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Abstract—Cloud-Radio Access Networks (C-RANs) are
known for their potential to accommodate the heavy
processing required by the exponentially increasing data
traffic. Thanks to virtualization techniques, the baseband
processing in C-RANs, can now be performed on virtual
machines (VMs) at the central unit (CU). This is a
priceless tool for improving the processing efficiency, as
it provides the opportunity for dynamic allocation and
sharing of processing resources. In this work, we investigate
the assignment of processing jobs and the allocation of
resources among the virtual machines, while reducing
the overall power consumption of the VMs. Furthermore,
the developed model also accounts for communication
overhead, which may incur due to package dependencies.
The performance of the proposed technique is investigated
with varying system constraints and the obtained results
demonstrate the potential power savings made possible
using the proposed method.

I. INTRODUCTION

C-RAN continues to emerge as a strong contender for
meeting the demands imposed on future network gener-
ations. The concept aims to achieve performance gains
by decoupling the baseband processing units (BBUs)
from the remote radio heads (RRHs). The BBUs are
then pooled together at the CU where, the baseband pro-
cessing is carried out by VMs, which require processing
resources, e.g., processing speed and memory capacity.
Recent works, [1] and [2], have studied the benefits
and challenges of C-RAN, highlighting the reductions in
expenditure made possible via centralized management
of radio and processing resources. The centralization and
scalability of C-RAN also provide the necessary ingre-
dients for the implementation of cooperative techniques,
e.g., [3] and [4], which offer substantial performance
gains at the cost of computational complexity. However,
in order for C-RAN to become a commercial success,
many challenges are yet to be resolved. On this note,
the assignment of processing jobs and computation of
the optimal number of VMs, as well as their required
processing resources, represents an interesting prob-
lem which has not been adequately studied. This is
particularly challenging, since due to pooling of the
resources, allocation of any resource impacts the amount

of available resources to other VMs. This problem is also
of inherent value as VM utilization is directly related
to processing power consumption at the CU. Moreover,
considering that baseband processing is responsible for a
considerable portion of the overall power expenditure of
a network, minimizing the power consumption is of sub-
stantial interest. In this work we provide an approach for
joint job assignment and processing resource allocation,
while minimizing the power consumption of VMs in
the BBU pool. A mathematical framework is developed,
which jointly determines the optimal number of VMs,
their processing resources and the package allocation
among them, under various system and VM constraints.

In the existing literature, the authors in [5] and [6]
consider a C-RAN network and aim to minimize the
number of active BBUs, while satisfying traffic load de-
mands. However, the allocation of processing resources
or the power consumption of the VMs in the BBU
pool is not investigated. The work in [7] proposes a
two stage approach, which first allocates the physical
resource blocks to users and then determines the number
of BBUs required to satisfy the demand. The latter
is formulated as a knapsack problem, which assigns
RRHs to BBUs and does not take into consideration
the power consumption of the BBUs nor determine their
processing resources. Lastly, the authors in [8] consider a
multi-cloud scenario and implement heuristic algorithms
to select a data-center and it’s processing resources,
while minimizing the path length of the packets as a
way of reducing the delay. In general, the processing
resource allocation, is often oversimplified to a knapsack
problem, which is an unrealistic model, considering
that the behaviour of processing speed is different to
memory. Additionally, the utilization of resources is
strongly linked with the power consumption of the VMs
and hence the overall operational expenditure of the
system, which has not been well studied. Lastly, further
complications rise when considering more realistic mod-
els which include potential package inter-dependency,
where the processing of one package requires data from
another. To the best of our knowledge, no current work
considers joint package assignment and allocation of



(multiple) resources with such a detailed system model,
while also minimizing the overall VM power consump-
tion.

Paper Organization: In Section II, the system model is
provided, detailing the typical constraints and limitations
in a BBU pool. The corresponding optimization problem
is described in Section III along with its convex refor-
mulation. Section IV includes the simulation setup and
discussion on the performance of the proposed model
in comparison to conventional techniques. Lastly, the
conclusions of our work are provided in Section V.

II. SYSTEM MODEL

The general architecture of a C-RAN is depicted in
Fig. 1. Note that although the incoming traffic typically
goes through a queuing system before being assigned,
we are mainly interested in finding the optimal assign-
ment of packages and allocation of resources in the BBU
pool.

Fig. 1: Schematic of a typical C-RAN and its BBU pool.

In this work, the assignment of N packages (process-
ing jobs) to the VMs in the BBU pool is considered. The
size and overall delay requirement of the i-th package
is indicated by γi and δi, respectively. The assignment
of the i-th package to the j-th VM is described by the
binary variable αij . Instead of defining the number of
required VMs as a single integer, we introduce a set of
VMs, {VM1, V M2, ..., V MK}, where K is the maxi-
mum number of VMs the BBU pool can support. This is
an important step as it allows us to define a binary switch
indicator νj , to describe the corresponding VM as active
or inactive and consequently obtain a suitable mathemat-
ical structure for an off-the-shelf numerical solver. There
exists a limit on the total physical memory available in
the BBU pool, which can be allocated to active VMs,
denoted by B, as well as individual constraints on the
maximum processing speed and memory which can be
allocated to a given VM, shown by φmax and Ψmax,
respectively. Moreover, the allocated processing speed
and memory capacity of the j-th VM are defined using

the variables fj and mj , correspondingly. A detailed
description of the power consumption model of a VM
is provided later, where the idle power consumption is
given by Pon and the maximum power consumption is
denoted by Pmax. Furthermore, we assume the power
consumption is zero when the VM is off. The inter-
dependency of the i-th package to the l-th package,
denoted by cil, is given as a fraction of the size of the i-
th package itself, in the range of [0, 1]. This essentially
describes what percentage of the total package size is
dependant to another package. It is worth mentioning
that the communication overhead, is assumed to only add
to the memory requirement of the VM. This is justified
by the fact that the already processed bits only need
to be exchanged and not reprocessed. Subsequently, the
interconnecting link between the VMs, which carries the
communication overhead, has a limited capacity denoted
by zj . Note that for the sake of simplicity we assume
that the links are bi-directional and that zj is the sum
capacity of all the links connected to the j-th VM.

A. Assignment & Switch Indicators

The assignment of the i-th package to the j-th VM is
described as a binary variable. Furthermore, all packages
are required to be assigned and no package can be
assigned to two VMs. This can be formulated as the
constraint below

αij ∈ {0, 1}, ∀i, j, (1)∑
j

αij = 1, ∀i. (2)

The number of required VMs is given by the sum of a
binary switch indicator, based on the arguments provided
earlier, and is limited by the maximum number VMs that
the BBU supports. This can be subsequently written as

νj ∈ {0, 1}, ∀j, (3)∑
j

νj 6 K. (4)

Note that obtaining a similar structure would not have
been possible if the number of required VMs was instead
formulated as an integer. It is important to note that
there exists a direct relationship between the assignment
variable and the VM switch, where a VM should only
be active if a package is assigned to it, this can be
formulated by the following constraint

νj ≥ αij , ∀j. (5)

B. VM Constraints

The allocated memory resource to a VM should
accommodate the total memory requirement of the pack-
ages assigned to the j-th VM as well as the communi-
cation overhead. Additionally the total memory in the



BBU pool available for allocation is limited, while there
also exists a restriction on the maximum memory that
can be allocated to an individual VM. These restrictions
are, correspondingly, formulated as∑

i

αijγi +
∑
i,l

cilγi|αij − αlj | 6 mj , ∀j, (6)

∑
j

mj 6 B, (7)

mj 6 Ψmax, ∀j. (8)

The allocated processing speed to a given VM also has
an upper-bound and may be shown as

fj 6 φmax, ∀j. (9)

Furthermore, it is required for the overhead communi-
cation for the j-th VM to not exceed the capacity of the
interconnection link, this may be formulated as∑

i,l

cilγi|αij − αlj | 6 zj , ∀j. (10)

Note that for the sake of simplicity, zj is defined as the
sum capacity of all the interconnection links of the j-th
VM, nonetheless, the model can be easily extended.

C. Delay Requirement

The overall delay experienced by a package is broken
down to queuing time and processing time, as shown
below

τi,q + αijτj,p 6 δi, ∀i, j (11)

As the scheduling of the packages lies outside the
scope of our work, the queuing delay is assumed to be
constant and given per package. The processing delay
of a package, however, depends on the processing speed
and the overall load on the VM which the package is
assigned to. This can be defined in the following way

τj,p =

∑
l

αljγl

fj
, ∀j (12)

Note that this formulation expresses the processing delay
as a function of the overall load (assigned packages) and
the allocated processing speed, which is a more tech-
nically sound model, in contrast to works in literature
where the processing speed is assumed to be a simple
block resource like memory.

D. VM Power Consumption Model

The VM power model used in our work follows [9],
where the relationship between VMs power consumption
and the processor utilization, denoted by uj , is described
below

Pj(uj) =

{
0 if uj = 0

Pon + (Pmax − Pon)uj if uj 6= 0
(13)

where uj is considered to be the utilization of the VM
in terms of processing speed, given as uj = fj/φmax.
Since we have defined a VM switch indicator in our sys-
tem model, a more suitable (and concise) reformulation
of the power consumption can be obtained as follows

Pj(uj) = Pon.νj + (Pmax − Pon)uj , ∀j (14)

III. OPTIMIZATION PROBLEM

With the aforementioned system model definitions
and restrictions, the power consumption minimization is
described by the following optimization problem

min
αij ,νjfj ,mj

∑
j

Pj(uj)

s.t. (1), (2), (3), (4), (5), (6), (7), (8), (9), (10),

(11), (14)

Unfortunately, the multiplication of the assignment vari-

able by itself in constraint (11), αijτj,p = αij

∑
l

αljγl

fj
,

violates the linearity of the problem.

A. Linearization

However, as the multiplication of two binary variables
resembles an AND operation, we show that linearization
of the constraint is possible, as shown in [10], by
introducing a new binary auxiliary variable, βilj , of
higher dimension subject to the following constraints

βilj ≤ αij , ∀i, l, j (15a)
βilj ≤ αlj , ∀i, l, j (15b)
βilj ≥ αij + αlj − 1, ∀i, l, j (15c)

using the linearization technique above, the following
reformulation of constraint (11) holds

αijτi,p =

∑
l

βiljγl

fj
, ∀i (16)

Consequently, the objective and all the constraints be-
come linear, allowing the problem to be cast as the
Mixed integer linear programming (MILP) optimization
problem compatible with Gurobi [11] as shown below

min
αij ,νjfj ,mj

∑
j

Pj(uj)

s.t. (1), (2), (3), (4), (5), (6), (7), (8), (9), (10),

(11), (14), (15a), (15b), (15c), (16)

IV. SIMULATION RESULTS & DISCUSSION

In this section, the performance of our joint assign-
ment and resource allocation method is evaluated. In
order to obtain a better insight, the performance of
the proposed approach is compared with the following
common techniques:



1) Greedy Allocation: here, packages are assigned to
a VM until it is completely full or any constraint
is violated. A greedy allocation of resources is
also considered, where the maximum amount of
available resources is allocated to the utilized
VMs. This scheme depicts a case with the least
number of VMs albeit with high utilization, how-
ever, it may also experience package loss, i.e.,
when assigning a package violates a constraint.

2) Equal Allocation: this strategy distributes the
packages and resources equally among VMs.
Thereby utilizing the maximum number of VMs.
Note that equal allocation can also result in pack-
age loss due to insufficient resources available at
the VM.

3) Random Allocation: here the packages are ran-
domly assigned to different VMs and the resources
are allocated based on the assignment. This is es-
sentially a two stage scheme; with the assignment
of packages in the first stage and the computation
of required resources in the second. Note that if the
necessary resources for the current assignment vi-
olate any constraints the package will be dropped.

The simulation parameters used generally follow the
literature [9], with the exception of processing resource
constraints, which were set to investigate the full range
of system performance, nonetheless they can be changed
as per specification. The complete set of simulation
parameters are provided in Table I. The overall power
consumption of the VMs in the BBU pool are investi-
gated with varying values of the package size and delay.
Note that these were chosen due to their direct affect on
required memory and processing speed, respectively. It
is worth mentioning that in our studies 12 packages were
considered. While for the simulations involving random
variables, an average was taken over 100 realizations.
Since our preliminary inspections indicated that, when
package dependency is included, the average packages
loss in the conventional methods drops too low to
acquire any meaningful comparison to our proposed
model, henceforth we assume no package dependency.
Nonetheless, it is worth mentioning that the our pro-
posed model is perfectly capable of supporting package
dependency and VM to VM overhead communication.

TABLE I: Simulation Parameters

Parameter Settings
Maximum Processor Power, Pmax 276 watts
Idle Processor Power, Pon 109 watts
Maximum Number of VMs, K 5
Total Available Memory, B 150 Mb
VM Maximum Memory, Ψj 75 Mb
VM Maximum Processing Speed, φj 50 Gbps

The power consumption performance is studied with
increasing package sizes in Fig. 2. It is observed that
the proposed method achieves significant reductions,
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Fig. 2: Power consumption vs. package size. The pro-
posed method consistently outperforms conventional
techniques in terms of power consumption.
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Fig. 3: Package drop vs. package size. The package loss
in other methods grows exponentially with the package
size, compared to the proposed method.

especially with smaller package sizes. It is interesting
to observe that equal and greedy allocation, which
represent two extremes for the number of active VMs
(highest and lowest, respectively), both incur a higher
power consumption. This highlights the importance and
potential performance gains in jointly optimizing the
number of active VMs, their resource allocation and the
package assignment. It is also evident that even under
heavy loads, the proposed method still consumes less
power in comparison to the other techniques.

For further insight, the average percentage of pack-
ages dropped in each method was also investigated.
Figure 3 illustrates that the greedy approach results in the
highest package loss. By studying Fig. 2 and 3 together,
it can be stated that, not only does the proposed ap-
proach achieve a zero percent package drop rate, due to
constraint (2), but does so with less power consumption.
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Fig. 4: VM utilization vs. package size. The joint opti-
mization framework aims to find a balance between the
number of employed VMs and their utilization.

Additionally, we investigate the utilization of VMs
under the varying package sizes. Figure 4 illustrates
the average distribution of packages and consequently
the utilization of VMs. For instance, the flatness of the
greedy algorithm in Fig. 3 for package size between 5-
7 Mb can be explained by observing that during that
range a second VM is employed, which is yet to be
completely filled, hence the package loss remains con-
stant for that period. Further insight can also be gained
in terms of the number of VMs each method deploys. It
is evident that, equal allocation uses the highest number
of VMs possible, while greedy allocation uses the least.

The power consumption is also investigated in Fig. 5
with values of the processing delay tolerance ranging
from 1 ms to 100ms, while assuming a fixed package
size of 9Mb. Note that this represents an important study
as the processing delay directly impacts the amount of
processing speed resources required, which subsequently
relate to VM utilization and power consumption. The
obtained results generally illustrate that as the delay
tolerance increases, the power consumption declines, due
to the lower amount of processing speed required. It can
be observed that with the greedy allocation, since VMs
operate at maximum speed, the power consumption is
indifferent to changes in delay tolerance.

V. CONCLUSION

In this paper a new technique for the assignment of
packages and allocation of processing resources between
the VMs in a BBU pool was introduced. The proposed
method jointly determines the optimal assignment of
packages, number of employed VMs and their allo-
cated resources, while minimizing the overall power
consumption. Simulation results provide evidence that
the proposed method is able to consistently outperform
other conventional schemes. Considering that the base-
band processing power constitutes a large portion of the
overall power expenditure of a network, the performance
gains achieved by using the developed framework are
highly valuable.
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Fig. 5: Power consumption vs. processing delay toler-
ance. The proposed MILP framework yields significant
power savings by optimal VM utilization.
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