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Abstract—Spherical near-field measurements are regarded as
the most accurate technique for the characterization of an
Antenna Under Tests (AUT) radiation. The AUT’s far-field radi-
ation characteristics can be calculated from the Spherical Mode
Coefficients (SMC), or spherical wave coefficients, determined
from near-field data. The disadvantage of this technique is that,
for the calculation of the SMC, a whole sphere containing the
AUT must be Nyquist-sampled, thus directly implying a longer
measurement time when only a few cuts are of interest. Due
to antennas being spatially band-limited, they can be described
with a finite number of SMC. Besides, the vector containing the
SMC can be proved sparse under certain circumstances, e.g., if
the AUT’s radiation pattern presents information redundancy,
such as an electrical symmetry with respect to coordinate system
of the measurement. In this paper, a novel sampling strategy is
proposed and is combined with compressed-sensing techniques,
such as basis pursuit solvers, to retrieve the sparse SMC. The
retrieved sparse SMC are then used to obtain the AUT’s far-
field radiation. The resulting far-field pattern is compared for
both simulated and measured data. The reduced number of
points needed for the presented sampling scheme is compared
with classical equiangular sampling, together with the estimated
acquisition time. The proposed sampling scheme improves the
acquisition time with a reasonable error.

I. INTRODUCTION

In the decade of the 1980s, efforts were made to
reduce the spatial requirements for antenna measure-
ments and to allow three-dimensional measurements in
the AUT’s near field [1], [2]. Decomposing the measured data
in near field in a weighted superposition of spherical waves,
called spherical harmonics (SH) and closely related to the
Wigner-D basis, it is possible to calculate their superposition
at any point in space knowing only its weighting coefficients,
also called the Spherical Mode Coefficients (SMC). This
allows for the calculation of the pattern at an infinite distance
from the AUT, that is, the far-field pattern. This approach
requires smaller measurement chambers and relegates part of
the measurement process to the nowadays comparatively cheap
computational chain, thus reducing the potential measurement
costs. However, a whole sphere must be sampled for the SMC
to be calculated, which leads to a longer measurement time if
only some part of the radiation pattern is of interest.
To further sink the costs of antenna measurements, one current
approach is to reduce the measurement time. Efforts have
been made to find more efficient sampling strategies than

the classical equiangular sampling [3], [4], which Nyquist-
samples the sphere on its equator and oversamples it on every
other cut, leading to the development of alternative SMC
calculation methods that allow to sample a different number
of points in each cut [5]–[7]. Another approach is to take
advantage of the inherent sparsity of the SMC, i.e., of a
large part of the terms being zero under certain conditions,
to undersample the sphere and still be able to reconstruct
the radiation pattern using compressed-sensing solvers. The
intention is, by acquiring a reduced number of points, to
save measurement time and thus to improve the efficiency of
measurement chambers. Current research in this field [8]–[10]
proves it possible to retrieve the radiation information from a
set of undersampled measurements. However, the suggested
sampling strategies do not normally reduce the number or
the length of the movements a conventional roll-over-azimuth
positioner performs in a measurement. Thus, these strategies
do not reduce the measurement time in conventional cases and
are only of interest for measurements where the acquisition
equipment itself limits the antenna positioner’s speed.
In this paper, a novel undersampled sampling scheme that
minimizes the coherence of the sampling matrix is introduced.
The SMC are reconstructed with compressed-sensing tech-
niques from simulation and measurement data, sampled with
the proposed method. The SH decomposition is explained
in Section II, together with the sparsity assumption and the
applied definition of phase center. In Section III, the proposed
sampling scheme is introduced and explained. In Section IV,
results for simulated noiseless data are shown, whereas in
Section V results for real measurements are discussed, with
a focus on the saved measurement time. Section VI sums up
the conclusions and suggests paths for future work.

II. THEORETICAL BACKGROUND

In this section, the Spherical Wave Expansion (SWE) is
discussed. The electromagnetic field on the surface of a sphere
enclosing a radiating object can be expressed using the SWE,
which is used as framework for Spherical Near-Field (SNF)
antenna measurements [1]. Moreover, as discussed in [7], [10],
the SWE can be represented as a system of linear equations
of the type y = Ax, in which the performance of the sensing
or sampling matrix A depends on the sampling pattern over



the sphere.
The general probe-corrected transmission formula [1] can be
expressed as

w(A,χ, θ, φ) =

=
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where w(A,χ, θ, φ) is the measurement signal at the dis-
tance A, polarization angle χ and rotation angles θ and φ, Tslm
are the SMC, or in this notation transmission coefficients,
the product Dl

µm(θ, φ, χ) = ejmφdlµm(θ)ejµχ represents the
Euler rotation of spherical waves, also called Wigner D-
functions, and Psµl(kA) is the probe response constant.
Since antennas are band limited, the summation over l can be
truncated to the band-limit constant B, so that 1 ≤ l ≤ B,
thus also making the summation over m, −l ≤ m ≤ l, finite.
This upper band limit is described by

B = kr0 + L0, (2)

where k is the wavenumber, r0 is the radius of the minimum
sphere containing the AUT and L0 is a constant used for
stability and accuracy. In the literature, the choice of L0 = 10
is frequently supported. Higher order modes do also propagate
but are highly attenuated and their contribution to the far-field
radiation pattern is limited. At the same time, s is limited to
the values 1 and 2, one of them representing the propagation of
TE modes and, the other one, the propagation of TM modes.
The radiated power can be calculated from the transmission
coefficients as

Prad,r =
1

2
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slm
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1

2
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l=1

l∑
m=−l

|Tslm,r|2. (3)

With these conditions, the total number of modes N is
calculated by

N = 2B(B + 2) = 2B2 + 4B. (4)

The general probe-corrected transmission formula can be
represented as a matrix equation:

w = Ψq, (5)

with w ∈ CM as the measurement signal vector, Ψ ∈ CM×N
as the matrix containing the sample of Euler rotation or
Wigner-D functions and probe response constant and q ∈ CN
as the antenna transmission coefficient vector. For this system
and taking into account the aforementioned considerations, a
total of M = N measurements suffice to solve the linear
equation system. However, the typical equiangular sampling
delivers a total number of samples of

M =MχMθMφ = 2(B + 1)(2B + 1) =

= 4B2 + 6B + 2 > 2N,
(6)

being almost twice the strictly required samples. Many equian-
gular sampling points being linearly dependent further con-
tributes to the inefficiency of this sampling strategy. However,

this sampling does deliver a well-conditioned problem [7].
The scope of this paper is to reduce the number of mea-
surements M < N for radiating objects with sparse or
compressible SMC.

A. Phase Center and Sparsity

As mentioned in [11], the sparsity of the coefficient vec-
tor Tslm does not only depend on the AUT but also on the
coordinate system chosen for the expansion. This implies that
the geometrical properties of the AUT, its radiated field and
the relationship to the chosen expansion’s coordinate system
directly influence the coefficients vector Tslm. Having the SH
definite parity i.e being either even or odd with respect to
inversion about the origin, it can be assumed that, given an
AUT radiating a field with any type of symmetry, a solution
where less terms of Tslm are required for the AUT’s complete
description exists. It is assumed this solution is found when
the expansion’s coordinate system coincides with the AUT’s
radiation origin. Classically and as suggested in [11], the
phase center has been considered to be the radiation origin. Its
definition, however, is not necessarily unique or applicable to
every given radiating object. For the scope of this paper, the
used definition of phase center is the one of radiation center
suggested in [12], namely the point described by r = rPC for
which Bmin < B is the smallest possible so that

Prad,Bmin,rPC =
1

2

2∑
s=1

Bmin∑
l=1

l∑
m=−l

|Tslm,rPC |2

> Prad,Bmin,ri , ∀ri 6= rPC.

(7)

Qualitatively speaking, the power in the lowest modes for an
expansion centered in rPC is the most concentrated, causing
any possible AUT displacement a power migration to higher
regions of the spectrum.
In this paper, following assumptions are made:
• Sparsity is defined as how many terms of the SMC vector

are zero.
• Assuming an expansion centered in rPC, the sparsity

of the Tslm is highest for electrically symmetric or
antisymmetric AUTs when they are oriented in a way
that aligns their plane of symmetry to a plane of the
expansion’s coordinate system.

• For antennas with a well-defined main lobe and electrical
symmetry, the sparsity is highest for an alignment of this
lobe with the expansion’s z-axis which also complies with
the previous condition.

B. Coherence and Sampling Matrix

In compressed sensing, the sampling matrix must satisfy
certain properties to guarantee robust recovery of sparse
signals. One of these properties, namely Restricted Isometry
Property (RIP), was introduced in the seminal papers on
compressed sensing [13]–[15] and it was shown to be satisfied
by random matrices drawn from a class of distributions.
For many practical applications, the random sampling is not
desirable and therefore deterministic sampling patterns should



be employed. However, it is NP-hard to certify whether a
deterministic sampling matrix satisfies the RIP [16], [17]
and therefore, another computationally tractable metric should
be considered. In this work, we adopt the mutual coher-
ence as the Fig. of merit. Roughly, the sampling matrices
with high coherence are more prone to degraded recovery
performance. Assuming the matrix of the spherical wave
expansion Ψ = (ψ1,ψ2, . . . ,ψN ) ∈ CM×N , the coherence
of a matrix Ψ is defined as

µ(Ψ) =max
i 6=j

|〈ψi,ψj〉|
‖ψi‖2‖ψj‖2

. (8)

The coherence is lower bounded by the so called Welch bound,
defined in context of correlation measurements of different
signals [18], given as

µ(A) ≥

√
N −M
M(N − 1)

. (9)

The bound is difficult to achieve for arbitrary pairs of M
and N [19]. In this paper, the low coherence property is used
as a metric to design a sampling matrix. A proposed sampling
pattern over a sphere that could minimize the coherence of a
SWE’s sampling matrix is also discussed. In addition, the l1-
minimization or basis pursuit is used to recover the sparse
signal q ∈ CN

min
q
‖q‖1 s.t w = Ψq. (10)

III. A COMPRESSED SAMPLING SCHEME

In [20], the authors discussed how one can minimize the
coherence for SH by considering only one inner product of
two columns. In this section, this result of [20] is utilized. SH
can be seen as a special case of SWE when the polarization
is not taken into account. It can be proven that a specific
class of sampling patterns, including equiangular sampling
patterns, leads to high correlation between arbitrary columns
of the sampling matrix. The equiangular sampling pattern for
elevation θ and azimuth φ is described by

φp,j =
(p− 1)π

M − 1
, θp,j =

(j − 1)2π

M − 1
for p, j ∈ [1, 2, . . . ,M ].

(11)

This scheme delivers a high coherence sampling matrix and,
therefore, a poor recovery performance of the sparse signal.
In addition, the authors also discuss the lower bound of the
coherence of SH sampling matrices, where the lower bound is
given by the product of Legendre polynomials Pl(cos θ) with
the highest degree. This means that, assuming a signal with
bandwidth B and a degree from 0 ≤ l ≤ B − 1, the lower
bound is given by [20]

µ(A) ≥
M∑
p=1

PB−1(cos θp)PB−3(cos θp). (12)

This lower bound is not contrived, since a sampling pattern
that achieves it does exist. For this case, a sampling pattern
on elevation θ is considered with the following distribution

cos(θp) =
2p−M − 1

M − 1
for p ∈ [1, 2, . . . ,M ]. (13)

With a simple search algorithm, there is a corresponding
pair on azimuth φ that can achieve the lower bound. In
this case, the halting criterion is this lower bound. The
algorithm is described below. Fig. 1 shows the distribution

Algorithm 1 Pattern search
Initialization : θ,φ0 ∈ Rm as initial points , ∆0 > 0 as initial step size , standard
basis ei for i ∈ [m] , λ ∈ (0, 1)
for k = 0, 1, . . . until halting criterion do

if µ(θ,x) < µ(θ,φk) for x ∈ Sk := {φk ±∆kei} then
φk+1 = x mod 2π
∆k+1 = ∆k

else
φk+1 = φk mod 2π
∆k+1 = λ∆k

end if
end for

of the proposed sampling scheme for different numbers of
total measurement points. It has been shown in [20] that
the proposed sampling scheme enables a lower coherence
property of the sampling matrix in comparison to other well-
known sampling patterns, including equiangular, spiral, Ham-
mersley and Fibonacci distributions. Moreover, it has been
shown that the proposed scheme delivers a better recovery
of sparse coefficients by using l1 - minimization or basis
pursuit. This proposed sampling strategy is applied to estimate
the SMC from SNF measurements, whose reconstruction is
then evaluated also in terms of the recovered far-field pattern
for several antennas. This sampling scheme does not require
two different polarizations to be measured at each proposed
point and instead alternates two 90 ◦ rotated polarizations
sequentially along φ.

Fig. 1: Proposed sampling (M = 97,M = 500,M = 800).

IV. RECONSTRUCTION WITH SIMULATED DATA

In this section, the recovery of SMC for three radiating
structures is presented, namely a Hertzian dipole with off-
set x = λ/2, an array of 3 z-directed dipole antennas, and
a circular horn antenna. All three radiating structures are
simulated for a design frequency of f = 10GHz. For these
simulations, all antennas have been centered in the phase
center according to the aforementioned definition to enhance
sparsity [12], the offset of the dipole being applied afterwards.
In addition, the SPGL1 method [21] is used as the basis pursuit



framework to recover the SMC. After estimating the SMC,
the reconstructed far-field pattern of the antennas is shown in
Fig. 2. The number of measurement points that is required for
this reconstruction is M < 0.2N for each case, which is less
than 10 % of the amount of samples taken with conventional
equiangular sampling, for which M > 2N . Having the

(a) Dipole (b) Dipole Array (c) Circular Horn

Fig. 2: Original co-polar component of the normalized far-
field radiation pattern of all simulated antennas and their
reconstruction using the proposed method.

circular horn the largest number of modes N among the three
structures, its results are further analyzed. Since the theoretical
cross-polarization component of an ideal horn along the main
cuts φ = 0◦ and φ = 90◦ is zero, the reconstruction delivers a
larger cross-polarization error for these cuts. To better observe
the realized error for normal numerical cases, the cut φ = 45◦

is shown alongside the main cut φ = 0◦ in Fig. 3. The
maximum and mean error curves for each theta cut calculated
as the absolute difference of both normalized radiation patterns
is shown in Fig. 4. It is shown hereby that the proposed
sampling strategy reconstructs the far-field pattern needing
fewer measurement points with an error lower than −25 dB
for the whole pattern and both polarizations.

V. RECONSTRUCTION WITH MEASURED DATA

In this section, the described method is applied to a real
measurement. The AUT is a double ridge guide horn antenna
(AH Systems’ SAS-571) and the measurement is performed
at 10 GHz. To test the validity of the method for measurement
data without entering in practical measurement considerations,
the data is taken from a measurement performed with classical
equiangular sampling. From the SMC calculated from this
data, the measurement points under test are calculated accord-
ing to the proposed sampling grid. The original measurement
was performed for M = 8784 while the reconstruction is done
for M = 400, which is M < 0.06N and less than 3% of the
points needed for the equiangular sampling approach.

A. Reconstructed Data

After reconstructing the SMC with the proposed method,
the far-field pattern of the antenna is reconstructed as seen in
Fig. 5. A comparison between the original and reconstructed
main cuts is highlighted by Fig. 7.

Fig. 3: The simulated horn’s original normalized far-field radi-
ation pattern and the pattern reconstructed with the proposed
method.

Fig. 4: Maximum and mean error curves calculated over each
theta cut with a resolution of φres = 2◦ for the simulated horn’s
reconstructed normalized far-field pattern.

The SMC estimated from the original measurement data and
from the data matched to the proposed sampling scheme are
shown in Fig. 8. It can be observed that the lowest modes i.e.
the modes with the highest power content are reconstructed



Fig. 5: 2D representation of the SAS-571’s original normalized
far-field radiation pattern and the pattern reconstructed with
the proposed method.

the most successfully. The error curves are calculated in the
same fashion as for the simulated data, i.e. as maximum
and mean error per theta cut and are shown in Fig. 9. The
global maximum error is −15.6 dB, the global mean error
is −25.9 dB.

(a) M = 97 (b) M = 400

Fig. 6: Proposed sampling path for the proposed scheme.

B. Suggested Sampling Strategy and Estimated Measurement
Time

In an equiangular-sampled measurement, the chamber’s
positioner is typically set up to have a continuous axis and
a discrete or step axis. In this way, all points in each theta
cut are acquired with a single sweep i.e., positioner rotation,
needing to halt and rotate the phi axis by one resolution
step between theta cuts. With the proposed sampling grid,
more phi positions are needed but the movements on the
continuous axis need not be complete turns, as shown in
Fig. 6. For simplicity, a similar first approach is suggested.
The shorter rotations reduce the time between movements in

the step axis, thus decreasing the required measurement time
per cut. Assuming the rotation after each resolution step in
phi is done in the direction that provides the shortest path,
the total rotation path for the proposed scheme is calculated.
Adding the estimated time for the discrete steps, this time
is compared to the measurement time needed for a classical
equiangular measurement, assuming the same measurement
speed for all axes and for both measurements. The estimated

Fig. 7: SAS-571 original normalized far-field radiation pattern
and the pattern reconstructed with the proposed method for
φ = 0◦ and φ = 90◦.

(a) Original SMC (b) Reconstructed SMC

Fig. 8: SAS-571’s original SMC and the SMC reconstructed
with the proposed method.

speed increase with respect to a classical equiangular sampling
is around 250%, i.e., the measurement time is slightly less



Fig. 9: Maximum and mean error curves calculated over each
theta cut with a resolution of φres = 2◦ of the SAS-571’s
reconstructed normalized far-field pattern.

than 40% of the time needed for an equiangular measurement.
For an increase of the measurement sphere’s size, the number
of sampling points of an equiangular measurement increase
quadratically. However, most of these points are taken in
the continuous rotations, thus not contributing to the increase
of the measurement time. On the other hand, increasing the
number of sampling points taken with the proposed sampling
scheme linearly adds discrete steps. This results in a decrease
of speed of the proposed sampling for larger antennas. As
a comparison, a measurement for the proposed simulated
circular horn using the proposed sampling scheme would
increase the measurement speed by around 310% with respect
to an equiangular measurement, while a measurement of the
dipole would be 390% faster.

VI. SUMMARY AND FUTURE WORK

A novel compressed sampling scheme based on minimal
coherence of the sampling matrix is introduced. The SMC
of simulated and measurement data sampled with it are re-
constructed using SPGL1 and the results are presented. The
mean reconstruction error for the analyzed measurement data
is −25.9 dB. The amount of sampling points considered is less
than 3% of the amount required for a measurement applying
an equiangular sampling scheme.
The development of a compressed-sensing solver that im-
plements a priori information of the SH, such as structural
group sparsity, can improve the reconstruction error. The
measurement can be further sped up by developing a more
efficient scanning path for the given grid. Moreover, a method
to determine the optimal number of measurement points M
must be found. The limits of such method and the validity
for radiating structures that do not comply with the presented
SMC sparsity assumptions must be tested, together with the
error introduced by basis mismatch.
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