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Abstract—We consider a low-latency communication network
operating with finite blocklength (FBL) codes. During the trans-
mission, the minimum mean squared error (MMSE) channel
estimation is assumed to be applied to obtain the instantaneous
but imperfect Channel State Information (CSI) for the rate
selection. We aim at optimizing the FBL throughput of the
system under given reliability constraints. First, we provide an
optimal frame structure design by optimally allocating the total
frame length for MMSE training of channel estimation and
data transmission. In addition, we further improve the FBL
throughput considering channel dynamics which optimally selects
the coding rate per frame. Combining the frame structure and
the coding rate selection, a joint optimization problem is studied
and solved by a sub-optimal algorithm. In the simulation study,
we validate the proposed analytical model and evaluate the FBL
throughput of the proposed solution in comparison to benchmark
schemes.

Keywords—Finite blocklength, low-latency, ultra reliable com-
munication, channel estimation.

I. INTRODUCTION

In the recent years, the interest in the new wave of fourth
industrial revolution, in which communication must guarantee
both low latency and high reliability has grown rapidly. In
fact, such demands are key concerns in the design of many
applications in the current and future wireless communication
networks, e.g., autonomous vehicles, virtual/augmented reality,
industrial automation and mission critical communications.

Due to the critical latency and reliability requirement, data
transmissions are realized by codes with short blocklengths [2],
i.e., the networks operate in the so-called finite blocklength
(FBL) regime in which the transmissions are no longer arbitrar-
ily reliable. To tackle this problem, the FBL information theo-
retic bound is developed in [3] for an additive Gaussian noise
(AWGN) in a single hop transmission. In addition, the model
has been extended to quasi-static fading channels [4], multiple
antenna scenario [5], cooperative networks [6] multiple access
systems [7]–[9], and wireless power transfer networks [10].
However, the results of above existing works are concluded
under the assumption of either the perfect Channel State
Information (CSI) or no instantaneous CSI availability at the
transmitter. In a practical system, it is more likely that the
system has the mechanism of channel estimation and CSI
feedback, while the CSI is imperfect, e.g., due to the estimation
errors. Nevertheless, more recently the work in [11] studies the
FBL performance of a network operating with an imperfect
CSI and with a fixed cost of channel estimation. However,

for a practical channel estimator, spending a longer overhead
(in terms of blocklength) provides a more accurate CSI. Note
that it is shown in [3] that the shorter the blocklength is
the lower the performance is. There clearly exists a tradeoff
of blocklength allocation between CSI accuracy and data
transmission blocklength. Beyond this tradeoff with respect to
the blocklength, what is the optimal choice of the instantaneous
coding rate selection based on the imperfect CSI? To the best
of our knowledge, this problem has not been addressed before.

In order to acquire the CSI, there exists variant channel
estimation mechanisms in practical systems [12]. Among those
mechanisms, the training-based linear minimum mean-squared
error (MMSE) channel estimator has been widely-used and is
well-studied [13], [14]. Nevertheless, most of the works are
based on the Shannon capacity by assuming infinite block-
length. In the FBL regime, the cost of the estimation needs to
be considered comparing to the total blocklength resource in
the packet frame.

In this work, we consider a network with a widely-
used linear minimum mean-squared error (MMSE) channel
estimator, and aim at maximizing the FBL throughput. We
firstly develop a frame structure design by optimally allocating
the total frame length to the channel estimation and the data
transmission. Moreover, we exploit the estimated imperfect
CSI optimally choosing the instantaneous coding rate. Via
numerical evaluation, we validate our analytical model and
evaluate the proposed designs.

The rest of the paper is organized as follows. We first
describe the system model in Section II. The FBL through-
put maximization are studied in Section III, where a frame
structure design, an instantaneous coding rate selection and a
joint design are provided. Finally, we provide numerical results
a in Section IV and conclude the whole work in Section V.

II. SYSTEM MODEL

We consider a single link wireless transmission system,
where the transmitter sends data with a transmission rate r
based on an estimated CSI. Due to a latency constraint, the
length of each transmission frame is required to be less than
Md channel uses. Moreover, each frame is further divided into
three slots. First, the transmitter takes the first slot of l channel
uses to transmit training signals to the receiver. Secondly, the
receiver estimates the channel based on the training signals
and sends CSI feedback to the transmitter via a slot with a
fixed length of F symbols. Finally, the payload is transmitted



to the receiver with adjusted coding rate over the slot of n
channel uses. Hence, we have n+ l ≤Md − F := M .

The channel is assumed to experience Rayleigh fading, i.e.,
h ∼ CN (0, 1). Note that the channel estimation is not perfect,
i.e., the exact channel coefficient h is likely to be not the same
as the estimated one ĥ. In particular, the following relationship
holds

h = ĥ+ ∆h (1)

where ∆h is the estimation error. Due to the MMSE esti-
mation, ĥ and ∆h are statistically independent and satisfying
ĥ ∼ CN (0, lPS

1+lPS
) and ∆h ∼ CN (0, 1

1+lPS
), where PS is the

transmit power.

At the receiver, an equalizing filter ω = ĥ∗

|ĥ|2
is designed

according to the MMSE estimation. Analog to h, the received
signal after filtering can also be represented by the sum of
the estimated received signal together with the ”interference”
signal caused by the estimation error

y = ŷ + ∆y =
√
PSω(ĥ+ ∆h)x+ ωa

=
√
PSωĥx+

√
PSω∆hx+ ωa,

(2)

where x is the signal at the transmitter and a ∼ CN (0, σ2) is
the additive white Gaussian noise (AWGN). The instants SNR
γ can be obtained as

γ =
|ĥ|2PS

|ω∆h|2
|ω|2 PS + σ2

=
P

I + 1
, (3)

where P = PS |ĥ|2
σ2 and I = PS |∆h|2

σ2 . Note that the channel
experiencing Rayleigh fading. The closed-form cumulative
distribution function (CDF) of SNR γ is

Fγ(z) =

∫ +∞

0

FP (z(p+ 1))fP (p)dp

= 1− exp

(
− z

κlPS

)
(1 + z/(lPS))−1,

(4)

Finally, we have the probability distribution function (PDF) of
γ

fγ(z) =
lPS exp

(
− z
κlPS

)
(lPS + z)2

+
exp

(
− z
κlPS

)
κ(lPS + z)

, (5)

where κ = l/(lPS + 1).

III. THE FBL THROUGHPUT MAXIMIZATION

In the FBL regime, the transmission/decoding error is no
longer arbitrarily small even if the transmission rate is smaller
than the Shannon capacity. According to [3], for a given coding
rate r and a given channel gain z, the instantaneous (block)
error probability at the receiver is

ε = Q

(√
n

V (γ)
(C(γ)− r) loge 2

)
, (6)

where C(γ) = log 2(1+γ) is the Shannon capacity and V (γ) =
1− 1

(1+γ)2 is the channel dispersion.

The throughput µ of the considered network is defined
as the average (over channel fading) successfully transmitted

information within a given total channel use M . Considering
the channel distribution provided in (5), µ is given by

µ =

∫ +∞

0

(
1−Q

(√
n

V (γ)
(C(γ)− r) loge 2

))
fγ(z)r · n

M
dz.

(7)

Following this throughput model, in the following subsections
we provide a constant and an instantaneous design to maximize
the FBL throughput. To further exploiting the acquired CSI,
we also propose a joint optimal design combing both frame
structure design and instantaneous coding rate selection.

A. Frame Structure Design

We first consider a constant design on the frame structure.
Note that in each frame, the two slots for channel estimation
and data transmission share at most M symbols, i.e., l+ n ≤
M . To design the frame structure actually requires to determine
the optimal lengths for these two slots. On the one hand, the
estimation slot l influences the quality of channel estimation.
As stated in (1), the variance of SNR is a monotonic increasing
function with respect of l. In other words, a longer l makes
the estimated SNR be statistically closer to the real one,
i.e., ∆h → 0 and ĥ → 1. On the other hand, as the slot
for the packet transmission, n directly influences the system
performance. In particular, for a fixed transmission rate r0, the
error probability ε is monotonic decreasing in n. If n is infinite
or sufficiently long, the error probability is arbitrarily small for
an AWGN channel, which leads us to the infinite blocklength
regime. Since the overall blocklength M = n+ l indicates the
resource of the system, there exists clearly a trade-off between
n and l in terms of resource allocation. Therefore, we aim at
maximizing the throughput at the receiver by scheduling the
parameter n and l. Mathematically, the optimization problem
is formulated as,

maximize
n, l

µ (8a)

subject to l + n ≤M, (l, n) ∈ Z+, (8b)
ε ≤ εt. (8c)

Firstly, we provide the following lemma to replace the inequal-
ity constraint in (8b) by a equality constraint.

Lemma 1. In order to maximize the throughput µ, the latency
constraint in (8b) is required to hold with equality.

Proof: To prove Lemma 1 by contradiction, we assume
that there exists an optimal solution (l′, n′) which satisfies the
constraint with strict inequality, i.e., M − (l′ + n′) = α > 0.
Hence, the optimal result µ′ with this optimal solution (l′, n′)
is always the global maximum, namely µ′(l′, n′) ≥ µ(l, n).
On the other hand, we can find another feasible solution
(l′′ = l′, n′′ = n′ + α) ∈ {l, n|l + n ≤ M}. In our previous
works [6], we showed the throughput is a strictly increasing
function with respect to the blocklength of transmission n.
Hence, we conclude that the solution (l′′, n′′) results in a
throughput µ′′ > µ′, i.e., the assumption that (l′, n′) is the
optimal solution of the problem is violated.

We can therefore eliminate the parameter n by substituting
n by M − l. Furthermore, we replace the original problem



by the relaxation of l. We denote lo ∈ (0,M) the optimal
solution of the relaxed problem. Then, the optimal solution l∗
of the original problem can be determined by comparing the
neighbor integers of lo, i.e., we can obtain l∗ = arg max

l∈{lceil,lfloor}
µ,

where lceil = dloe and lfloor = bloc are the results of ceil and
floor functions, respectively. Noting that the error probability
is a monotonic decreasing function in n, the constraint (8c)
can be replaced equivalently by n ≥ nt, where nt = ε−1

t (n).
Hence, Problem (8) is reformulated as

maximize
l

µ (9a)

subject to l ≤M, l ∈ R+, (9b)
n = M − l, (9c)
n ≥ nt, n ∈ R+. (9d)

To solve this problem, we establish following lemma:

Lemma 2. There exists only one optimal solution l∗, so that
µ(l∗) = maxµ(l), where l ∈ (0,M).

Proof: As stated in [16], the error probability in the
finite blocklength regime can be approximated as follows by
applying the Laplace Method:

E(ε) =

∫ +∞

0

Q

(√
n

V (z)
(C(z)− r) loge 2

)
fγ(z)dz

≈
√
n

π

√
2π

Tg′′(γ0)
v(γ0) exp(−Tg(γ0|l))

≈ Fγ(γ0),

(10)

where γ0 = 2r − 1, v(γ0) =
√

1/(γ0(γ0 + 2))Fγ(γ0), T =
n
2 and g(γ0|l) = (C(γ0|l)−r)2

V (γ0|l) . Note that M ≥ n + l. Based
on (10), we reformulate µ as

µ = (1− F (γ0|l))r
M − l
M

. (11)

We have the first order derivative of µ of l

∂µ

∂l
= A ·K(l), (12)

where A = − exp
(
−γ0lPS−1

lP 2
S

)
(lPS(γ0 + lPS)2)−1 is a non-

zero real constant. K(l) is a cubic function with respect of l
and it can be expressed as

K(l) = P 3
S l

3 + (γ0PS + 2γ0P
2
S)l2

+ (γ2
0 − γ0P

2
S − γ0PS)l − γ2

0

= al3 + bl2 + cl + d.

(13)

Through a discriminant test, where the discriminant of a
cubic function is ∆ = 18abcd−4b3d+b2c2−4ac3−27a2d2 >
0, we know that K(l) possesses three real roots, i.e., there
exists three local extrema µ(l∗i ) so that µ′(l∗i ) = 0, where
i = 1, 2, 3. To further determine whether those extrema are
maxima or minima, the second derivative of µ is required to
be explored, which seems intractable. Therefore, we have

∂K

∂l
= 3al2 + 2bl + c. (14)

The roots of ∂K
∂l is then lo1,2 = −2b−

√
4b2−16ac
8a . Noting b =

γ0PS + 2γ0P
2
S > 0, one of the roots lo1,2 is always negative,

which is infeasible. This implies that only two of l∗i ∈ (0,M)
exists. In other word, there exists at most one local maximum
and one local minimum with feasible l ∈ (0,M). Moreover,
we have 0 ≤ F (γ0) ≤ 1 and l ≤ M , which results µ = (1−
F (γ0))rM−lM ≥ 0. Readily, we can also obtain that µ(0) = 0
and µ(M) = 0 are the minimum of objective function. As a
result, µ is a quasi-concave function with a global maximum
µ(l∗), where l∗ ∈ (0,M).

According to the above lemma, the quasi-concave problem
can be efficiently solved by many optimization techniques.

B. Instantaneous Coding Rate Selection

Next, we exploit the channel estimation to optimize the
coding rate in the transmission frame-wise. Recall that the
transmitter takes the first slot of l channel uses to transmit
training signals to the receiver. The receiver estimates the
channel based on the training signals and sends CSI feedback
to the transmitter. Finally, the payload is transmitted to the
receiver with adjusted coding rate over the slot of n channel
uses. This operation is executed in each frame and the coding
rate can be modified based on the currently estimated CSI.
We assume the feedback transmission of the feedback takes
a constant cost, i.e., F in symbols. Hence, the instantaneous
throughput (namely, the statistically transmitted information
bits in a single frame duration) can be improved by solving
the following optimization problem:

maximize
r

µi = (1− ε(r|zi, n)) ri
n

M
(15a)

subject to ε ≤ εt, (15b)

where i ∈ {0, 1, ..., N} indicates the index of the frame.
To solve this optimization problem, we prove the concavity of
the objective function with respect to r, as stated in following
lemma.

Lemma 3. µi is a concave function with respect to ri, where
ri ∈ (0, C).

Proof: The concavity is proven by the second derivative
test of µi as follows,

∂2µi
∂r2
i

= (− n

M
2e−

W2

2 (2 +W )) (16)

where W =
√

n
V (C−r) ≥ 0. Readily, we can obtain ∂2µi

∂r2i
≤ 0,

i.e., µi is concave in ri.

C. Joint Design

Note that the proposed designs with respect to (l, n)
and r in the above two subsections are independent. In the
following, we combine them together. it can be considered
as the following joint optimization problem with respects to



(l, n, r):

maximize
l, n, r

∫ +∞

0

max
r

(1− ε(z, r, n))r
n

M
fγ(z|n)dz

(17a)
subject to ε ≤ εt, (17b)

l + n ≤M, (l, n) ∈ Z+. (17c)

However, the global solution of Problem (17) is analytically
unpredictable as the system outage probability is a double
integral form with the up-bounds given by the instantaneous
throughput. Therefore, in the following we propose a sub-
optimal solution.

In the proposed sub-optimal solution, we start with con-
sidering the offline optimization problem:

maximize
l, n, r

∫ +∞

0

(1− ε(z, r, n))r
n

M
fγ(z|n)dz (18a)

subject to ε ≤ εt, (18b)
l + n ≤M, (l, n) ∈ Z+. (18c)

In order to solve this problem, we provide the following
Lemma.

Lemma 4. If the coding rate is constant during the trans-
mission, the average throughput µ is a concave function with
respect to r, where r ∈ (0, ε−1

t (r)).

Proof: The average throughput µ is the mean value of
instantaneous throughput µi with the frame length N going to
infinite. It reads as

µ = lim
N→∞

1

N

∑
µi(r), (19)

According to Lemma 3, µi is a concave function with respect
to r. Hence, µ as a summation of the concave functions is also
concave.

We determine the optimal solution l∗off, n
∗
off and r∗off of

Problem (18) depending on the average channel gain before the
transmission. In each frame, we solve Problem (15) according
to Lemma 3 by setting l = l∗off and n = n∗off and obtain the
optimal solution r∗i for the i-th frame.

Note that the optimal solution l∗ and n∗ is based on the
assumption that the coding rate roff cannot be adjusted frame-
wise and constant over the whole transmission. Therefore,
the result µ∗ that we obtained by l∗, n∗ and r∗i , is a sub-
optimal result. However, the impact of the instantaneous sub-
optimal coding rate to the overall throughput is limited, since
the influence of estimated Rayleigh channel over whole trans-
mission depends on the accuracy of estimation instead of the
channel variance. In the next section, we show numerically the
performance of the proposed algorithm is close to performance
of the global optimal solution.

IV. SIMULATION RESULTS

In this section, we provide the numerical results. In partic-
ular, we validate our analytical models by Monte Carlo simu-
lations. Subsequently, we show the performance advantage of
the proposed design by comparing the numerical results with
other benchmark schemes. In all the simulations, we consider

Algorithm 1 for solving the joint optimization problem
1: Initialize lkoff = nkoff = M/2, k = 0.
2: Solving the local problem max

r
µ(r, lkoff, n

k
off) according to

Lemma 4, and denote the solution by rk+1
off .

3: Solving the local problem max
l,n

µ(rk+1
off , l, n) according to

Lemma 2, and denote the solution by l′off.
4: Let loff,ceil = dl′offe and loff,floor = bl′offc. The optimal

solution is then lk+1
off = arg max

l∈{loff,ceil,loff,floor}
µ(r(k+1), l, n).

5: Updating the iteration indicator k=k+1.
6: Repeating steps 1)-6) till the solution converges, and

denote the solution l∗off = lkoff, n
∗
off = nkoff.

7: In each i-th frame, solving the problem
max
ri

µi(ri, l
∗
off, n

∗
off, ĥ) after acquiring estimated CSI

ĥ according to Lemma 3, and denote the solution by r∗i .
8: Outputting lopt = l∗off, n

opt = n∗off and ropt
i = r∗i .

the following setups. First, we set transmit power PS = 10
dB and receiver noise power σ2 = 0.01. In addition, we
assume the distance between transmitter and receiver d = 50
m. Moreover, the reliability constraint is set to 99.9999%, i.e.,
the error probability threshold εt = 0.0001. Finally, l0 is set to
80, following the same portion of pilot symbols in LTE [17]
with M = 3000 per frame.

A. Validation
We start the validation with Fig. 1 to present the average

throughput performance while varying the blocklength of the
first slot l. Readily, it confirms our analytical model that µ
is concave with respect to l for all the cases with different
coding rate selections. In particular, the throughput increases
dramatically with the initially increasing l due to the increase
of the SNR after filtering, namely the increase of the reliability.
The more portion of frame that l possesses, thehigher accuracy
of estimation is achieved by the transmission. Nevertheless, the
error probability is a non-linear function and becomes quasi
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Fig. 1. The throughput µ versus blocklength l under M = 900 over Rayleigh
fading channel.
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Fig. 3. The optimal result µ∗ versus the total blocklength M under varying
transmit power PS over a Rayleigh fading channel h ∼ CN (0, 1). The results
of the proposed algorithm and exhaustive search are illustrated by marks and
curves, respectively.

flat-topped for a high SNR. In this regime, the contribution to
the throughput is dominated by the length of the second slot
n = M − l instead of l, which represents the accuracy of the
estimation. Therefore, there exists a trade-off between l and n.
It can be observed intuitively from the figure. Moreover, The
shape of the trade-off is also influenced by the coding rate.
Clearly, the system with instantaneous coding rate selection
significantly outperforms the system with constant coding rate
in the offline optimization scheme, since the instantaneous
coding rate influences not only the transmitted information in
the frame, but also the error probability according to (9). It
motivates us to further investigate the relationship between the
error probability and the throughput in the perspective of r.

The impact of the coding rate (within transmission frame

i) on the instantaneous throughput and error probability are
shown in Fig. 2, where the instantaneous channel gain is
set to h = 1. As expected, the throughput shows quasi-
concavity with respect to r, which is confirmed by Lemma
3. In particular, it is observed that µi is concave in the coding
rate ri when ε < 0.5, i.e., the error probability has a value of
practical interests in a reliable transmission scenario. It can be
also observed that the throughput increases almost linearly in
ri in the low rate region, since in this case the bottleneck
of the system performance is the coding rate. In addition,
as ri approaches closer to the capacity, the throughput drops
dramatically, as the transmission error becomes considerable.
According to (7), when ri is set to the Shannon capacity, the ε
becomes 0.5. Hence, in the FBL regime guaranteeing a reliable
transmission requires to set the coding rate much lower than
the Shannon bound. Note that in this work, our designs are
under reliability constraints. The figure actually indicates that
when the system has a stringent error probability threshold,
e.g., εt = 10−4, the top of the throughput curves can not be
achieved. In other words, the cost (in terms of throughput) of
guaranteeing a reliable transmission is significant. In particular,
the feasible throughput can be approximated by a linear
function µ ≈ rM−lM under stringent reliability constraints.

To confirm the performance of the proposed joint design,
we compare it with the exhaustive search scheme. The results
are provided in Fig. 3, where different transmit power setups
are considered. First of all, it is shown that the throughput
is monotonously increasing in the total blocklength M . In
addition, a high transmit power PS also leads to a high
throughput. Secondly, the performance of our proposed sub-
optimal algorithm provides a performance close to the exhaus-
tive search scheme representing the global optimal solution.
This confirms the effectiveness of the proposed joint design.
Finally, we also observe that throughput improvement by the
joint design is more significant when M is short.

B. Performance Comparison

In this subsection, to show the advantage of the proposed
algorithm, we compare the performance of the proposed design
with the following three benchmark schemes:

1) Perfect CSI scheme. The perfect CSI is prior-acquired
by both transmitter and receiver without any estima-
tion, i.e., h = ĥ and l = 0. Moreover, the coding
rate r is still adjustable in each frame depending on
the CSI. This scheme provides an upper bound of
the system performance, although this bound is not
tight due to the fact that perfect CSI is unrealistic in
practical systems.

2) Average CSI scheme. in this case, no instantaneous
CSI is obtained, the frame structure is designed
purely based on the average CSI. Therefore, the
coding rate is also selected according to the average
CSI, i.e., r∗i = r∗off. In other words, as long as the
coding rate is determined, it is fixed over all frames.
This scheme is expected to represent a lower bound
performance of the considered network.

3) MMSE estimation scheme with a constant length.
In this scheme, the length of the slot for channel
estimation is constant, i.e., l has a constant value



l0. In this case, the Problem (17) degenerates into
Problem (15) with the constraint of l = l0.
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Fig. 4. Performance comparison with different schemes.

The comparison results are provided in Fig. 4, where the
average throughput is evaluated while varying the frame length
M . Note that the instantaneous coding rate selection cannot be
applied to the average CSI scheme. Instead, in the simulation,
we consider a constant coding rate optimization to maximize
the average throughput.

Clearly, throughputs are increasing in M for all schemes.
In particular, the system under the perfect CSI scheme always
outperforms other schemes and the system under the average
CSI scheme performs poorly even with a significantly long
M . These two schemes actually provide an upper bound and a
lower bound of the considered system with an inaccurate CSI,
respectively. We can observe that the proposed design is closer
to the upper-bound. Finally, we can observe that the proposed
design also shows a performance advantage in comparison
to the MMSE scheme with constant length of estimator. In
particular, this performance advantage is more significant when
M is short. It implies that the frame design with imperfect CSI
is desirable in low-latency short blocklength scenarios.

V. CONCLUSION

In this work, we considered a single link wireless trans-
mission system with MMSE estimated imperfect CSI. Aiming
at the FBL throughput under given reliability constraints, we
proposed a frame structure design by allocating the slot of
channel estimation and data transmission. Moreover, we pro-
vided an instantaneous adapted coding rate selection based on
an estimated CSI. We futher also studied the joint optimization
problem by combing the frame structure design and coding rate
selection. We solved the problem with a sub-optimal solution.
Via numerical simulations, we validated the analytic model
and compared the performance of our proposed algorithm with
other benchmark schemes.
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