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Abstract—In this paper we consider the problem of multi-
target localization using sensor networks, where the received
signal strength of targets are measured at sensor nodes and are
processed at a fusion node to estimate the location as well as
the transmit power of all targets. As we do not consider any
kind of division multiplexing, e.g., TDMA or FDMA, targets
cause each other co-channel interference. This is a very hard
problem, especially because the transmit power of targets can be
different. The classical methods in which the power of a single
target cancels out by dividing the received power at different
sensors, do not apply to our problem, as the received power of
each sensor is the superposition of more than one term, each of
which corresponding to one target. We tackle the problem by a
grid based approach, i.e., discretizing the area, and proposing
an adaptive scheme to refine the position of grid points. The
proposed algorithms are based on mixed integer optimization
approach.

Index Terms—multi-source localization, compressed sensing,
mixed-integer programming, internet of things

I. INTRODUCTION

It is envisaged that the majority of applications in the
context of internet of things and 5G mobile networks depend
on the location awareness to deliver better services. That is
why the research topic of localization, in spite of being a
quit old topic, is not yet outdated. In the literature a variety
of techniques have been exploited to solve the problem of
localization. Among all those techniques we here pick the one
based on received signal strength (RSS) of the receiving nodes
for its simplicity and lower cost of implementation compared
to techniques such as time difference of arrival (TDOA) or
angle of arrival (AoA), [1]. Despite its vulnerability against
uncertainties of path-loss model, RSS-based localization is still
popular in the applications where precision can be compro-
mised on for price.

The RSS-based localization for a single target with unknown
transmit power is studied in many publications, such as [2],
where the transmit power cancels out by dividing the RSS
of two different receivers. The remaining of the problem is a
standard multilateration problem. This technique is known as
differential or ratio of RSS which is not applicable in our case,
since we consider that there are more then one transmitter
on the same channel which causes co-channel interference
problem.

The work [3] also considers a multi-target scenario, but it
does not assume co-channel interference since each receiver
knows the RSS corresponding to each transmitter, separately.
To the best of our knowledge, the only paper which considers

the multi-user case with co-channel interference is [4]. The
authors, nevertheless, do not exploit the explicit path-loss
model but perform fingerprinting, instead. On the one hand,
fingerprinting avoids the model uncertainty of the path-loss
model. It, on the other hand, involves the difficulty of building
the radio maps which can be costly and time consuming. The
built radio map can also be different in reality, when moving
humans or objects effect the propagation profile of the environ-
ment. The authors exploit the techniques of `1-minimization
which needs a sufficiently enough number of observations.
This translates into a radio map with high granularity. To
surmount this problem, they use not only the RSS but also
cross-correlation of the received signal at different sensors.
This improves performance, but at the cost of more expensive
sensors as well as higher power consumption. Please refer to
Remark 1 in Sec. II. We, on the contrary, consider the explicit
attenuation model to skip the radio map creation. We intend
to deal with the problem of uncertainty associated with our
knowledge path-loss exponent and large-scale shadowing in
our future publications. We also resort to grid based solution
to keep the number of sensor nodes (SNs) low and deploy
techniques of mixed integer programming (MIP). Also, to
maintain a low-complexity we keep the number of grid points
(GPs) low and adapt the GPs in an iterative fashion.

The organization of this paper is as follows: the system
model is described in Sec. II. We propose in Sec. III a
mixed integer quadratic programming (MIQP) formulation,
assuming the targets are located exactly at certain GPs. An
adaptive scheme is proposed in Sec. IV to refine the GPs to
overcome the problem of off-grid targets. The performance of
the presented solutions will be justified by means of computer
simulations in Sec. V. The Sec. VI concludes the paper.

Notations: All mathematical notations, symbols and vari-
ables of the system in this paper are summarized in Tab. I.

II. SYSTEM MODEL

The system of consideration is consisted of N ∈ N active
targets which must be localized using K ∈ N passive SNs.
Each target n ∈ FN transmits a signal with the unknown
power pn. We know that that transmit power of each target is
bounded as follows

¯
P ≤ pn ≤ P̄ , ∀n ∈ FN , (1)



Table I: Summary of general mathematical notations

Notation Description
N set of all integer positive and non-zero numbers
R set of all real numbers
R+ set of all non-negative real numbers
FL the index-set FL = {1, · · · , L} for any L∈ N
|G| the cardinality of set G

δlm

Kronecker delta function, i.e.,

δlm =

{
1 , l = m,

0 , l 6= m.

where
¯
P, P̄ ∈ R+ are, respectively, the lowest and highest

possible values for the transmit power of an active target.
We choose our channel model, based on the log-normal

shadowing attenuation model presented in [5]. In a multi-
source scenario, the RSS rk at sensor k is the sum of different
terms corresponding to the received power of each target
signal, as follows

rk =
∑
n∈FN

c0 pn d
−α
kn 10

ζkn
10 .

where dkn is the distance between sensor k and nth target, α is
the path-loss exponent and ζkn ∼ N (0, σ2

kn) is a zero-mean
Gaussian random variable with power of σ2

kn. This random
variable corresponds to log-normal shadowing between each
pair of sensor and target nodes and is assumed to be identically
and independently distributed (iid). Also, c0 is given by [5],

c0 :=
GtGrλ

2

(4π)
2 ,

where Gt, Gr and λ are the gains of transmit and receive
antennae. The wavelength is denoted by λ. We assume that
c0 is known and without loss of generality and for the sake
of simplicity, c0 = 1. Here, we have neglected the thermal
additive noise due to the fact that shadowing has much stronger
effect on RSS compared to the thermal noise [6].

Remark 1. The system of consideration is suitable for practi-
cal applications in the sense that SNs do not need to be costly
and also do not need to be sophisticated, because:
• SNs can calculate the RSS via simple arithmetic opera-

tions without having huge storage capacity, e.g., using a
shift register.

• The communication overhead between SNs and fusion
center (FC) is minimal, since SNs relay only their RSS
readings once within a certain time interval, instead of
transmitting the whole signal samples. This keeps the
communication overhead between the SNs and FC very
low which in turn

1) reduces the SNs power consumption. Note, trans-
mitting an RF signal demands much more power
consumption compared to simple arithmetic opera-
tion for calculating RSS.

2) makes it possible to protect the few bits, conveying
RSS reading, by long error correction codes. This

y

xw0−w0

w0

−w0

Figure 1. A wireless sensor network consisting of K = 10
passive sensors ( ) and N = 2 targets ( ) . The grid
granularity is G =

√
M = 5, which means the area of interest

is divided to (
√
M − 1)2 = 16 smaller squares. This leads to

M = 25 GPs, around which we look for the targets. The size
of each grid square is ∆g = w0

2 .

results in reliable communication even in moder-
ately low signal-to-noise ratio (SNR) between SNs
and FC.

These two aforementioned facts, makes the current sce-
nario more suitable than the one in [4], under the con-
ditions that power consumption and reliable communica-
tion between SNs and FC are limiting factors. Though, we
unlike [4] lose the valuable potential information lying in
the cross-correlation between received signals at different
sensors.

• Unlike TDOA methods our sensor network does not need
a very accurate synchronization.

• As a results such sensor network is of interest for battery-
critical and budget-limited applications where the accu-
racy can be somewhat compromised.

The area of observation is assumed to be an square in the
range of [−w0, w0], w0 ∈ R+ in both x- and y- axes, in
the Cartesian coordinate system. The targets and sensors are
randomly distributed within the area. The ordered pair (x̌k, y̌k)
stands for the coordinate of kth sensor node, while target n is
located at the unknown position (xn, yn). Assuming that FC
acquires the value of RSS rk of the kth sensor error-freely
upon successful communication from SN, it has to solve the
following system of nonlinear and non-convex equation to find
the position (xn, yn) of each target:

rk =
∑
n∈FN

pn 10
ζkn
10(√

(xn − x̌k)2 + (yn − y̌k)2
)α . (2)

Unfortunately, such a system of equation is not tractable. Thus,



we resort to solve it sub-optimally by means of MIQP. We,
then, discretize the area by a grid of granularity of

√
M ∈ N

which means M GPs in total. Let GwM (x0, y0) define the grid
set centered at the point (x0, y0) of width 2w ∈ R+ and M
members. Indeed, it is the set of the equidistant GPs defined
by

GwM (x0, y0) :=

{(x0 − w + (i− 1)∆g, y0 − w + (j − 1)∆g) | i, j ∈ FG} ,
(3)

where G =
√
M and ∆g = 2w√

M−1
is the width of one grid

square. Then, our defined grid consists of the GPs (x̃m, ỹm) ∈
Gw0

M (0, 0), m ∈ FM . Fig. 1 depicts an example grid given by
Gw0

25 (0, 0).

III. MIQP

The distance d̃km between sensor k ∈ FK and the GP m ∈
FM can be calculated using

d̃km =
√

(x̃m − x̌k)2 + (ỹm − y̌k)2 , (4)

which in the absence of shadowing constitutes the following
RSS at the sensor node k:

r̃k =
∑
m∈FM

p̃md̃
−α
km . (5)

The variable p̃m is equal to zero when no target is located at
the vicinity of the GP m. It must be, otherwise, equal to the
transmit power of the target whose closest GP is (x̃m, ỹm). In
case of no shadowing, i.e., σkn = 0 and when

• the targets are exactly at GP, i.e., for each n ∈ FN
there exists exactly one m ∈ FM such that (xn, yn) =
(x̃m, ỹm),

p̃m can be chosen such that rk = r̃k. The first assumption is
not realistic, when the targets are randomly distributed in the
monitoring area. We, nevertheless, try to solve the following
MIQP assuming the targets are exactly at the GPs. We deal
with the problem of off-grid targets later in Sec. IV. We also
assume that σkn → 0. Later, we evaluate how the localization
performance degrades in higher values of σkn, by means of
computer simulations. Now, we aim at minimizing the mean
square error (MSE)

∑
k∈FK

(rk − r̃k)
2

=
∑
k∈FK

(
rk −

∑
m∈FM

p̃md̃
−α
km

)2

, (6)

where d̃km can be pre-calculated by (4), rk is the RSS reading
at kth sensor and p̃m is the optimization variable. We propose

the following optimization problem for joint estimation of the
location and transmit power of each target:

min
sm,p̃m
m∈FM

∑
k∈FK

(
rk −

∑
m∈FM

p̃md̃
−α
km

)2

(7a)

s.t. p̃m ∈ R+ , ∀m ∈ FM , (7b)
sm

¯
P ≤ p̃m ≤ sm P̄ , ∀m ∈ FM , (7c)

sm ∈ {0, 1} , ∀m ∈ FM , (7d)∑
m∈FM

sm = N . (7e)

While the constraint (7b) together with (7c) relate to the fact
that we know the upper and lower bound on transmit power,
i.e., eq. (1), of active targets, the constraints (7d) and (7e)
guarantee that exactly N GPs are chosen as the candidate
position of the N targets.

Despite the quadratic and convex form of the objective
function (7a), the optimization problem is non-convex as it
involves the binary variables sm. On the other hand, it also has
continuous variables p̃m and, therefore, belongs to the family
of MIQP. Such problems have a combinatorial nature and are,
hence, NP-hard [7], [8]. So, the number of GPs is a serious
challenge in terms of complexity. Consequently, many papers
in the literature tackle such problems by means of compressed
sensing, e.g., [3], [4], [9], which relaxes the norm zero to norm
one. This though necessitates more number of observations,
i.e., number of sensor nodes in our case, compared to the
combinatorial solution. Subsequently, we rather stick to the
MIQP as increasing the number of sensors increases the
overhead of the communication to the FC, hardware costs as
well as power consumption and in total implementation cost.
Instead, we deal with the problem of complexity by choosing
low number of GPs, M , and proposing a heuristic instead.

IV. ADAPTIVE GRID REFINEMENT

In case the targets are at off-grid positions the complexity
of the optimization (7) does not allow us to increase the
number of GPs M . Therefore, the induced inaccuracy makes
our approach useless, unless we devise an smart solution to
the problem. Our solution to this complication is to adapt the
GPs in an iterative manner by defining additional variables
which allow for displacement w.r.t to GPs. These new variables
are then used to update the GP in the next iteration. We first
derive the first order Taylor’s series expansion of the function
fk(p̃1, · · · , p̃M , x̃1, · · · , x̃M , ỹ1, · · · , ỹM ) or fk in short form

fk := rk −
∑
m∈FM

p̃m(√
(x̃m − x̌k)2 + (ỹm − y̌k)2

)α (8)



Let us first calculate the derivatives of function fk, i.e.,

∂fk
∂x̃m

=
α p̃m(x̃m − x̌k)(√

(x̃m − x̌k)2 + (ỹm − y̌k)2
)α+2 , (9)

∂fk
∂ỹm

=
α p̃m(x̃m − x̌k)(√

(x̃m − x̌k)2 + (ỹm − y̌k)2
)α+2 , (10)

∂fk
∂p̃m

=
−1(√

(x̃m − x̌k)2 + (ỹm − y̌k)2
)α . (11)

Also, let ai−1
km , bi−1

km and ci−1
km represent the values of

derivative ∂fk w.r.t, respectively, x̃m, ỹm and p̃m at the
point (p̃i−1

1 , · · · , p̃i−1
M , x̃i−1

1 , · · · , x̃i−1
M , ỹi−1

1 , · · · , ỹi−1
M ), thus

the Taylor’s expansion of fk at ith iteration reads

fk(p̃1, · · · , p̃M , x̃1, · · · , x̃M , ỹ1, · · · , ỹM ) ≈

f i−1
k +

∑
m∈FM

ai−1
km dx̃m + bi−1

km dỹm + ci−1
km dp̃m , (12)

f i−1
k =: fk(p̃i−1

1 , · · · , p̃i−1
M , x̃i−1

1 , · · · , x̃i−1
M , ỹi−1

1 , · · · , ỹi−1
M ) ,

(13)

dx̃m =: x̃m − x̃i−1
m , (14)

dỹm =: ỹm − ỹi−1
m , (15)

dp̃m =: p̃m − p̃i−1
m . (16)

The GPs at iteration i− 1 are updated by

x̃im = x̃i−1
m + dx̃m , (17a)

ỹim = ỹi−1
m + dỹm . (17b)

Then, at ith iteration, given the values of x̃i−1
m , ỹi−1

m and p̃i−1
m ,

we solve the following optimization problem, instead of (7)

min
sm, dx̃m,
dỹm, dp̃m
m∈FM

∑
k∈FK

(f i−1
k +

∑
m∈FM

ai−1
km dx̃m + bi−1

km dỹm + ci−1
km dp̃m)2

(18a)
s.t. dx̃m, dỹm, dp̃m ∈ R , (18b)

sm
¯
P − pi−1

m ≤ dp̃m ≤ sm P̄ − pi−1
m , (18c)

− sm (w + xi−1
m ) ≤ dx̃m ≤ sm (w − xi−1

m ) , (18d)

− sm (w + yi−1
m ) ≤ dỹm ≤ sm (w − yi−1

m ) , (18e)
− sm δi ≤ dx̃m ≤ sm δi , (18f)
− sm δi ≤ dỹm ≤ sm δi , (18g)
sm ∈ {0, 1} , (18h)∑
m∈FM

sm = N . (18i)

The constraint (18c) guarantees that transmit power stays in
the admissible range of [

¯
P, P̄ ], while the constraints (18d) and

(18e) assure that the update points x̃im and ỹim stay in the range
of [−w,w], i.e., in the observation area. On the other hand,
the constraints (18f) and (18g) allow the update points xim
and yim be anywhere within the grid square whose width at
ith iteration is the given value δi.

The main advantage of optimization problem (18) over (7)
is that the variables dx̃m and dỹm enable us to look for targets

at off-grid coordinate values. Even though, (18) is yet of the
class of MIQP, but choosing a low number of GPs, i.e., M ,
and repeating it in an iterative manner leads to a reduced
complexity.

The proposed iterative solution of ours is summarized in
the Alg. 1. The locations of the targets along with the values
of their transmit power are represented by the sets X and
P , respectively. In the proposed algorithm, at each iteration
a grid set of size of M0,

√
M0 ∈ N is formed around each

newly found point corresponding to one target. Indeed, in
each iteration the grid is updated via (19) in an adaptive
fashion. The number of GPs increases to NM0 from iteration
i = 2, which increases the complexity. Therefore, we propose
a second algorithms in which the number of GPs is always
M0. The performance of both algorithms will be compared
via simulations in Sec. V.

Algorithm 1 Adaptive grid refinement for joint estimate of
the transmit power and the location of multiple targets

initialization:
• set the number of GPs M0,

√
M0 ∈ N

• set the area size w0 ∈ R+

• define the set G := Gw0

M0
(0, 0) using (3)

• set the number of iterations I ∈ N
• i← 1

while i ≤ I do
M ← |G|
wi ← w0

2
δi ← wi√

M−1

let (x̃i−1
m , ỹi−1

m ) ∈ G, ∀m ∈ FM
pi−1
m ← 1

2 (
¯
P + P̄ ) ,∀m ∈ FM

find optimal values of sm, dx̃m, dỹm, dp̃m using (18)
calculate the values of x̃im and ỹim using (17)
update the grid set

G ←
⋃

m∈FM |sm=1

GwiM0
(x̃im, ỹ

i
m) (19)

i← i+ 1
end while
X :=

{
(x̃Im, ỹ

I
m)
∣∣ sm = 1, ∀m ∈ FM

}
P :=

{
pI−1
m + dp̃m

∣∣ sm = 1, ∀m ∈ FM
}

return X and P

In Alg. 2 the total number of GPs is always M0 and at
each iteration GPs get updated according to (17). The reason
that Alg. 1 outperforms the Alg. 2 is that it has more GPs.
Consequently, its best GPs, compared to those of Alg. 2, are
more likely to be closer to the real position of targets. This,
in turns, means the Taylor series expansion is more accurate
around the optimal points at each iteration, i.e., the optimal
values of dx̃im and dỹim are smaller, in general, compared to
the second algorithm.

A. Complexity Analysis
In each possible combination of the combinatorial problem

(18), only N out of M binary variables sm are non-zero So,



Algorithm 2 Joint estimate of the transmit power and location
of multiple targets

initialization:
• set the number of GPs M0,

√
M0 ∈ N

• M ←M0

• set the area size w0 ∈ R+

• define the set G := Gw0

M0
(0, 0), using (3)

• let (x̃0
m, ỹ

0
m) ∈ G, ∀m ∈ FM

• set the number of iterations I ∈ N
• i← 1

while i ≤ I do
δi ← w0√

M−1

pi−1
m ← 1

2 (
¯
P + P̄ ) ,∀m ∈ FM

find optimal values of sm, dx̃m, dỹm, dp̃m using (18)
calculate the values of x̃im and ỹim using (17)
i← i+ 1

end while
X :=

{
(x̃Im, ỹ

I
m)
∣∣ sm = 1, ∀m ∈ FM

}
P :=

{
pI−1
m + dp̃m

∣∣ sm = 1, ∀m ∈ FM
}

return X and P

in the worst case for each possible combination a quadratic
programming (QP) must be solved. The total number of
possibilities is M !

N !(M−N)! ∝ eN ln(MN ). For each combination
Alg. 1 and Alg. 2 solve a QP which has a complexity of
O(n3), where n is the number of variables, [10]. In our case
n = 3N , because of variables dx̃m, dỹm and dp̃m. Since the
total number of iterations is I , the overall complexity of Alg.
1 and Alg. 2 are, respectively, O(IMN

0 ) and O(I
MN

0

NN
). We

see that the complexity of Alg. 2 is reduced by an order of
NN in comparison with Alg. 1.

Also, assume for a given N instead of using Alg. 2, we
increase the granularity of the original MIQP (7) by an order of
I , i.e., the same as number of iterations in Alg. 2. This means
increasing number of GPs from M0 to M0I , then complexity
will be O(IN

MN
0

NN
). Now, we see that Alg. 2 has a complexity

reduction of order IN−1. Besides, increasing the number of
GPs from e.g., M = 25 to 500, i.e., I = 20, does not provide
us enough granularity for successful localization.

V. SIMULATIONS

To quantify the performance of the proposed algorithm,
we resort to numerical evaluation, since there is no reference
solution as the benchmark. In our simulation setup we have
assumed the parameters given in Tab. II.

In the table J shows the number simulation instances, in
each of which the position and power of targets are the same,
while sensor positions as well as realizations of ζkns are
random. Let δjn :=

(
x̂jn − xn

)2
+
(
ŷjn − yn

)2
be the squared

Table II: Parameters of simulation setup

parameter K N P̄
¯
P I J w0

value 10 2 1 0.5 20 5000 1 Km

Euclidean distance between the estimated position (x̂jn, ŷ
j
n) of

the nth target , at jth instance of the simulation, and its true
location (xn, yn). Then, positioning root mean square error
(PRMSE) in meters is defined by

δavg =

√√√√ 1

J

J∑
j=1

δjavg , δ
j
avg :=

1

N

∑
n∈FN

δjn (20)

as root mean square error (RMSE) of average estimation error
of all targets at jth simulation instance, i.e., δjavg, [4].

We believe this definition of PRMSE is not accurate enough
in case of multiple targets, since it projects the average posi-
tioning error of all targets. In fact, it does not guarantee that
each and every single target is localized with a certain desired
quality. We, additionally, define the worst position estimation
in each simulation instance, i.e., δjmax := maxn∈FN δ

j
n . Let√

δjmax be represented by the random variable ∆. Then, we
define the error function Pd0 of the maximum positioning error

Pd0 := 1− F∆(d0) = Pr (∆ > d0) , (21)

where F∆ is the cumulative distribution function (cdf) of the
error. Indeed, Pd0 stands for the probability that at least one of
the targets is localized with an error of more than d0 meters.
Similar to (20), RMSE of the transmit power reads

ρavg =

√√√√ 1

NJ

J∑
j=1

∑
n∈FN

ρjn , (22)

where ρjn := (pn − p̂jn)2 is the square error of the estimated
power value of nth target at jth realization.

The simulation results for both algorithms are given in Tab.
III and Fig. 2 for different values of M and σ, where σ is an
indicator of how strong shadowing is. We assume σ =: σkn
for all pairs of targets/sensors are equal. The problem (18) can
be optimally solved by branch and bound method, e.g., using
Gurobi [11].

As the figure shows, given M = 25 and in the absence of
shadowing, the probability that the estimation error is more
than 10cm is less than 5% and 23% using Alg. 1 and Alg. 2,
respectively. The main advantage here is faster solution at the
cost of performance loss.

If we agree that the position error of 10m in an area of 2Km
× 2Km is an acceptable threshold, we see that the two algo-
rithms do violate this threshold with probabilities of 17% and
26%, respectively, for G = 5 and σ = 0.01. Of course, when
the shadowing becomes stronger the performance decreases.
This is more or less the result of the fact that RSS-based
localization is prone to path-loss exponent uncerainties [1]. It
does not depend on what we do in Alg. 1 and Alg. 2.

In the table the average execution time T in seconds is
shown. As we clearly see, the complexity of the second
algorithm is much less than the first one. Note, that both
algorithms have been executed on the same computer. Even
though execution time is not a very accurate measure of
complexity, but it roughly shows how the complexity in the
second algorithm is reduced.
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Alg. 1, M=25, σ = 0.03, Alg. 2, M=25, σ = 0.03,
Alg. 2, M=9, σ = 0.03,

Figure 2. The error function Pd0 against values of d0 in
meters, for different values of σ.

Table III: Performance comparison between Alg. 1 & Alg. 2

σ M δavg ρavg T

Alg. 1 0 25 144.72 0.0308 35.6
Alg. 2 0 25 246.48 0.0862 5.9
Alg. 2 0 9 458.54 0.1411 6.5
Alg. 1 0.01 25 137.04 0.0322 48.5
Alg. 2 0.01 25 245.10 0.0873 11.5
Alg. 2 0.01 9 457.93 0.1420 6.2
Alg. 1 0.03 25 149.39 0.0422 50.8
Alg. 2 0.03 25 245.78 0.0881 12.4
Alg. 2 0.03 9 463.65 0.1413 6.6

Also, we see from the table that the RMSE values δavg
(given the area size) and ρavg are relatively small. They could
be much smaller, if the global optimality were guaranteed. For
example Alg. 1 fails to hand in a reasonable estimation error,
e.g., from 1m to 1Km and more, in 5% of the times. Anyhow,
even such failure happens rarely and the algorithm delivers a
low positioning error, e.g., in order of cm, in 95% of cases,
but those rare cases increase the average error, tremendously.
Therefore, we are more interested in thet cdf of error is for
performance evaluation.

Also, the anomalies in the table, i.e., that RMSE values in
some rows of the table, e.g., at σ = 0.01, are less than those of
σ = 0 can be explained by the following fact. In order to get
close to statistical expectation the averaging at higher values
of d0 needs to be done over a very big number of realization,
i.e., J →∞ which is impossible to do. Therefore, J = 5000
introduces such anomalies.

VI. CONCLUSION

We have tackled the problem of multi-source localization
based on the RSS readings at different sensor nodes, i.e.,
receivers, where the transmit power of the targets are assumed
to be unknown. Due to the mathematical difficulty of the

problem, caused by the superposition of several terms in
the received power of each sensor, a closed-form solution is
impossible. We, instead, have proposed two low complexity
algorithms on the foundation of mixed integer optimization
problem. To avoid the NP-hardness associated with such
problems, we keep the number of choices, i.e, grid granularity
low and come up with adaptive refinement of the GPs. Though,
the global optimality is not guaranteed by our solution, but
the simulation results shows that in high SNR regime and
weak shadowing scenarios the estimation error is in the order
of millimeters, in an area of size 2Km × 2Km, with a high
probability.
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