
1

Deep Reinforcement Learning based Resource
Allocation in Low Latency Edge Computing Networks

Tianyu Yang1, Yulin Hu1, M. Cenk Gursoy2, Anke Schmeink1 and Rudolf Mathar1
1Institute for Theoretical Information Technology, RWTH Aachen University, D-52074 Aachen, Germany

Email: {yang, hu, anke.schmeink,mathar}@ti.rwth-aachen.de
2Department of Electrical Engineering and Computer Science, Syracuse University,

Syracuse, NY 13244, USA. E-mail: mcgursoy@syr.edu

Abstract—In this paper, we investigate strategies for the
allocation of computational resources using deep reinforcement
learning in mobile edge computing networks that operate with
finite blocklength codes to support low latency communications.
The end-to-end (E2E) reliability of the service is addressed,
while both the delay violation probability and the decoding
error probability are taken into account. By employing a deep
reinforcement learning method, namely deep Q-learning, we
design an intelligent agent at the edge computing node to
develop a real-time adaptive policy for computational resource
allocation for offloaded tasks of multiple users in order to
improve the average E2E reliability. Via simulations, we show
that under different task arrival rates, the realized policy
serves to increase the task number that decreases the delay
violation rate while guaranteeing an acceptable level of decoding
error probability. Moreover, we show that the proposed deep
reinforcement learning approach outperforms the random and
equal scheduling benchmarks.

Keywords—Edge computing, deep reinforcement learning, fi-
nite blocklength coding, ultra-reliable low-latency communications
(URLLC)

I. INTRODUCTION

Mobile edge computing (also known as fog computing) has
emerged and fast developed in recent years, as it eliminates
delays by providing large amounts of computational resources
for tasks with high computational demands in applications that
require low latency, e.g., industrial automation, augmented
& virtual reality (AR & VR), drones and remote control.
Especially, in applications involving wireless machine-type
communications (MTC) or Internet of Things (IoT), device
normally lack the computational resources and thus offload
the data to the edge computing nodes. Such computing nodes
process the data locally and send time-critical information,
e.g., collision warnings or actuation commands, to a wireless
terminal [1], [2]. The packet size of the data that needs to
be sent to the remote terminal is also generally small [3].
Hence, benefiting from the high processing power of the edge
computing nodes, the end-to-end (E2E) delay is reduced and
the edge computing systems can provide a near real-time
service.

While the edge computing systems reduce the large delays
incurred by the long computational time in the MTC or IoT
devices, they suffer from the potentially low quality of the
wireless channels in uplink and downlink. The E2E reliability
therefore not only depends on the delay violation probability
but also is influenced by the decoding error probability. In

particular, to support ultra-reliable low latency communica-
tions (URLLC) [4], the coding blocklength is required to be
relatively short, i.e., the impact of finite blocklength (FBL)
coding [5] should be taken into account. Unlike the infinite
blocklength (IBL) regime where the blocklength is assumed to
be unbounded, in the FBL regime the blocklength is so short
that the data transmission is no longer arbitrarily reliable.
Specifically, the error probability becomes significant even
when the data coding rate is below the Shannon limit. Hence,
the decision on how to effectively choose the coding rate
becomes crucial to make the transmissions meet the required
reliability level. This leads to a trade-off within the decision
strategy of choosing a proper coding blocklength based on the
task packet size and the channel quality so that the required
reliability level is satisfied meanwhile the delay limit is not
violated.

The computational resources of one mobile edge computing
(MEC) node are typically capable of servicing the offloaded
tasks of more than one mobile user. Note that in URLLC-
supported networks the frame lengths are short, i.e., the
time/blocklength for computing/transmissions in each frame is
limited. In addition, the data arrival rate of each user is varying
over time. Hence, offloaded data may need to wait in a buffer
at the MEC node before it can be processed and transmitted.
In particular, for the considered edge computing network
with a single MEC node but multiple users, the MEC node
must have a proper policy for allocating the computational
resources to the data from different users. This policy is
expected to utilize the channel diversity (over time and among
users), this could result in the transmission of the processed
data (with given size) via a relatively shorter blocklength and
therefore save a bit more time for the computing. Hence, when
the quality of the downlink channel of a user is very low, the
MEC node potentially allocates none of the computational
resources for the task of the corresponding user and let it
wait until the realization of an improved channel quality to
meet the requirement of the error probability. At the same
time, we should also note that the longer waiting time of
the tasks in the buffers also prolong their E2E delay and
potentially increases the queue length in the buffers since the
new offloaded tasks keep arriving. Once the offloaded data is
processed in the MEC node, as small a downlink transmission
rate as possible (corresponding to as large a coding block as
possible) is chosen to decrease the error probability while
not violating the delay limit in the downlink channels. Hence
the computational resource allocation strategy can directly
affect the E2E performance. Therefore in order to maximize



2

the average successful transmission rate (i.e., the percentage
of the transmitted data that meets the required reliability
level) and minimize the average delay violation rate, a smart
dynamic policy for computational resource allocation for
multiple users should be addressed based on the channel
quality, data packet size and the existing waiting time.

Conventionally the problem is solved analytically using
queuing analysis and optimization theory [6], [7]. However,
the problem can easily become intractable due to its stochastic
nature. On the other hand, the frame-based edge computing
process can be viewed as a Markov decision process (MDP).
Consequently, reinforcement learning can enable the MEC
node to become an intelligent agent that learns the optimal
resource allocation strategy via a large number of trial and
error interactions. In this paper, we address a deep rein-
forcement learning based computational resource allocation
policy for a URLLC edge computing network with multiple
users. To the best of our knowledge, this paper is the first
to investigate the feasibility of deep reinforcement learning
methods (particularly deep Q-learning) in a MEC environment
within FBL regime.

The remainder of this paper is structured as follows. In
Section II, the MEC system model including the channel
model, FBL regime and computation model is presented. In
Section III, the deep reinforcement learning based approach is
described along with the formalization of the Markov decision
process and the algorithm of the deep Q-learning. The per-
formance of the proposed deep reinforcement learning based
scheme in the MEC system is then numerically evaluated in
Section IV and finally the conclusions are drawn in Section V.

II. SYSTEM MODEL

We consider a edge computing network with one MEC
node, N mobile users and N corresponding control terminals,
as depicted Fig. 1. The MEC node is available with C total
CPU cores for processing the offloaded tasks. The operating
time of the edge computing system is slotted and each time
slot is considered as one frame with the length of Tf symbols.
One symbol time is denoted by ts (in seconds). The index of
the frames are denoted by k with k ∈ K = {0, 1, 2, ...}. Each
frame contains three phases. In the first phase the user Un
offloads a data packet via uplink (UL) with size D(k)

UL,n (in
bits), length m

(k)
UL,n (in symbols) and the probability P

(k)
n .

The probability P (k)
n following the principle of the discrete-

time On/Off Markov arrival model [8] represents the data
arrival level of the user Un in time slot k. The offloaded data
from user n will wait in the corresponding buffer n, where
the queues in the buffers are first-in-first-out (FIFO) queues.
Subsequently, in the second phase the MEC node allocates
the computational resources (CPU cores) for offloaded data.
The MEC node also has the choice to allocate none of the
resources for the processing of the offloaded data and let it
wait for next allocation time in case of a poor channel quality
in the corresponding downlink. Nevertheless, the offloaded
tasks require an E2E delay limit dr, where for simplicity we
assume dr = αTf with a positive integer coefficient α. If
the task waits so long that the delay limit is violated, the
task is considered as timed out and is dropped from the
buffer. Note that this waiting operation makes the problem
intractable to be solved using analytic optimization methods
or traditional heuristic methods. Finally, in the last phase, the

Users TerminalsMEC node

CPU Cores

Buffer 1

Buffer 2

Buffer N

Frame length 

Uplink Processing Downlink

BlocklengthBlocklength

Figure 1. The studied multi-user edge computing system, including N
mobile users, N corresponding control terminals and one MEC node with
N data buffers and C total CPU cores. Upper-index k is the time slot index.

processed data for user Un with size D(k)
DL,n (in bits) and length

m
(k)
DL,n (in symbols) is transmitted from the MEC node to

the corresponding control terminal Tn through the downlink
channels. We assume that the data size for one task in the
uplink and downlink have a linear relation, i.e., DDL = βDUL,
where β is a coefficient. Please note that in one frame, uplink
and downlink transmissions with data sizes D(k)

UL,n and D(k)
DL,n

could belong to different tasks since the tasks can potentially
wait in the buffers for several frames.

A. Channel model
We assume that the channels experience time-varying cor-

related Rayleigh fading and follow a quasi-stationary and
frequency flat-fading model. Hence, the channel state in one
frequency band is assumed to stay constant in one frame and
vary with a certain correlation across frames. Nevertheless,
the channel states in different frequency bands (for different
users in uplink and downlink) are assumed to be independent.
Under the considered channel model we denote the signal-
to-noise rations (SNR) of the downlink n in frame k by
η
(k)
DL,n = η̄DL,n|h(k)DL,n|2, where η̄DL,n is the average SNR of

the downlink n and h(k)DL,n is the channel fading coefficient of
the downlink n in frame k. Note that the channel coefficients
are correlated in neighbouring frames. We adopt the Jakes
model for the correlation [9]:

h
(k)
DL,n = ρDL,nh

(k−1)
DL,n +

√
1− ρ2DL,nĥ

(k)
DL,n, (1)

where ρDL,n is the channel correlation coefficient of downlink
n and ĥ

(k)
DL,n ∼ CN (0, 1) is a complex Gaussian random

variable with zero mean and unit variance. Instantaneous
channel state information (CSI) is assumed to be available at
the MEC node. The reinforcement learning agent is expected
to learn the correlation property of the channel and be able
to predict the channel quality in the near future and take
advantage of this to optimize the real-time policy.

B. Finite blocklength codes
In the FBL regime, the decoding error probability must be

considered. In our edge computing system we assume that
the offloaded data in the MEC node can be decoded correctly
and we address the reliability in the downlink channels. The



3

coding rate of downlink in frame k for terminal Tn with
blocklength m

(k)
DL,n, SNR η

(k)
DL,n and error probability ε

(k)
DL,n

is shown to have the following approximation [5]:

D
(k)
DL,n

m
(k)
DL,n

≈ log2(1 + η
(k)
DL,n)−

√√√√V (η
(k)
DL,n)

m
(k)
DL,n

Q−1(ε
(k)
DL,n), (2)

where V (η) = η(η+2)
(η+1)2 log22e and Q(x) =

∫∞
x

1√
2π
e−t

2/2dt. In
order to address the communication reliability, we character-
ize the impact of the data size, blocklength and SNR on the
error probability. From (2), the error probability ε

(k)
DL,n with

packet size D(k)
DL,n, SNR η

(k)
DL,n and blocklength m(k)

DL,n is given
by

ε
(k)
DL,n = Q

 log2(1 + η
(k)
DL,n)−D(k)

DL,n/m
(k)
DL,n

log2e
√

(1− (1 + η
(k)
DL,n)2)/m

(k)
DL,n

 . (3)

C. Computation model in the MEC node

The processing time (in symbols) in MEC node for an
offloaded task with data size DUL is given by:

mC =

⌈
DULL

cf0ts

⌉
, (4)

where L denotes the application-dependent required CPU cy-
cles per bit for computation [10], c is the number of allocated
CPU cores for the task, f0 is the CPU-cycle frequency of a
single CPU core and the operation d·e is the ceiling function.
We assume that f0 is fixed for all CPU cores in our edge
computing system. Note that in (4) we convert the computing
time in seconds to the time in symbols by considering the
time duration of a single symbol ts and applying the ceiling
function to make sure mC is an integer.

Once the computation is completed, the data would be
sent to the corresponding terminal. Since the frames are
synchronized the transmission of the data in the downlink
channels must be able to finish within the current frame.
With this frame limitation, in order to minimize the error
probability, the coding blocklength in downlink transmission
is chosen as

m
(k)
DL,n := Tf −m(k)

C,n −m
(k)
UL,n. (5)

Note that the MEC node should avoid the situation in which
the value of m

(k)
DL,n is negative for given m

(k)
C,n after the

calculation according to (5).

III. DEEP REINFORCEMENT LEARNING BASED
RESOURCE ALLOCATION POLICY

We consider that an agent in the MEC node interacts with
the edge computing environment E1. In each time slot the
agent observes the environment and gets the following input
from the environment x(k) = {D(k),W(k),q(k),η(k)}. The
components of the input are described in detail below:

• D(k) =
[
D

(k)
UL,1, D

(k)
UL,2, . . . , D

(k)
UL,N

]
: a vector of length

N containing the data size of the tasks to be processed
at the head of buffers.

1Please note that this E is different from ε which represents the error
probability in this work.

• W(k) =
[
W

(k)
1 ,W

(k)
2 , . . . ,W

(k)
N

]
: a vector of length N

containing the waiting time of the tasks to be processed
at the head of buffers.

• q(k) =
[
q
(k)
1 , q

(k)
2 , . . . , q

(k)
N

]
: a vector of length N

containing the queue length of the buffers.
• η(k) =

[
η
(k)
DL,1, η

(k)
DL,2, . . . , η

(k)
DL,N

]
: a vector of length N

containing the SNRs in downlinks.
Since the waiting operations of offloaded tasks have

strong impact on the E2E delay and the channels are cor-
related across neighboring frames, we consider the infor-
mation with W historical slots as the current state, i.e.,
s(k) = (x(k−W ), x(k−W+1), . . . , x(k)). For the given state
s(k), the agent takes an action a(k) through the policy π, i.e.,
a(k) = π(s(k)), and the system’s operation is described by
the sequence s(1), a(1), s(2), . . . , a(k−1), s(k), which formalize
a Markov decision process.

A. Action, Reward and Punishment

In each time slot the agent chooses an action a(k) from the
action space A, which allocates all CPU cores to the offloaded
tasks waiting at the head of each buffer. If a task is allocated
with zero CPU core, it would wait for the next allocation.

After applying an action, the agent receives a reward or
punishment from the environment. Note that an effective
setting of the reward and punishment is important for the
learning algorithm to achieve the desired goal. In this work the
rules for an effective setting of the reward and punishment fol-
low by experience and multitude of attempts. In each time slot
if a processed and transmitted task meets the requirements on
the error probability and delay limit, the task is considered to
be a successfully completed task and the agent gets a reward
of +1. However, if the task does not meet the requirement
on the error probability, i.e., the actual error probability is
larger than the required value, the task is considered as an
unsuccessful task and the agent gets a reward of −1. In the
worst case that the task waits too long that the delay limit
is violated and it has to be dropped off buffer, the task is
considered as timed out and the agent gets a punishment of
−1.5.

B. Reinforcement learning for MDP

After each interaction with the environment in time slot k,
the agent receives a reward r(k) and the goal is to maximize
the total future discounted reward R(k):

R(k) = r(k) + γr(k+1) + γ2r(k+2) + · · ·+ γ(K−k)r(K) (6)

= r(k) + γR(k+1), (7)

where γ is the discount factor taking values between 0 and 1
and K is the end point of the process2.

We define the Q-function Q(s(k), a(k)) which represents
the quality of a certain action a(k) in a given state s(k).
The optimal Q-function should return the maximum expected
achievable reward by following a policy π after receiv-
ing the state s and taking the action a, i.e., Q?(s, a) =
maxπE[R(k)|s(k) = s, a(k) = a, π], which can be obtained

2K could be infinity in the case without an end point.



4

∇θiLi(θi) = E
[(
r(k) + γ max

a(k+1)
Q
(
s(k+1), a(k+1); θi−1

)
−Q

(
s(k), a(k); θi

))
∇θiQ

(
s(k), a(k); θi

)]
(11)

as the solution of the Bellman equation [11]:

Q?(s(k), a(k))

= Es(k+1)

[
r(k) + γ max

a(k+1)
Q?(s(k+1), a(k+1))

∣∣∣∣s(k), a(k)] .
(8)

By using the Bellman equation as an iterative update, the Q-
function is estimated as:

Q(k+1)(s(k), a(k))

= Es(k+1)

[
r(k) + γ max

a(k+1)
Q(k)(s(k+1), a(k+1))

∣∣∣∣s(k), a(k)] .
(9)

This value iteration algorithm is guaranteed to converge to
the optimal point with Q(k) → Q? as k →∞ [12]. However,
it would take immeasurably long time for the traditional Q-
learning with a Q-table to converge especially in the contin-
uous state space. Therefore, it is common to use a neural
network as a non-linear function approximation to estimate
the Q-function, where the input and the output of the neural
network is the state vector and the Q-value of each possible
action.

C. Deep Q-learning
We define Q(s(k), a(k); θ) as the approximated Q-function,

i.e., Q(s(k), a(k); θ) ≈ Q?(s(k), a(k)), with the weight param-
eters θ of a neural network referred to as the Q-network [13].
The Q-network updates its parameters θi by minimizing a
sequence of loss functions Li(θi) at iteration i:

Li(θi) = E
[(
yi −Q(s(k), a(k); θi)

)2]
, (10)

where yi=E[r(k)+γmaxa(k+1)Q(s(k+1), a(k+1); θi−1)|s(k), a(k)]
is the target for the iteration i. Note that the parameters of
the Q-network from the previous update θi−1 are held fixed
when optimizing the loss function Li(θi).

Differentiating the loss function with respect to the weight
parameters θi results in the gradient shown in (11). Using the
Stochastic Gradient Descent (SGD) method, the parameters
of the Q-network is updated iteratively. It is known that
using a non-linear function approximator for the Q function
may result in an unstable learning process. Therefore we
apply a mechanism to improve the performance, namely the
experience replay mechanism [13], [14]. It is able to break the
similarity of subsequent training samples which might drive
the network into a local minimum. Specifically we store the
transition at each time slot e(k) = (s(k), a(k), r(k), s(k+1)) in a
memory pool D = {e(1), . . . , e(k)}. At each training process a
minibatch is sampled randomly from the memory pool and a
SGD update is performed over it. Since the proposed deep
Q-learning algorithm is an off-policy algorithm for which
adequate exploration is necessary, we apply the widely used
ε-greedy exploration strategy in which the agent chooses a
random action with a probability ε and otherwise chooses
the current optimal action with the highest Q-value. The full
algorithm is shown in Algorithm 1.

Algorithm 1 Deep Q-learning based resource allocation
scheme

1: Initialize the replay memory D to capacity M
2: Initialize Q-network with random weights
3: for k = 1, 2, 3, . . . do
4: Observe current system state s(k)
5: Select random action a(k) with probability ε
6: Otherwise select a(k) = argmaxaQ(s(k), a(k); θ)
7: Execute a(k) and observe r(k) and s(k+1)

8: Store transition (s(k), a(k), r(k), s(k+1)) in D
9: Sample random minibatch of transitions

(s(j), a(j), r(j), s(j+1)) from D
10: Set y(j) = r(j) + γ max

a(j+1)
Q(s(j+1), a(j+1); θ)

11: Perform a SGD update on θ according to (11)
12: end for

IV. SIMULATION RESULTS

In the simulation, we study a simple 2-user-scenario with
an MEC node equipped with a 3-core-CPU where the CPU-
cycle frequency of each core f0 is 3×109 cycles per second.
The frame length Tf is 600 symbols where the time of one
symbol ts is 4.5µs. The blocklength of uplinks m(k)

UL,n are
all assumed to be equal to 200 symbols. The packet size in
uplinks D(k)

UL,n is chosen from the set {500, 1000, 1500, 2000}
and the coefficient β is 0.5. The required CPU cycles per
bit L is 2640. The average SNR of downlink channels η̄DL
is 25dB and the channel correlation coefficient ρDL is 0.7.
The E2E delay limit dr = αTf is with α = 3. The required
decoding error probability ε?DL is 10−4. The parameters of the
reinforcement learning algorithm are as follows: the number
of historical time slots W is 3, ε is set to vary from 1 to 0.1
with a decay rate of 0.999, the discount factor γ is 0.95. The
values of all parameters are listed in Table I.

We evaluate the proposed deep reinforcement learning
based algorithm by considering the success ratio in downlink
under different task arrival levels. The successful tasks must
not violate the E2E delay limit and meet the required decoding
error probability. We compare the proposed deep Q-learning
algorithm with two benchmarks: equal and random allocation
strategy. The equal allocation strategy always allocates the
total CPU cores to all current tasks equally. If the number of
CPU cores is not divisible by the task number, the tasks with
comparatively worse channel quality receive the remainder
of the CPU cores. We node that under the equal allocation
strategy the tasks would not wait at the buffers. On the other
hand, the random allocation strategy takes a random allocation
action from the action space A in each time slot. In this case
the tasks have the possibility to wait at the buffers.

In Fig. 2, the learning curve of the proposed Q-network
with the task arrival probability of 0.4 is depicted. The Q-
network is tested under 100000 frames after each episode
where one episode contains 500 frames. Note that during the
testing the algorithm runs without exploration, i.e., ε = 0.
It is observed that at the beginning of learning process the
performance is in general worse than the benchmark of the
random strategy and significant fluctuations are exhibited.



5

Table I. SIMULATION PARAMETERS

Parameter Value Parameter Value
ts 4.5µs γ 0.95
Tf 600 symbols ε 1 to 0.1
mUL 200 symbols W 3
L 2640 cycles/bit ρDL 0.7
f0 3 × 109 cycles/s ε?DL 10−4

η̄DL 25 dB α 3
D

(k)
UL,n {0.5,1,1.5,2}·103 bit β 0.5

0 20 40 60 80 100
Episode

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

 ta
sk

 su
cc

es
s a

nd
 d

ro
p 

ra
tio

Q-network success
Q-network drop
Equal success
Random success
Random drop

Figure 2. Dynamic performance of the proposed Deep Q-learning algorithm
with task arrival probability of 0.4 over the episodes, where each episode
contains 500 time slots. The benchmarks of the equal and random allocation
strategy are shown for the evaluation.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Task arrival probability

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
ve

ra
ge

 ta
sk

 su
cc

es
s r

at
io

Q-network
Equal
Random

Figure 3. Average task success ratio of the proposed Deep Q-learning algo-
rithm over different task arrival probability compared with the benchmarks
of the equal and random allocation strategy.

This is because that the learning in this period is mainly based
on the random exploration with a large ε. After roughly 40
episodes the performance of the proposed algorithm exceeds
the benchmark of the random strategy, and after roughly 60
episodes it outperforms the benchmark of the equal strategy.
Finally the algorithm converges to an optimum after almost
100 episodes.

In Fig. 3, the resulting average task success ratio under
different task arrival level is depicted. It is observed that
the proposed algorithm provides an outstanding performance
over a wide range of the task arrival levels. Under low task

arrival levels the average task success ratio of the proposed
algorithm is around 0.99. While the performances of the
equal and random strategies decrease linearly and exponen-
tially respectively, with the increasing task arrival probability,
the performance of the proposed algorithm diminishes only
slightly and is kept larger than 0.95 for almost all levels. This
result shows benefits from the smart waiting decisions for the
tasks to avoid the bad channel qualities.

V. CONCLUSION

In this paper, we have developed a deep reinforcement
learning based intelligent agent for computational resource
allocation in mobile edge computing networks with multiple
users aiming to support the demands of URLLC. The Q-
network based agent directly takes the current state as the
input and learns the best strategy through interactions with the
environment without requiring the knowledge of the system
model. The simulation results show that the proposed deep Q-
learning algorithm converges to an optimum and outperforms
the equal and random scheduling benchmarks under a wide
range of task arrival levels.

REFERENCES

[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and
its role in the internet of things,” in Proceedings of the first edition of
the MCC workshop on Mobile cloud computing, pp. 13–16, 2012.

[2] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge
computing: A survey,” IEEE Internet of Things Journal, vol. 5, no. 1,
pp. 450–465, 2018.

[3] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang,
“A survey on the edge computing for the internet of things,” IEEE
Access, vol. 6, pp. 6900–6919, 2018.

[4] Y. Hu, M. C. Gursoy, and A. Schmeink, “Relaying-enabled ultra-
reliable low-latency communications in 5G,” IEEE Network, vol. 32,
no. 2, pp. 62–68, 2018.

[5] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel coding rate in the
finite blocklength regime,” IEEE Transactions on Information Theory,
vol. 56, no. 5, pp. 2307–2359, 2010.

[6] C. Liu, M. Bennis, and H. V. Poor, “Latency and reliability-aware
task offloading and resource allocation for mobile edge computing,”
arXiv preprint arXiv:1710.00590, 2017.

[7] Y. Mao, J. Zhang, S. Song, and K. B. Letaief, “Power-delay trade-
off in multi-user mobile-edge computing systems,” in IEEE Global
Communications Conference, pp. 1–6, 2016.

[8] M. Ozmen and M. C. Gursoy, “Wireless throughput and energy
efficiency with random arrivals and statistical queuing constraints,”
IEEE Transactions on Information Theory, vol. 62, no. 3, pp. 1375–
1395, 2016.

[9] Y. Hu, A. Schmeink, and J. Gross, “Optimal scheduling of reliability-
constrained relaying system under outdated CSI in the finite block-
length regime,” IEEE Transactions on Vehicular Technology, 2018.

[10] J. Kwak, Y. Kim, J. Lee, and S. Chong, “DREAM: Dynamic resource
and task allocation for energy minimization in mobile cloud systems,”
IEEE Journal on Selected Areas in Communications, vol. 33, no. 12,
pp. 2510–2523, 2015.

[11] M. L. Puterman, Markov decision processes: discrete stochastic dy-
namic programming, 2014.

[12] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction,
vol. 1, no. 1, 1998.

[13] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” arXiv preprint arXiv:1312.5602, 2013.

[14] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.


