FC
through the communication channels. All the channels, i.e.,
both sensing and communication channels, are assumed to
be wireless, frequency-flat, and static during the observation
process. The index k ∈ K represents different SNs, where set
K represent the index set of all SNs.

A. Imperfection in CSI

We consider an imperfect channel state information of both
sensing and communication channels. The sensing channel gk
can be written as

gk = g̃k + δ
(g)
k , k ∈ K, (1)

where g̃k and δ
(g)
k are the estimated channel coefficient and

estimation error for the sensing channel gk of the k-th sensor,
respectively. The channel error model is similar to one used
in [13], [14]. The sensing channel estimation error δ(g)k is
assumed to be zero mean, statistically independent and with
variance ∆

(g)
k .

E{|gk|2} = E{|g̃k + δ
(g)
k |

2},
= |g̃k|2 + ∆

(g)
k ,

(2)



where E{.} is the expectation operator. Here, the expectation
operator is computed over distribution of δ(g)k . Similarly, the
communication channel hk can be written as

hk = h̃k + δ
(h)
k , k ∈ K, (3)

where h̃k and δ
(h)
k are the estimated channel coefficient and

estimation error for the communication channel hk of the k-
th sensor, respectively. The communication channel estimation
error δ

(h)
k is also assumed to be zero mean, statistically

independent and with variance ∆
(h)
k .

E{|hk|2} = E{|h̃k + δ
(h)
k |

2},
= |h̃k|2 + ∆

(h)
k .

(4)

where the expectation operator is computed over distribution
of δ(h)k .

B. Operation of SNs

If a target signal r ∈ C is present, each SN receives
and amplifies the incoming signal using an amplification
coefficient uk ∈ C, k ∈ K. The communication with FC
is performed by using orthogonal waveforms for each sensor
so that the signal from different sensors can be separated
and processed in FC. The process of each SN can be hence
described as

xk = uk (gkr +mk) , k ∈ K,

= uk

((
g̃k + δ

(g)
k

)
r +mk

)
, k ∈ K,

(5)

where xk is the transmitted signal from the k-th sensor
and mk ∈ C is an additive white Gaussian noise (AWGN)
component at the sensor k, with variance Mk. The power of
the transmitted signal xk can be written as

Xk = E{|xk|2} = |uk|2
(
R
(
|g̃k|2 + ∆

(g)
k

)
+Mk

)
, (6)

where the expectation operator is computed over distribution
of δ(g)k , r and mk. Correspondingly, the power of the target
signal r can be expressed as

R = E{|r|2}. (7)

In [2], the detailed function of each SN is discussed.
Furthermore, it is assumed that the power consumption of k-th
SN is limited by Xmax,k, while the total power consumption
of the network is limited by Xtot. This is formulated as

Xk ≤ Xmax,k, k ∈ K, (8)

and ∑
k∈K

Xk ≤ Xtot. (9)

C. Fusion Center

The transmitted signal from the SNs passes through the
communication channel, with coefficient hk ∈ C, and arrive
at the FC combined with an AWGN component nk ∈ C, with
variance Nk. This is described as

yk = nk + hkxk. (10)

The estimated target signal at the FC can be hence written as

r̃ =
∑
k∈K

vkyk

=
∑
k∈K

vk

(
nk +

(
h̃k + δ

(h)
k

)
uk

(
g̃k + δ

(g)
k

)
r
)

+
∑
k∈K

vk

((
h̃k + δ

(h)
k

)
ukmk

)
, (11)

where vk ∈ C represents the applied fusion weight at the
received signal from the k-th sensor.

III. MMSE DESIGN OF NETWORK PARAMETERS UNDER
IMPERFECT CHANNEL STATE INFORMATION

In this section we propose an MMSE design of the network
parameters for unbiased class of estimators. In the first step,
we observe that the unbiasedness property can be enforced as

E {r̃ − r} = 0 ⇒
∑
k∈K

vkh̃kukg̃k = 1, (12)

following the identity (11) and the fact that all noise terms
are zero mean and independent, i.e., in Equation (11) the
terms with δ

(g)
k ,δ(h)k , mk , and nk becomes zero. Here, the

expectation operator is computed over distribution of δ(g)k ,
δ
(h)
k , r, mk and nk. Furthermore, the mean squared error of

the estimation can be written as

V : = E{|r̃ − r|2}

=
∑
k∈K
|vk|2Nk +

∑
k∈K
|vk|2|uk|2

(
|h̃k|2 + ∆

(h)
k

)
Mk

+R
∑
k∈K
|vk|2|uk|2

((
|h̃k|2 + ∆

(h)
k

)
∆

(g)
k + |g̃k|2∆

(h)
k

)
,

=
∑
k∈K
|vk|2Nk +

∑
k∈K
|vk|2|uk|2ak, (13)

where

ak :=R
((
|h̃k|2 + ∆

(h)
k

)
∆

(g)
k + |g̃k|2∆

(h)
k

)
+
(
|h̃k|2 + ∆

(h)
k

)
Mk. (14)

The Equation (13) follows via the application of (12), and
the fact that all the noise terms are mutually independent and
zero-mean. As a result, the MSE minimization problem can
be formulated for an unbiased class of estimates which satisfy
the defined power constraints as

minimize
uk,vk, k∈K

V

s.t. (8), (9), (12).
(15)



Unfortunately, (15) is not a jointly convex optimization prob-
lem. Nevertheless it is separately convex over the fusion
weights, i.e., vk, k ∈ K. In the following part we obtain a
set of optimal fusion weights for a fixed set of amplification
coefficients.

A. Optimal Linear Fusion

The power constraints in (8), (9) are invariant to the choice
of fusion weights. The corresponding optimization problem
over the fusion weights, when the amplification coefficients
are fixed, is formulated as

minimize
vk, k∈K

V (16a)

s.t.
∑
k∈K

vkh̃kukg̃k = 1. (16b)

As a first step, using the following lemma, we provide infor-
mation about the phase of the system parameters at optimum
point:

Lemma 1. For any optimal choice of system parameters
(vk, uk,∀k ∈ K), the following update is feasible and does
not degrade (increase) the objective value in (16): ∀k ∈ K :

vk,new = |vk|

(
h̃kg̃k

)∗
|h̃kg̃k|

(∑
k∈K |vkukh̃kg̃k|

) , uk,new = |uk|,

(17)
where (·)∗ represents conjugation.

Proof. The new parameter updates do not violate the power
constraints (8) and (9) as absolute value of amplification factor
uk and Xk are kept constant. The unbaised condition (12) also
holds:∑

k∈K
vk,newuk,newh̃kg̃k =

∑
k∈K |vkukh̃kg̃k|∑
k∈K |vkukh̃kg̃k|

= 1. (18)

Consequently, using (12) and triangular inequality , we have:∑
k∈K
|vkukh̃kg̃k| ≥

∑
k∈K

vkukh̃kg̃k = 1, (19)

which conclude that the variable update does not increase the
norms of vk and uk and hence does not increase the objective
(13) as ak is also real-valued.

The above lemma provides us some useful information
about the phase of the system parameters. It shows that the
real-valued assumption of uk, k ∈ K does not reduce the
optimality. It also provides us with an optimal choice of ∠vk
and simplifies our optimization problem into calculating |uk|,
|vk|, k ∈ K by assuming

uk ∈ R+, vk = |vk|∠(h̃kg̃k)∗, (20)

where ∠(·) represents the phase and R+ is the set of positive
real numbers. Hence our simplified optimization problem can
be written as

minimize
|vk|, k∈K

V s.t.
∑
k∈K
|vk|uk|h̃kg̃k| = 1. (21)

which is a convex optimization problem. The corresponding
Lagrangian function to (21) can be subsequently written as

L (|vk|, λ) = λ

(
1−

∑
k∈K
|vk|uk|h̃kg̃k|

)
+
∑
k∈K
|vk|2Nk

+
∑
k∈K
|vk|2|uk|2ak.

(22)
For any optimal solution to (21), the derivative of the La-
grangian should vanish with respect to |vk|. This is written
as

∂L
∂|vk|

= 0 ⇔

2|vk|
(
Nk + |uk|2ak

)
− λuk|h̃kg̃k| = 0. (23)

Accordingly, the absolute value of vk can be stated as

|vk| =
λ

2

uk|h̃kg̃k|
Nk + |uk|2ak

. (24)

Following the identity∑
k∈K
|vk|

∂L
∂|vk|

= 0, (25)

we obtain λ = 2V . The absolute value of vk in terms of
MMSE (V ) can be obtained as

|vk| =
uk|h̃kg̃k|V
Nk + |uk|2ak

. (26)

Furthermore, the derivative of the Lagrangian with respect to
λ also vanishes at optimality and can be stated as

∂L
∂λ

= 0 ⇔(
1−

∑
k∈K
|vk|uk|h̃kg̃k|

)
= 0, (27)

and using (26), we obtain the objective function as

V =

(∑
k∈K

|h̃kg̃k|2u2k
u2kak +Nk

)−1

=

∑
k∈K

Uk

Uk
ak

|h̃kg̃k|2
+ Nk
|h̃kg̃k|2

−1

=

(∑
k∈K

Uk
Ukαk + βk

)−1
, (28)

where Uk = u2k , αk = ak
|h̃kg̃k|2

and βk = Nk
|h̃kg̃k|2

, which
consequently from (24) results in

|vk| =

(∑
k∈K

Uk
Ukαk + βk

)−1
× uk|h̃kg̃k|
Nk + |uk|2ak

, (29)

where |vk| represents the absolute value of the optimal fusion
weight, corresponding to the k-th sensor. The optimal fusion



weights can be obtained by applying (29) in (17). The optimal
Uk can be obtained via the optimization problem,

min
Uk, k∈K

−
∑
k∈K

Uk
Ukαk + βk

(30a)

s.t.
∑
k∈K

ckUk ≤ Xtot, (30b)

ckUk ≤ Xmax, Uk ≥ 0, (30c)

where ck =
(
R
(
|g̃k|2 + ∆

(g)
k

)
+Mk

)
. Similar optimization

problem is already studied in [5]. Using similar steps to
[5], i.e., solving the optimization problem by using the KKT
conditions and water filling algorithm, we get the optimal
weights at the sensor nodes as,

U?k =
1

αk

√
βk/ck
λ?

− βk
αk

(31)

and

λ? =

(
Xtot −

∑
k∈Ksat Xmax,k + βkck

αk∑
k∈K

√
βkck
αk

)−2
. (32)

Optimal values for uk and vk can be respectively obtained as
u?k =

√
U?k and considering the corresponding equations.

IV. SIMULATION RESULTS

In this section, we investigate the performance of the pro-
posed algorithm using numerical simulations. We simulate a
network with K = 1000 SNs, where all the estimated sensing
and communication channel and the corresponding estimation
errors are zero mean and follow a Gaussian distribution with
variance σg

2, σh2, ∆g , and ∆h respectively. The values
given in Table I are used as the default simulated network
parameters. For each set of channel realizations, i.e. gk, hk,
1000 realizations of r, nk,mk, are generated to evaluate the
network performance. The resulting network is then averaged
over 1000 channel realizations.

In Fig 2, the performance of the network, in terms of MSE,
is plotted with respect to variance of the estimation error ∆g =
∆h on the sensing and communication channels, for different
noise levels at the SNs and FC. We assume the variance of
channel estimation error is same for all the sensor nodes. It
can be observed that the resulting MSE increases as the noise
intensity increases, or the variance of the channel estimation
error increases. We can also observe that the robust algorithm
that considers the imperfection in CSI, outperforms the one
that does not consider it for all the noise and estimation error
values. The performance gain increases as ∆g = ∆h increases
and also for small amount of noise. We can also notice that
the analytical results matches with the numerical results.

In Fig 3, the resulting network performance is depicted in
terms of MSE with respect to noise at both sensors Nk and
FC Mk , for different values of the channel estimation error
variance ∆g = ∆h. Here, the resulting MSE increases as the
noise at the sensors and FC increases. Here also, we can notice
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Figure 2: MSE vs Sensing Channel estimation error (dB). Robust-
ness gain increases as channel estimation error increases.
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that the performance of the robust algorithm is better for small
noise at the sensors and FC, and also for the higher values of
channel estimation error variance ∆g = ∆h.

In Fig 4, the impact of target signal power R in the
performance of the network is observed. We can see that the
resulting MSE increases as the target signal power increases.
As expected, the robust algorithm performs better for higher
values of signal power (R), .i.e., for high signal to noise ratio
regime.

R σg2 σh
2 ∆g ∆h Nk Mk Pk Ptot

10 1 1 0.1 0.1 1 1 15 250

Table I: Reference parameters

V. CONCLUSION

In this paper, we have addressed the problem of optimal
power allocation for a distributed passive radar system, where
the statistics of noise and channel estimation error are known.
An optimal MMSE-based solution is presented for unbiased
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Figure 4: MSE vs Target signal power (R) (dB). More robustness
gain for higher values of target signal power.

class of estimators. The numerical simulations show that the
proposed robust algorithm outperforms the traditional one, for
higher values of channel estimation error variance, and also
for small noise at the SN and FC. We also observed that the
analytical results matches with the numerical results.
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