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Abstract—It has been observed that deep learning architectures tend to
make erroneous decisions with high reliability for particularly designed
adversarial instances. In this work, we show that the perturbation analysis
of these architectures provides a framework for generating adversarial
instances by convex programming which, for classification tasks, is able
to recover variants of existing non-adaptive adversarial methods. The
proposed framework can be used for the design of adversarial noise under
various desirable constraints and different types of networks. Moreover,
this framework is capable of explaining various existing adversarial
methods and can be used to derive new algorithms as well. We make use
of these results to obtain novel algorithms. The experiments show the
competitive performance of the obtained solutions, in terms of fooling
ratio, when benchmarked with well-known adversarial methods.1

I. INTRODUCTION

Deep Neural Networks (DNNs) enjoy excellent performances in
speech analysis [1] and visual tasks [2], [3], [4], [5]. Despite
their success, they have been shown to suffer from instability in
their classification under adversarial perturbations [6]. Adversarial
perturbations are intentionally worst-case designed noise that aims at
changing the output of a DNN to an incorrect one. Interestingly, the
example of adversarial perturbations on the ImageNet dataset show
that adversarial examples are almost indistinguishable to the human
eye from the original images. Related to the concept of adversarial
perturbations is the notion of rubbish class or fooling images [7],
[8] where the examples are clearly perceived by the human eye as
not belonging to any categories in the training set but nevertheless
classified with high confidence as one of the categories by DNNs.
Moreover, as in [8], [9], [10], the adversarial method has access to the
input of a neural network based system. In this context, the attacker
would attempt to apply perturbations to system input that are not
perceived by the system’s administrator, such that the performance
of the system is severely degraded.

This is of significant importance in safety critical systems such
as autonomous driving architectures and surveillance applications.
These discoveries gave rise to extensive research on understanding
the instability of DNNs (for instance refer to [11], [12], [13] and
references therein). Although DNNs might achieve robustness to
random noise [14], it has been shown that there is a clear distinction
between the robustness of a classifier to random noise and its robust-
ness to adversarial perturbations. In [6], the adversarial perturbation
was obtained to maximize the prediction error at the output and it
was approximated using box-constrained L-BFGS. The Fast Gradient
Sign Method (FGSM) in [8] was based on finding the scaled sign
of the gradient of the cost function. Note that the FGSM aims at
minimizing `∞-norm of the perturbation while the former algorithm
minimizes `2-norm of the perturbation under box constraint on the
perturbed example. In practice, the perturbed input values are limited
inside a certain dynamic range, such as values between 0 and 1 for

1For the sake of reproducible research, the tensorflow im-
plementations used in this paper have been made available at
hppts://github.com/ebalda/adversarialconvex.

the case of images. The algorithm DeepFool [9] utilizes an iterative
linearization of the DNN to generate perturbations that are minimal
in `p-norm for p > 1. Although improving on the FGSM, the
algorithm is an iterative method requiring calculation of the gradient
function at each step and its convergence rate, which depends on a
previously selected step size parameter, is not guaranteed. In [15]
the authors propose an iterative version of the FGSM, called Basic
Iterative Method (BIM). This method was later extended in [16],
where randomness was introduced in the computation of adversarial
perturbations. This attack is called the Projected Gradient Descent
(PGD) method. An interesting feature of these algorithms is that some
of the perturbations generalize over other datasets and DNNs [10],
[8]. These perturbations are called universal adversarial perturbations.
This is partly explained by the fact that certain underlying properties
of the perturbation, such as direction in case of image perturbation,
matters the most and therefore generalized through different datasets.

There are various theories regarding the nature of adversarial
examples. The authors in [8] propose the linearity hypothesis where
the existence of adversarial images is attributed to the approximate
linearity of classifiers, although this hypothesis has been challenged in
[17]. There are other theories focusing mostly on decision boundaries
of classifiers and their analytic properties [14], [18].

In this paper, the adversarial examples are generated using an
approximation of the target classifier with an affine function. In
Section II, we first introduce the concept of a first-order perturbation
analysis, and its application to neural network classifiers. Then,
in Section III, the first-order perturbation analysis is utilized to
formulate the general formula for generation of adversarial attacks as
a convex optimization problem. In particular it is shown that the worst
perturbation incurred by an imperceptible adversarial perturbation
can be found using a convex optimization problem and the closed
form solutions are provided for the classification problem. In Section
IV, we show the applicability of our framework for various learning
tasks such as regression, image segmentation, and detection. Later,
in Section V, we benchmark the obtained methods, for the context
of image classification, against the FGSM and DeepFool algorithms.
In addition, we show that these algorithms can be formulated within
our framework. Furthermore, it is shown that our proposed algorithm
manages to outperform existing methods using empirical simulations
on the MNIST and CIFAR-10 datasets.

II. PERTURBATION ANALYSIS OF GENERAL CLASSIFIERS

The perturbation analysis, also called sensitivity analysis, is used in
signal processing for analytically quantifying the error at the output
of a system that occurs as consequence of a known perturbation
at the system’s input. Adversarial images can also be considered
as a slightly perturbed version of original images that manage to
change the output of the classifier. Indeed, the adversarial methods
in [9], [8] are implicitly based on approximating the effect of an
input perturbation on a relevant function which is either the classifier
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function or the cost function used for training. The perturbation
analysis of classifiers provide a unifying view of previous methods.

For a classifier given as a function f(.) of inputs x, if the input
vector is perturbed by a sufficiently small perturbation ∆x(0) given
by x̂(0) = x(0) + ∆x(0), the first-order perturbation incurred at the
output is given by the first-order Taylor series of f(x(0) +∆x(0)) as

f(x(0) + ∆x(0)) ≈ f(x(0)) + Jf (x(0))∆x(0) (1)

where Jf (x) is the Jacobian of the function f(x). Therefore,
the error at the output of the classifier can be approximated as
f(x(0) + ∆x(0))− f(x(0)) ≈ Jf (x(0))∆x(0). For neural networks,
the perturbation analysis has been previously studied as in [19].

Consider an L-layered neural network with the input vector
x(0) ∈ Rm0 and the corresponding output vector x(L) ∈ RmL

, layer sizes (m1, . . . ,mL), the weights of the hidden layer l
denoted by the matrix W(l) ∈ Rml×ml−1 , the bias vector by
b(l) ∈ Rml , and differentiable point-wise activation functions by
φ(l) with the derivative φ(l)′ at the layer l ∈ [L]2. Let the function
f : Rm0 → RmL be the DNN’s function that maps the input vector
x(0) to the output vector x(L). The following proposition provides a
first-order perturbation analysis of DNNs.

Theorem 1: For a given x(0), the first-order perturbation at the
output of a DNN, ∆f , with continuously differentiable activation
functions caused by a small input perturbation ∆x(0) is given by:

∆f = Z(L)∆x(0),

where Z(L) is the Jacobian of the DNN function Jf (x(0)) given by:

Z(L) = D(L) ·W(L) ·D(l−1) ·W(l−1) · · ·D(1) ·W(1) ,

with D(l) , Diag{φ(l)′(W(l) · x(l−1) + b(l))}.
The proof is based on approximating each layer with a linear func-

tion. The output perturbation follows from consecutive application of
linear approximations. In the L-layered neural network, the l-th layer
output x(l) is given as

x(l) = φ(l)
(
W(l)x(l−1) + b(l)

)
∀l ∈ [L] .

In the context of perturbation analysis, it is assumed that all the
system parameters (i.e., x(0), φ(l), W(l), and b(l)) are known for
l ∈ [L].

Suppose that there is a perturbation ∆x(l−1) at the l-th layer output
and the perturbed version of the l-th layer output be given by x̂(l) =
x(l) + ∆x(l). From the above relations we have

x̂(l) = φ(l)
(
W(l)x̂(l−1) + b(l)

)
= φ(l)

(
W(l)x(l−1) + W(l)∆x(l−1) + b(l)

)
≈ x(l) + Jφ(l)

(
W(l)x(l−1) + b(l)

)
W(l)∆x(l−1).

But since l-th layer activation function is applied in a point-wise
fashion, its Jacobian is given by a diagonal matrix that is

D(l) , Diag{φ(l)′(W(l) · x(l−1) + b(l))}.

Therefore the perturbation of l-th layer is given by:

∆x(l) = D(l)W(l)∆x(l−1).

By consecutive application of this result, ∆x(l) can be approximated
as ∆x(l) ≈ Z(l) ·∆x(0), where

Z(l) = D(l) ·W(l) ·D(l−1) ·W(l−1) · · ·D(1) ·W(1) .

2In this work [L] , {1, . . . , L}.

The above theorem can be applied to general classifiers as well
as other learning functions such as regression. Note that if the
activation functions are not differentiable at some points, one can
instead use sub-derivatives instead. One can recourse to higher order
perturbation analysis where the perturbation is quadratic or higher
order function of ∆x(0). This might be necessary if the perturbation
affects the output mainly through its higher orders, for example when
the perturbation belongs to the null space of the Jacobian matrix.

III. GENERATING MALICIOUS EXAMPLES VIA CONVEX

PROGRAMMING

As mentioned before, the adversarial examples can be considered
as perturbed versions of training examples and hence the analysis
above fits our scenario, where the adversarial perturbation ∆x(0)

should be imperceptible to the target system. In [8], the proposed
method is based on finding a perturbation with bounded `∞-norm
that maximizes the error function used for the training which utilizes
the first-order perturbation analysis of the error function. On the
other hand in [9], the authors directly minimize the norm of the
perturbation that changes the classifier’s output. Their analysis is
based on linearized approximation of the underlying classifier which
is indeed its first order-perturbation analysis. While DeepFool might
generate perturbations that are perceptible, the FGSM might not
change the classifier output. In this work, we proposed another
method based on the first-order perturbation analysis that targets
the classifier’s output directly and simultaneously guarantees that the
perturbation is imperceptible.

For classification tasks, let k : Rm0 → {1, 2, . . . ,mL} be the
classifier function that maps the input x ∈ Rm0 to its estimated
label k (x) ∈ {1, 2, . . . ,mL}. The function k, defined in this way, is
not differentiable anymore. However. In the context of classification,
there is a proxy function f(x) given by a vector (f1(x), . . . , fm(x))
which has unit `1-norm and with each of mL scalar functions fl(x)
interpreted as the probability of class belonging. The classifier k is
given then as

k(x) = argmax
l∈[mL]

{fl (x)} . (2)

The input perturbation aims at changing the output of the classifier.
Suppose that the input vector is perturbed by a small perturbation
η ∈ Rm0 . Then, the classifier k is said to be fooled by the adversarial
sample x̂ = x + η if k(x) 6= k(x̂), that is:

L(x + η) = min
l6=k(x)

{fk(x)(x + η)− fl(x + η)} < 0 . (3)

However what is particularly disturbing in adversarial images is that
the image looks almost unchanged to the naked eye. Therefore the
input perturbation should not change the output the ground truth
classifier, also called oracle classifier in [12], which is here the naked
eye. As in [12], the proxy functions of the oracle classifier are denoted
by gl and we should have:

Lo(x + η) = min
l 6=k(x)

{gk(x)(x + η)− gl(x + η)} > 0 .

Therefore the problem of adversarial design can be formulated as:

Find: η

s.t. L(x + η) < 0, Lo(x + η) > 0. (4)

There are two problems with the above formulation. First, the oracle
function is not known in general and second the function L can be
non-convex. One solution is to linearize L through the perturbation
analysis performed on each individual function and replacing the



constraint on the oracle function with a simpler one like `p-norm
of the perturbation.

The first order perturbation analysis of L yields:

L(x + η) ≈ L(x) + ηT∇xL(x),

where ∇xL(x) is the gradient of L(x). The condition that corre-
sponds to the oracle function can be approximated by ‖η‖p ≤ ε for
sufficiently small ε ∈ R+. This means that the noise is sufficiently
small in `p-norm sense so that the observer does not notice it.
These Gradient and norm relaxations yield to the following alternative
optimization problem:

Find: η

s.t. L(x) + ηT∇xL(x) < 0, ‖η‖p ≤ ε. (GN)

The above problem was also derived in [20] and is a convex
optimization problem that can be efficiently solved. As we will see
later, this formulation of the problem can be relaxed into some well
known existing adversarial methods. However it is interesting to
observe that this problem is not always feasible as stated in the
following proposition.

Proposition 1: The optimization problem (GN) is not feasible if
for q = p

p−1

ε‖∇xL(x)‖q < L(x). (5)

Proof. The proof follows a simple duality argument and is an elemen-
tary optimization theory result. We repeat the proof for completeness.
Note that the dual norm of `p is defined by:

‖x‖∗p = sup{aTx : ‖a‖p ≤ 1}.

Furthermore ‖x‖∗p = ‖x‖q for q = p
p−1

. Since the `p-norm of η

is bounded by ε, the value of ηT∇xL(x) is always bigger than
−ε‖∇xL(x)‖∗p. However if the condition 5 holds, then we have:

L(x) + ηT∇xL(x) ≥ L(x)− ε‖∇xL(x)‖∗p > 0.

Therefore, the problem is not feasible. �
Proposition 1 shows that given a vector x, the adversarial pertur-

bation should have at least `p-norm equal to L(x)
‖∇xL(x)‖q . In other

words if the ratio L(x)
‖∇xL(x)‖q is too small, then it is easier to fool

the network. In that sense, Proposition 1 provides an insight into the
stability of classifiers. In [9], the authors suggest that the robustness
of the classifiers can be measured as:

ρ̂1(f) =
1

|D|
∑
x∈D

‖r̂(x)‖p
‖x‖p

,

where D denotes the test set and r̂(x) is the minimum perturbation
required to change the classifier’s output. The above theorem suggests
that one can also use the following as the measure of robustness:

ρ̂2(f) =
1

|D|
∑
x∈D

L(x)

‖∇xL(x)‖q
.

The lower ρ̂2(f), the easier it gets to fool the classifier and therefore
it becomes less robust to adversarial examples. One can also look
at other statistics related to L(x)

‖∇xL(x)‖q in order to evaluate the
robustness of classifiers.

Since Proposition 1 shows that the optimization problem (GN)
might not be feasible, alternatively we propose to solve the following
optimization problem, called the Gradient-base Norm-constrained
method:

min
η

{
L(x) + ηT∇xL(x)

}
s.t. ‖η‖p ≤ ε , (GNII)

which finds the best perturbation under a given constraint. The
constraint aims at guaranteeing that the adversarial images is still
imperceptible by an ordinary observer. Note that (GNII) is funda-
mentally different from [9], [20], where the norm of the noise does
not appear as a constraint. Using a similar duality argument, the
problem (GNII) has a closed form solution given below.

Proposition 2: If ∇xL(x) =
(
∂L(x)
∂x1

, . . . , ∂L(x)
∂xm0

)
, the closed form

solution to the problem (GNII) is given by

η = −ε 1

‖∇xL(x)‖q−1
q

×(
sign(

∂L(x)

∂x1
)

∣∣∣∣∂L(x)

∂x1

∣∣∣∣q−1

, . . . , sign(
∂L(x)

∂xm0

)

∣∣∣∣∂L(x)

∂xm0

∣∣∣∣q−1
)

(6)

for q = p
p−1

. Particularly for p =∞, we have q = 1 and the solution
is given by the following:

η = −ε sign(∇xL(x)) . (7)

Proof. Based on the duality definition, we know that

sup
‖η‖p≤1

ηT∇xL(x) = ‖∇xL(x)‖∗p,

which in turn implies that the objective function is lower bounded
by L(x) − ε‖∇xL(x)‖∗p. It is easy to verify that the minimum is
attained by the expression 6. �

The advantage of (GNII), apart from being convex and enjoying
computationally efficient solutions, is that one can incorporate other
convex constraints into it for different scenarios. In the next sections,
we examine this method for fooling neural networks.

Remark 1: There are various hypothesis about the nature of
adversarial images (see [11]). A popular hypothesis is so-called
linearity hypothesis according to which the neural networks are
intentionally designed to operate in linear regimes and that makes
them susceptible to adversarial examples. The above formulation
of the problem basically presupposes that the behavior of DNN
classifiers around particular image can be approximated by a linear
classifier. In this sense, the current formulation is compatible with
the linearity hypothesis.

Note that the introduced method in (GNII) can also be used for
other target functions or learning problems. One can use the cost
function used for training as in [8] in which case the solution of
(GNII) with p = ∞ recovers the adversarial perturbations obtained
via the FGSM. Again the algorithm can be also used to generate
adversarial examples for regression problems. The feasibility problem
of (GN) can be also simplified to

min
η
‖η‖p s.t. L(x) + ηT∇xL(x) ≤ 0 , (8)

which recovers the result in [9] although without the iterative pro-
cedure. However the iterative procedure can be easily adapted to
the current formulation by repeating the optimization problem until
the classifier output changes. In any case, the formulation in (GN)
provides a general framework for generating adversarial examples
using a computationally efficient way.

IV. FROM CLASSIFICATION TO REGRESSION AND OTHER

PROBLEMS

In this paper we have modeled the generation of adversarial attacks
using a convex optimization problem. While we have focused on
the task of classification, the convex formulation from (GNII) is not
restricted to that specific task. Furthermore, in this section we discuss



the applicability of this framework for tasks beside classification. As
an example, we apply this framework in the particular context of
regression.

In context of regression problems, we assume that the aim of
the adversarial perturbation algorithm is to maximize the `2-norm
of the output perturbation, that is to maximize L(x+η) = ‖f(x)−
f(x+η)‖2 subject to ‖η‖p ≤ ε. In this case finding the adversarial
perturbation is indeed solving

argmax
η

{
‖Jf (x) · η‖22

}
s.t. ‖η‖p ≤ ε . (9)

In this problem, the objective function is quadratic with a positive
semi-definite kernel and hence convex. The constraint is also convex.
Maximizing convex functions is in general very difficult, however
the problem can be solved efficiently in some cases. For general p,
the maximum value is related to the operator norm of Jf (x). The
operator norm of a matrix A ∈ Cm×n between `p and `q is defined
as [21]

‖A‖p→q , sup
‖x‖p≤1

‖Ax‖q.

Using this notion, we can see that first ‖η
ε
‖p ≤ 1 and therefore

‖Jf (x) · η‖2 = ε‖Jf (x) · η
ε
‖2 ≤ ε‖Jf (x)‖p→2.

Therefore the problem of finding a solution to (9) amounts to finding
the operator norm ‖Jf (x)‖p→2. First observe that the maximum
value is achieved on the border namely for ‖η‖p = ε. In the case
of p = 2, this problem has a closed-form solution. If vmax is the
unit `2-norm eigenvector corresponding to the maximum eigenvalue
of Jf (x)TJf (x), then η = εvmax solves the optimization problem.
Note that, the maximum eigenvalue of Jf (x)TJf (x) corresponds to
the square of the spectral norm ‖Jf (x)‖2→2.

Another interesting case is when p = 1, that is when the `1-
norm of the perturbation is bounded by ε. Note that penalizing high
`1-norm values is a technique used to promote sparsity. When the
solution of a problem should satisfy a sparsity constraint, the direct
introduction of such constraint into the optimization leads to NP-
hardness of the problem. Instead the constraint is relaxed by adding
`1-norm regularization. The adversarial perturbation designed in this
way tends to have only a few non-zero entries. This corresponds
to scenarios like single pixel attacks where only a few pixels are
supposed to change. For this choice, we have

‖A‖1→2 = max
k∈[n]

‖ak‖2,

where ak’s are the columns of A. Therefore, if the columns of the
Jacobian matrix are given by Jf (x) = [J1 . . .Jm0 ], then

‖Jf (x) · η‖2 ≤ ε max
k∈[m0]

‖Jk‖2,

and the maximum attained for

η∗ = εek∗ for k∗ = arg max
k∈[m0]

‖Jk‖2,

where the vector ei is the i-th canonical vector. This constitutes a
single pixel attack.

Finally, the case where the adversarial perturbation is bounded in
`∞-norm is of particular interest. This bound guarantees that the noise
entries have bounded values. The problem of finding an adversarial
noise corresponds to obtaining the vector for which the operator norm
‖Jf (x)‖∞→2 is attained. Unfortunately this problem turns out to be
NP-hard [22]. However it is possible to approximately find this norm
using semi-definite programming as proposed in [23]. The problem is

Original Adversarial Original Adversarial

nine zero airplane ship

eight three truck car

two three cat dog
MNIST dataset CIFAR-10 dataset

Fig. 1: Examples of correctly classified images that are missclassfied
when adversarial noise is added using Algorithm 1.

that the semi-definite programming scales badly with input dimension
in terms of computational complexity and therefore might not be
suitable for fast generation of adversarial examples when the input
dimension is very high.

Apart from regression, another example where the above method
might be useful to generate adversarial images is the image seg-
mentation problem where there is a class assigned to every pixel of
an image. This problem was considered in [24] where the objective
of an attacker is to draw certain geometric figures on the output
segmentation. In this setup, the noise is designed such that an
input is missclassified as certain target class t. This constitutes
a variation in the type of loss considered in (3). Instead of just
changing the output classifier, we aim at changing the output of the
classifier into a designated class. In this case, one can instead use
Lt(x + η) = fk(x)(x + η) − ft(x + η), where we have a fixed
class t as target. The above analysis applies directly to this problem
as well.

Finally, in the context of anomaly detection and monitoring, the
goal of an attacker is to maximize the false positives and/or false
negatives. This naturally leads to algorithms of the same nature as
Algorithm 2 (introduced later on Section V), where a single score
function (e.g. the probability of being detected) is the subject of
minimization or maximization.

V. EXPERIMENTS

In this section, the Gradient-based Norm-constrained method is
used to fool the classifier trained on the task of classification for the
MNIST [25] and CIFAR-10 [26] datasets. As discussed in Section III,
for this context of image classification the appropriate loss function
L(x) to be used in (GNII) is given by (3). For this problem,
‖η‖∞ ≤ ε is a common constraint that models the undetectability,
for sufficiently small ε, of adversarial noise by an observer. However
solving (GNII) involves finding the function L(x) which is defined
as the minimum of mL − 1 functions with mL being the number of
different classes. In large problems, this may significantly increase
the computations required to fool one image. Therefore, we include
a simplified version of this algorithm in our simulations. The non-
iterative methods might not guarantee the fooling of the underlying
network but on the other hand, the iterative methods might suffer
from convergence problems.
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Fig. 2: (a) and (b): Fooling ratio of the adversarial samples for
different values of ε on the MNIST test dataset. (c) and (d): Fooling
ratio of the adversarial samples for different values of ε on the
CIFAR-10 test datasets.

To benchmark the proposed adversarial algorithms, we consider
following methods tested on the aforementioned datasets:
• Algorithm 1: This algorithm solves (GNII) with L(x) given by

(3). Note that, for evaluating L at a given x one must search
over all l 6= k(x). This can be computationally expensive when
the number of possible classes (i.e., the number of possible
values for l) is large. The `∞-norm is chosen for the constraint.
Moreover, an example of adversarial images obtained using this
algorithm is shown in Figure 1.

• Algorithm 1-n: Iterative version of Algorithm 1 with n itera-
tions. The adversarial noise is the sum of n noise vectors with
`∞-norm of ε/n, computed through n successive approxima-
tions.

• Algorithm 2: This algorithm approximates (3) with L(x) ≈
fk(x)(x), thus reducing the computation of L(x) when the
number of classes is large. Note that we cannot use L(x+η) < 0
to guarantee that we have fooled the network. Nevertheless, the
lower the value of L(x+η) the most likely it is that the network
has been fooled. The same reasoning is valid for the FGSM.

• FGSM: This well-known method was proposed by [8] where
L is replaced by the negative training loss. Usually the cross-
entropy loss is used for this purpose. With the newly replaced
function, (GNII) is solved for p =∞.

• DeepFool: This method was designed by [9] and makes use
of iterative approximations. Every iteration of DeepFool can be
written within our framework by replacing L by

L(x + η) = fk(x)(x + η)− fl̂(x + η) ,

where l̂ = argmin
l 6=k(x)

{
|fk(x)(x)− fl(x)|

‖∇fk(x)(x)−∇fl(x)‖q

}
.

The adversarial perturbations are computed using p = ∞, thus
q = 1, with a maximum of 50 iterations. These parameters were
taken from [9].

• PGD: This method is an iterative version of the FGSM where
the initial point is randomly chosen from an ε vicinity of x [16].

• Random: For benchmarking purpose, we also consider random
noise with independent Bernoulli distributed entries with P(X =
ε) = P(X = −ε) = 1

2
.

The above methods are tested on the following deep neural network
architectures:
• MNIST : A fully connected network with two hidden layers

of size 150 and 100 respectively, as well as the LeNet-5
architecture [27].

• CIFAR-10 : The Network In Network (NIN) architecture [28],
and a 40 layer DenseNet [29].

As a performance measure, we use the fooling ratio defined in [9]
as the percentage of correctly classified images that are missclassified
when adversarial perturbations are applied. Of course, the fooling
ratio depends on the constraint on the norm of adversarial examples.
Therefore, in Figure 2 we observe the fooling ratio for different
values of ε on the aforementioned neural networks. As expected,
the increased computational complexity of iterative methods such as
DeepFool and Algorithm 1-n translates into increased performance
with respect to non-iterative methods. Nevertheless, as shown in
Figures 2(a) and (c), the performance gap between iterative and non-
iterative algorithms is not always significant. For the case of iterative
algorithms, the proposed Algorithm 1-n outperforms DeepFool. The
same holds true for Algorithm 1 with respect to other non-iterative
methods such as the FGSM, while Algorithm 2 obtains competitive
performance with respect to the FGSM.

Finally, we measure the robustness of different networks using
ρ̂1(f) and ρ̂2(f), with p = ∞. We also include the minimum ε,
such that DeepFool obtains a fooling ratio greater than 99%, as a
performance measure as well. These results are summarized in Table
I, where we obtain coherent results between the 3 measures.

Test ρ̂1(f) ρ̂2(f) fooled
error [9] (ours) >99%

FCNN (MNIST) 1.7% 0.036 0.034 ε =0.076
LeNet-5 (MNIST) 0.9% 0.077 0.061 ε =0.164
NIN (CIFAR-10) 13.8% 0.012 0.004 ε =0.018
DenseNet (CIFAR-10) 5.2% 0.006 0.002 ε =0.010

TABLE I: Robustness measures for different classifiers.

VI. CONCLUSION

In this paper, we have shown that the perturbation analysis of
different models leads to methods for generating adversarial examples
via convex programming. For classification we have formulated
already existing methods as special cases of the proposed framework.
Moreover, novel methods for designing adversarial noise under vari-
ous desirable constraints have been derived. Finally the applicability
of this framework has been tested for classification through empirical
simulations of the fooling ratio, benchmarked against the well-
known FGSM, PGD and DeepFool methods. We have also discussed
how the current framework can be extended to variety of different
problems. As future works, it is still worth exploring the reason
behind the existence of adversarial examples, and the design of
effective defenses.
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