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Abstract—In this work try we try to estimate the positions
of multiple co-channel wireless nodes along with the unknown
transmit power of them. The propagation channel is assumed
to be log-normal shadowing model. We propose an unbiased
estimator. The underlying complicated optimization problem has
a combinatorial nature that selects the best grid points as the
location of the targets. We then convert the combinatorial prob-
lem to a convex form by means of `1-minimization, or precisely a
technique which is inspired by the theory of compressed sensing
(CS). The performance of the estimator is justified to be good
using simulations.

Index Terms—multi-source localization, mixed-integer pro-
gramming, k-NN, internet of things

I. INTRODUCTION

It is envisaged that the majority of applications in the
context of the internet of things and 5G mobile networks
depend on the location awareness to deliver better services.
Therefore, the old topic of localization is not yet obsolete.
In the literature, a variety of techniques have been exploited
to solve such a problem. We here stick to a received signal
strength (RSS)-based technique due to its simplicity and lower
cost compared to the time difference of arrival (TDoA) or
angle of arrival (AoA), [1]. Despite its vulnerability against
uncertainties of path-loss model, RSS localization is beneficial
whenever the precision can be somewhat compromised for
price. The RSS-based localization for a single target with
unknown transmit power is studied in many publications, such
as [2], where the by dividing the RSS of two different receivers
the transmit power cancels out. The remaining of the problem
is a standard multilateration problem. This technique is known
as differential or ratio of RSS which is not applicable in our
case since we assume that there are more than one transmitter
on the same channel which causes co-channel interference
problem.

A. Sparsity Aware Localization

Employing CS in the context of localization, especially in
fingerprinting, is a famous technique. This is motivated by the
spatial sparsity of target(s) transmitting in the area. Usually, a
grid is defined on the area of interest, and then the RSS of the
receivers, i.e., Access Points (APs) are measured by moving
the transmitter from one grid point (GP) to another in order to
build a radio map. Later, based on the RSS observations, the
GPs near which the targets reside will be identified by finding
a vector whose `0-norm is equal to the number of targets. That
means a vector whose all entries are 0, except for those entries

which point out to the existence of a target. Since `0-norm is
combinatorial and non-convex, the vector can be reconstructed
using CS, i.e., `1-minimization, with a high probability if some
certain conditions are met. One of these conditions is sparsity
which is satisfied, since out of many GPs only few may host
a target.

Among the works that do multi-target CS-fingerprinting, we
can mention [3], [4]. The difference between their work and
ours is that they assume for each target there is a distinct
observation (RSS) at fusion center (FC). Indeed, in their
scenario, the targets are not co-channel. This can be seen as
several single target problems.

On the contrary, [5] applies CS for the co-channel multi-
target fingerprinting scenario, where not only the RSS at the
receivers but also the cross-correlation between signals of the
target signals are exploited for improving the quality of the
localization. This, nevertheless, burdens the communication
between the APs and FC leading to higher power consumption
as well as implementation costs, cf. [6], [7]. Therefore, it is
not a reasonable strategy in the case of a sensor network,
where the battery consumption of sensor nodes (SNs) is a
limiting factor. Furthermore, [8] and [9] tackle the problem
of co-channel multi-target localization. While the former does
so by applying CS to a TDoA system, the latter formulates
an AoA-based `0-norm selection problem to decide which
peak in the auto-correlation function of the receiver belongs
to which transmitter. Even though authors do not use the
term compressed sensing, yet their solution is based on `1-
minimization.

B. Our Contribution

In this work, we assume a log-normal shadowing path-loss
model, where multiple co-channel transmitters cause interfer-
ence one another. This makes the multilateration technique, as
in the single target scenario, impossible. To the best of our
knowledge, there is no work with similar assumptions, except
for our previous works [6] and [7], where `0-minimization
techniques are deployed to solve the intractable underlying
mathematical problem. In this work, we transform the problem
to a sparse formulation and solve an `1-minimization. Note our
solution is inspired by the theory of CS in the sense that we
relax `0-norm to `1-norm. But our formulation does not have
the exact form of the famous techniques of CS. Therefore, we
simply call the method of this paper `1-localization. We start
with the assumption that targets are at grid points and deal with



the off grid targets, subsequently. An interesting application
for our scenario is finding the position of the illegitimate
secondary user(s) with unknown transmit power. Note such
interfering users decrease the throughput of the primary user
or even cause link failure due to strong interference.

The organization of this paper is as follows: the system
model is described in Sec. II and statistical properties of the
RSS at receivers in Sec. III. Then, Sec. IV explains the idea of
`1-localization and also presents the proposed algorithm. The
performance of the presented solutions is justified by means
of computer simulations in Sec. V.

Notations: All mathematical notations, symbols and vari-
ables of this paper are summarized in Tab. I.

II. SYSTEM MODEL

The system of consideration consists of N ∈ N active
targets with unknown position and K ∈ N passive SNs with
known positions. Each target n ∈ IN transmits a signal with
the unknown power pn. We know that that transmit power of
each target is bounded as follows

¯
P ≤ pn ≤ P̄ , ∀n ∈ IN , (1)

where
¯
P, P̄ ∈ R+ are, respectively, the lowest and highest

possible values for the transmit power of an active target. The
propagation channel is based on the log-normal shadowing
attenuation model presented in [10]. In a multi-source sce-
nario, the RSS rk at sensor k is the sum of different terms
corresponding to the received power of each target signal [11],
[12]:

rk =
∑
n∈IN

c0 pn d
−α
kn 10

ζkn
10 , (2)

where dkn is the distance between sensor k and nth target, α
is the path-loss exponent and ζkn ∼ N (0, σ2

kn) is a zero-mean
Gaussian random variable with the power of σ2

kn. It models the
log-normal shadowing between each pair of sensor and target

TABLE I: Summary of general mathematical notations

Notation Description
N set of all integer positive and non-zero numbers
R set of all real numbers
R+ set of all non-negative real numbers

Rm×n set of all real matrices of size of m× n

Rm set of all real vectors of size of m× 1

Il the index-set Il := {1, · · · , l} for l ∈ N
x scalar x
x column vector x with entries xi

x′ transpose of vector x
X matrix X with entries xij or [X]ij

[x]i or xi entry i of vector x
[X]ij or xij entry i, j of matrix X

1 all-ones vector of proper size
‖x‖0 `0-norm, i.e., the number of non-zero entries of x
(·)? optimal solution of an optimization problem

y

xw0−w0

w0

−w0

Fig. 1: A wireless sensor network consisting of K = 10
passive sensors ( ) and N = 2 targets ( ) . The grid
granularity is G = 5, which means the area of interest is
divided to (G − 1)2 = 16 smaller squares. This leads to
G2 = 25 GPs, around which we look for the targets. The
width of each grid square is ∆g = w

2 .

nodes and is assumed to be identically and independently
distributed (iid). The coefficient c0 is given by [10],

c0 :=
GtGrλ

2

(4π)
2 , (3)

where Gt and Gr are the gains of transmit and receive
antennae, respectively. The wavelength is denoted by λ. We
assume that c0 is known and without loss of generality and
for the sake of simplicity, c0 = 1.

Here, we have neglected the thermal additive noise due
to the fact that shadowing has a much stronger effect on
RSS compared to the thermal noise [13], [14], [15]. The
main reason for such an assumption is that the receivers
have considerably higher detection threshold than sensitivity.
Furthermore, the RSS measurements are usually performed
after correctly decoding of the information data out of the
received data packets [13]. Besides, the effect of additive
noise can be somewhat compensated using methods of blind
estimation of noise power, e.g., [16], [17].

The area of observation is assumed to be a square in
the range of [−w,w], w ∈ R+ in both x- and y- axes, in
the Cartesian coordinate system. The targets and sensors are
randomly distributed within the area. The ordered pair (x̌k, y̌k)
stands for the coordinate of kth sensor node, while target n is
located at the unknown position (xn, yn). Assuming that FC
acquires the values of RSS rk of the kth sensor error-freely
upon successful communication from SN, it has to solve the
following system of nonlinear and non-convex equation to find



the position (xn, yn) of each target:

rk =
∑
n∈IN

pn 10
ζkn
10(√

(xn − x̌k)2 + (yn − y̌k)2
)α . (4)

Unfortunately, solving such a system of equations is not easy.
Thus, we resort to solve it by discretizing the area into a grid
of granularity of G ∈ N which means G2 GPs, in total. Let
GwG(x, y) define the grid set centered at the point (x, y) of
width 2w ∈ R+ and the granularity G. Indeed, it is the set of
the equidistant GPs defined by

GwG(x, y) :={
(x− w+(i− 1)∆g, y − w + (j − 1)∆g) | i, j ∈ IG

}
, (5)

where ∆g = 2w
G−1 is the width of one grid square. Then, our

defined grid consists of the GPs (x̃m, ỹm) ∈ GwG(0, 0), m ∈
IG2 . Fig. 1 depicts an example grid given by Gw5 (0, 0).

III. SUM OF LOG NORMAL RANDOM VARIABLES

The sum of log-normal (LN ) random variables has an
unknown probability distribution function (pdf) [18], even for
the sum of two random variables. The underlying reason is that
the moment generating function of the LN distribution is not
defined, [19]. In general, LN distribution has bad behavior and
cannot be described by its moments. This holds, consequently,
for sum log-normal (SLN ) distribution. On the other hand,
all the moments of the LN distribution exist in closed-form.
In the literature, there are several works trying to approximate
SLN , cf. [20] and references therein, based on either LN
approximation, e.g., [18], or numerical methods. Since our
goal is to come up with a good location estimator, we are
interested in a closed-form approximation which does not need
prior knowledge of the cumulative distribution function (cdf)
of the RSS at each sensor. Therefore, we choose the Fenton-
Wilkinson method in [18], which approximates SLN by LN
and matching the first and second moments. Though, this
is not very accurate in low values of the random variable,
but is suitable for our purpose due to its simplicity and due
to the fact the all the moments of SLN distribution exist
in closed-form. We will see in what follows, that even this
simple approximation leads to a very complicated optimization
problem for finding the position of the targets.

Let Rkn be the random variable from which the values
of rkn are drawn. Note that rkn stands for the RSS at
sensor k due to the transmit signal from nth target, i.e,
rkn = pn d

−α
kn 10

ζkn
10 , then the lth moment of Rkn is given

by
E
(
Rlkn

)
=
(
pn d

−α
kn

)l
βl

2

kn, (6)

where βkn = e
(ln 10)2σ2kn

200 . Obviously, the mean and variance
of Rkn read

E(Rkn) =pn d
−α
kn βkn , (7)

Var(Rkn) =(pn d
−α
kn )2(β2

kn − 1)β2
kn . (8)

Let us assume that all σkn are equal, then define β = βkn
for all pair of sensors and targets. A scenario that such an

assumption does not hold is multi-floor indoor environments
[11]. We further assume that the value of β is known. Since all
the random variables Rkn are pairwise independent the mean
Mk and variance Vk of the random variable Rk :=

∑
n∈IN

Rkn

is given by

Mk =βgk , gk :=
∑
n∈IN

pn d
−α
kn , (9a)

Vk =(β2 − 1)β2hk , hk :=
∑
n∈IN

(pn d
−α
kn )2 . (9b)

Now, similar to [18] we approximate the random variable Rk
by an LN :

Rk ≈ eµk+σkX , (10)

where X is a zero-mean normal random variable with variance
one. We find the values of µk and σk such that the mean and
the variance of Rk equate with the ones of the random variable
eµk+σkX :

Mk =eµk+
σ2k
2 , (11)

Vk =e2µk+2σ2
k , (12)

which results in

µk = 2 ln(Mk)− 1

2
ln(M2

k + Vk) , (13a)

σ2
k = ln(M2

k + Vk)− 2 lnMk . (13b)

Finally, we state that the ln rk is approximately a normal
random variable:

ln rk ≈ µk + σkX . (14)

Deriving classical estimators, e.g., maximum likelihood (ML)
or minimum variance unbiased (MVU) is not possible, since
the exact pdf of the RSS is unknown. We are rather interested
in an estimator which is only unbiased since minimizing the
mean square error (MSE) w.r.t the given approximation, i.e.,
minimizing σ2

k, is also mathematically intractable.

IV. `1-LOCALIZATION

Inspired by the idea of employing CS in the context of
fingerprinting localization, we try to take advantage of `1-
minimization in our problem. Since we exploit the explicit
path-loss model we can arbitrarily increase the granularity of
the (virtual) radio map.

A. On-grid Target

Let us momentarily assume that the targets are located
exactly at GPs. We later deal with the case that such an
assumption is invalid. Let d̃km denote the distance between
sensor k ∈ Ik and the mth GP

d̃km =
√

(x̃m − x̌k)2 + (ỹm − y̌k)2 , m ∈ IM . (15)

which results in RSS r̃k at the SN k:

r̃k =
∑
m∈IM

p̃md̃
−α
km10

ζkn
10 . (16)



where the variable p̃m is zero when the GP is not occupied
by any target. It is, otherwise, equal to the transmit power of
the corresponding target, i.e.,

p̃m =

{
0 , @n ∈ IN | (xn, yn) = (x̃m, ỹm)

pn , ∃n ∈ IN | (xn, yn) = (x̃m, ỹm)
. (17)

Therefore, we can write the RSS readings of all sensors as
r̃ ∈ RK+ by

r̃ = Φ̃p̃ , (18)

where [Φ̃]km := d̃−αkm and the kth entry of r̃ is r̃k. The mth

entry of p̃ ∈ RM , i.e., p̃m ∈ {0, [
¯
P, P̄ ]} is a selection variable

to choose (or to not choose) the mth GP. Since exactly N GPs
out of M must be selected, the vector p̃ is N -sparse.

To find the position and the transmit power of the targets
we minimize ‖r− r̃‖2, where the entries of the vector r ∈ RK+
are the RSS-readings at SNs. Hence, it is desirable to solve
the optimization problem

min
p̃
‖r− Φ̃p̃‖2 (19a)

s. t. ‖p̃‖0 = N (19b)
1

¯
P ≤ p̃ ≤ 1P̄ . (19c)

Unfortunately, due to the constraint (19c) the problem does
not have exactly the form of either Basis Pursuit (BP), Basis
Pursuit Denoising Sensing (BPDN) or Dantzig Selector (DS).
Therefore, we cannot directly apply the CS theory to our
problem. Consequently, we propose a different solution which
is simply based on the idea of relaxing the `0-norm to `1-norm.
Therefore, we call what comes in the following `1-localization.
But before doing so we need to do a minor modification to
the equation (18):

r̃ = Φs , (20)

where [Φ]km := p̃md̃
−α
km and s ∈ RM . Indeed, sm is a

selection variable to choose (or to not choose) the mth GP,
which means sm ∈ {0, 1}. Thus, s must be a N -sparse vector.
Since the transmit power p̃m is unknown, we assume

φkm = [Φ]km =
1

2
(
¯
P + P̄ )d̃−αkm . (21)

In case the transmit power is known, i.e.,
¯
P = P̄ , the afore-

mentioned assumption is correct because p̃m = 1
2 (

¯
P + P̄ ) =

¯
P = P̄ . The idea of `1-localization for the on-grid targets is
based on relaxing the following combinatorial problem

min
s
‖r−Φs‖2 (22a)

s. t. s ∈ {0, 1}M (22b)
‖s‖0 = N , (22c)

to the convex quadratic program (QP), below

min
s
‖Ψr−Qs‖2 (23a)

s. t. 0 ≤ s ≤ 1 (23b)
1′s = N , (23c)

where Q := ΨΦ and Ψ = orth(Φ′)′Φ† is the pre-processing
matrix of size K×K. The symbol † shows the Moore–Penrose
inverse and orth(X) is an orthogonal basis for the range of
matrix X. The authors in [3] apply such a pre-processing
by multiplying both sides of the equation r = Φs with Ψ,
since the sensing matrix Φ does not possess the incoherence
property.

The problem (23) can be solved by any of the methods
simplex algorithm, interior point, augmented Lagrangian and
gradient descent. But as our focus in this work is not numerical
aspects of optimization, we rather solve the problem by
existing solvers such as [21] or [22].

1) Averaging: Since the targets can be anywhere within the
area of observation, the optimal solution of the problem (23)
does not provide a good solution. The reason is simply that
the optimal point s? is not necessarily N -sparse. Therefore,
we apply the averaging rule for a better position estimation

x̂n =

∑
m∈Πn

s?mxm∑
m∈Πn

s?m
, (24a)

ŷn =

∑
m∈Πn

s?mym∑
m∈Πn

s?m
, (24b)

where the sets Πn ⊂ IM0
⊂ IM , ∀n ∈ IN are the partitions

of the set IM0
, i.e.,

Πn ∩Πn′ = Ø , ∀n, n′ ∈ IM0
n 6= n′ , (25a)

Π1 ∪ · · · ∪ΠN = IM0
. (25b)

The set IM0 is the index set of M0 largest entries of s?, for a
given M0 < M .

2) Clustering the GPs: By solving the problem (23), the
set IM0

is easily identified for a given M0. Now the important
question arises how to decide on the optimal partitioning.
We exploit the technique of k-means clustering where M0

observations will be clustered into N partitions. Π1, · · · ,ΠN .
Fig. 2 shows how the idea averaging using (24) improves

the positioning performance. Note, if we choose M0 = N
it means we take the N largest entries of s? and select the
corresponding GPs as the position estimation.

3) Iterative grid refinement: Assume starting from an initial
set G0 of GPs and applying the aforementioned technique for
localization, then we can define new grid around the points
(x̂n, ŷn) and repeat the whole process. Given the set of points
(x̂n, ŷn), the new grid will be formed by

G(N) =
⋃
n∈IN

G
w
2

G (x̂n, ŷn) , (26)

where 2w is the width of the monitoring area. Having updated
the grid G(N), at iteration i the new position estimate (x̂n, ŷn)
is then achieved using (23) and (24). The simulation reveals
that this idea provides a high convergence probability. Though,
we observe ripples in the position estimations in the vicinity of
the true position of targets. Therefore, after I1 ∈ N iterations,



Grid points, first partition: (x̃m, ỹm), ∀m ∈ Π1

Grid points, second partition: (x̃m, ỹm), ∀m ∈ Π2

True position of targets: (xn, yn), ∀n ∈ IN
Estimation with averaging: (x̂n, ŷn), ∀n ∈ IN
Estimation without averaging: (x̃m, ỹm), ∀m ∈ IM0

,M0 = N

Fig. 2: The result of `1-localization via the problem (23) and
then applying the averaging rule (24) for N = 2 targets.

we take the position estimation (x̂n, ŷn) values as the initial
points for another algorithm which we call fine-tuning.

4) Fine-tuning the grid: Similar to works [7] we are
interested in solving the system of equations ln rk − µk = 0,
see Eq. (14). Since it is mathematically intractable to solve
this system of equations, we minimize the function∑

k∈IK

f̃2
k (27)

where f̃k is the first order Taylor approximation of the function
ln rk − µk. Let us start doing this by defining the function
fk(p̃1, · · · , p̃M , x̃1, · · · , x̃M , ỹ1, · · · , ỹM ) or in short form fk,

fk := ln rk − µ̃k = ln rk − lnβ − 2 ln g̃k

+
1

2
ln
(
g̃2
k + (β2 − 1)h̃k

)
, (28)

where

g̃k =
∑
m∈IM

p̃m d̃
−α
km , (29)

h̃k =
∑
m∈IM

(
p̃m d̃

−α
km

)2

. (30)

Then, the derivative of fk w.r.t θ that stands for any of the
variables x̃m, ỹm, or p̃m reads

∂fk
∂θ

= − 2

gk

∂gk
∂θ

+
∂gk
∂θ gk + 1

2 (β2 − 1)∂hk∂θ
g2
k + (β2 − 1)hk

,

where
∂gk
∂x̃m

=
α p̃m (x̌k − x̃m)

d̃α+2
km

,
∂hk
∂x̃m

=
2α p̃2

m (x̌k − x̃m)

d̃2α+2
km

,

∂gk
∂ỹm

=
α p̃m (y̌k − ỹm)

d̃α+2
km

,
∂hk
∂ỹm

=
2α p̃2

m (y̌k − ỹm)

d̃2α+2
km

,

∂gk
∂p̃m

= d̃−αkm ,
∂hk
∂p̃m

= 2 p̃m d̃
−2α
km .

Assume at the iteration i the vector θ is given by
θ := (p̃i−1

1 , · · · , p̃i−1
M , x̃i−1

1 , · · · , x̃i−1
M , ỹi−1

1 , · · · , ỹi−1
M ). Fur-

thermore, let us define ai−1
km , bi−1

km , and ci−1
km as, respectively,

∂fk
∂x̃m

(θ), ∂fk
∂ỹm

(θ), ∂fk
∂p̃m

(θ), Thus, fk at the ith iteration can be
approximated by its first order Taylor series expansion:

fk ≈ f i−1
k +

∑
m∈IM

ai−1
km dx̃m + bi−1

km dỹm + ci−1
km dp̃m ,

where f i−1
k := f(θ), and dx̃m, dỹm and dp̃m are our

optimization variables. In fact, from iteration I1 + 1 onward
we solve (31)

min
dx̃m,dỹm,

dp̃m ,m∈IM

∑
k∈IK

(f i−1
k +

∑
m∈IM

ai−1
km dx̃m + bi−1

km dỹm + ci−1
km dp̃m)2

(31a)
s. t. dx̃m, dỹm, dp̃m ∈ R , (31b)

¯
P − p̃i−1

m ≤ dp̃m ≤ P̄ − p̃i−1
m , (31c)

− δ ≤ dx̃m ≤ δ , (31d)
− δ ≤ dỹm ≤ δ , (31e)

for a grid of M = N points given by

G(N) =
⋃
n∈IN

{(x̂n, ŷn)} . (32)

We solve this problem from iteration i = I1 + 1 to I1 + I2
and update the estimate of position and transmit power by the
following rule

x̃im = x̃i−1
m + dx̃m , (33a)

ỹim = ỹi−1
m + dỹm . (33b)

p̃im = p̃i−1
m + dp̃m . (33c)

At the iteration I1+1 any given initial value for transmit power
p̃I1m ∈ [

¯
P, P̄ ] is acceptable. We choose p̃I1m = 1

2 (
¯
P + P̄ ) ,∀m ∈

IM , M = N . Indeed, the power until I th
1 iteration is not

updated and we assume p̃im = 1
2 (

¯
P + P̄ ) ,∀i ∈ [1, I1], ∀m ∈

IM , M = NG2. Such an approach works very well if the
transmit power of all targets are known, i.e., P̄ =

¯
P . It,

nonetheless, fails to deliver a good solution for N > 2 targets.
We have observed this from extensive simulations.

B. `1-localization with unknown transmit power

We know that having devised the variables d̃pm enables
updating the value of transmit power, when it is unknown.
Therefore, we combine the objective functions of the optimiza-



tion problems (23) and (31) and come up with the following
convex problem

min
s̃m,dx̃m,dỹm,

dp̃m ,m∈IM

∑
k∈IK

[
µ(
∑
k′∈IK

ψkk′rk′ −
∑
m∈IM

qkm s̃m)2

+(f i−1
k +

∑
m∈IM

ai−1
km dx̃m + bi−1

km dỹm + ci−1
km dp̃m)2

]
(34a)

s. t. s̃m, dx̃m, dỹm, dp̃m ∈ R , (34b)

¯
P − p̃i−1

m ≤ dp̃m ≤ P̄ − p̃i−1
m , (34c)

− δ ≤ dx̃m ≤ δ , (34d)
− δ ≤ dỹm ≤ δ , (34e)
0 ≤ s̃m ≤ 1 , (34f)∑
m∈IM

s̃m = N , (34g)

where ψkk′ and qkm are the entries of the matrices Ψ and
Q, defined in (21) and (23) at the ith iteration. The parameter
µ = 1 until iteration I1 and then is set to 0 from the iteration
I1 + 1 onward. That means from I1 + 1 the variable s̃m is
of no importance to the localization algorithm. On the other
hand, to make use of the variable s̃m we apply the averaging
rule until iteration I1

x̂n =

∑
m∈Πn

s?m(x̃i−1
m + dx̃?m)∑

m∈Πn

s?m
, (35a)

ŷn =

∑
m∈Πn

s?m(ỹi−1
m + dỹ?m)∑

m∈Πn

s?m
, (35b)

p̂n =

∑
m∈Πn

s?m(p̃i−1
m + dp̃?m)∑

m∈Πn

s?m
, (35c)

where the partitions Π1, · · · ,ΠN can be found by k-means
method, i.e., similar to (24). Then, the grid will be updated
using (26) by generating a sub-grid of granularity G centered
at each (x̂n, ŷn). Consequently, the transmit power p̂n will be
assigned to each GP of the relevant sub-grid:

P(N,G) =
⋃
n∈IN

p̂n ⊗ 1G2 , (36)

where 1G2 is the all-ones vector of size G2. Indeed, the set
P(N,G), whose cardinality is NG2, is the set of transmit
power of all the grid points. The Alg. 1 summarizes the idea
of the `1-localization of ours. As we will see in Sec. V,
the algorithm has a very good performance for the case of
unknown transmit power.

V. SIMULATIONS

Since there is no work with the same assumptions as ours,
i.e., multi co-channel targets, we cannot compare our results
with any other works, unfortunately. The only work, except
for our previous papers [6], [7], that has similar assumptions
is [5] which deal with a fingerprinting problem. Therefore,

Algorithm 1 `1-localization heuristic for the joint estimate of
the transmit power and location of multiple targets

initialization:
• set the grid granularity G ∈ N
• set the area width 2w ∈ R+

• δ ← w
4(G−1)

• let p̂n = 1
2 (

¯
P + P̄ ) and (x̂n, ŷn) = (0, 0), ∀n ∈ IN

• let M = NG2 be the number of GPs
• let M0 = G2 to build the set IM0 and the partitions

Π1, · · · ,ΠN

• set the number of iterations I1, I2 ∈ N
• µ← 1

for i← 1 to I1 do
define G(N) using (26) and P(N,G) using (36)
let (x̃i−1

m , ỹi−1
m ) ∈ G(N), ∀m ∈ IM

let p̃i−1
m ∈ P(N,G), ∀m ∈ IM

find optimal values s̃?m, dx̃?m, dỹ?m, dp̃?m using (34)
calculate the estimate points p̂n, x̂n and ŷn using (35)

end for
• M ← N
• δ ← w

G−1
• µ← 0

for i← I1 + 1 to I1 + I2 do
define G(N) using (32) and P(N, 1) using (36)
let (x̃i−1

m , ỹi−1
m ) ∈ G(N), ∀m ∈ IM

let p̃i−1
m ∈ P(N, 1), ∀m ∈ IM

find optimal values dx̃?m, dỹ?m, dp̃?m using (34)
x̂n ← x̃i−1

m + dx̃?m, ∀n ∈ IN ,m = n
ŷn ← ỹi−1

m + dỹ?m, ∀n ∈ IN ,m = n
p̂n ← p̃i−1

m + dp̃?m, ∀n ∈ IN ,m = n
end for
X := {(x̂n, ŷn, p̂n) | ∀n ∈ IN}
return X

a fair comparison with its results is not straightforward. In
what follows we evaluate the performance of the proposed
`1-localization of this paper with the `0-localization [7]. The
evaluations are done by means of computer simulations.

In the simulation setup P̄ = 1,
¯
P = 0.5 and w = 1Km are

chosen. The results are the outcome of J = 5000 simulation
realizations, in each of which the position of sensors and
realization of ζkns are random, while the transmit power and
position of targets are always the same. Let the estimated
position of the nth target at jth realization be denoted by
(x̂jn, ŷ

j
n). Then, positioning root mean square error (PRMSE)

in meters is defined by, [5]:

δ =

√√√√ 1

JN

J∑
j=1

N∑
n=1

(
x̂jn − xn

)2

+
(
ŷjn − yn

)2

, (37)

Let the maximum positioning error at jth iteration, i.e.,

δjmax := max
n∈IN

√(
x̂jn − xn

)2

+
(
ŷjn − yn

)2

, (38)



be a sample drawn from the distribution of a random variable,
e.g., ∆. Then, the error function

Pd := Pr (∆ > d) = 1− F∆(d) , (39)

stands for the probability that at least one of the targets is
localized with an error of more than d meters. Note, F∆ is
the empirical cdf of the error ∆. Similarly, the root mean
square error (RMSE) of the transmit power is defined by

ρ =

√√√√ 1

NJ

J∑
j=1

∑
n∈IN

ρjn , (40)

where ρjn := (pn − p̂jn)2 is the square error of the estimated
power value of nth target at jth realization.

The simulation results of the proposed `1-localization are
given in Fig. 3 and Fig. 4 for N = 2 and N = 3 for different
values of K and σ. The parameter σ represents the strength of
shadowing. The figure also compares the performance of the
algorithm with the method of combinatorial (`0-localization)
of [7]. In the legend of the figures, the values of δ and ρ are
shown.

From the figures, we observe that Pd → 0,∀d ≥ 10−6 in
the case of N = 2 and γ → ∞. Furthermore, for γ = 40
the positioning error of all the targets is very unlikely to be
more than 10m. We see that increasing the number of sensors
to K = 50 can improve the localization quality by a factor of
10. This means the Pr(∆ > 1m)→ 0 and PRMSE decreases
down to 7 meters in an area of 4km2. In general, the PRMSE
ranges from 7 to 37 meters, in contrast to the one of `1-
localization which can be up to 143.8 meters. One example is
for K = 10 and γ → ∞, this value has reduced from 143.8
to 17.3 meters by the method of `1-localization.

Unfortunately, due to the complexity of the `0-localization,
we cannot increase the values of K or G to control that the
gap between curves and Pd = 0 closes or not. As we see
`0-localization never gets close to Pd = 0.

In the strong shadowing conditions, i.e., higher values of
σ, we could deploy more SNs to make the estimation more
reliable. This is hopefully viable since RSS-based localization
requires inexpensive and not sophisticated sensors, on the one
hand. On the other hand, the proposed `1-localization method
has a low-complexity, i.e., O(N3) as proved in Sec. VI, and
can solve the problem for higher values of K, efficiently.
Simulation shows that for the case γ = 40, N = 2, increasing
K from 10 to 20 and 50 decreases the probability Pr(∆ > 1m)
from 66% to less than, respectively, 22% and 0.1%.

We also see from Fig. 4, in case 3 targets the performance
degrades, especially for K = 10. The reason is that the number
of variables increases as the number of targets increases.
Consequently, more equations, i.e., more number of sensors
are needed. We see that for σ = 40, K = 50 the error
probabilities Pr(∆ > 1m) = 8% and Pr(∆ > 10m) < 2%
are achieved by `1-localization. In contrast to `1-localization,
we see `0-localization for N = 3 becomes unreliable.
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K = 10, G = 5, δ = 17.3, ρ = 0.009, γ →∞
K = 10, G = 5, δ = 143.8, ρ = 0.058, γ →∞, [7, Alg. 1]

K = 20, G = 5, δ = 10.0, ρ = 0.005, γ →∞
K = 20, G = 7, δ = 61.7, ρ = 0.037, γ →∞, [7, Alg. 1]

K = 10, G = 5, δ = 37.1, ρ = 0.011, γ = 40

K = 10, G = 5, δ = 146.1, ρ = 0.057, γ = 40, [7, Alg. 1]

K = 20, G = 5, δ = 12.4, ρ = 0.006, γ = 40

K = 20, G = 7, δ = 58.2, ρ = 0.036, γ = 40, [7, Alg. 1]

K = 50, G = 11, δ = 7.0, ρ = 0.007, γ = 40

Pd ∼ 10−3
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K = 10, G = 5, δ = 17.3, ρ = 0.009, γ →∞
K = 10, G = 5, δ = 143.8, ρ = 0.058, γ →∞, [7, Alg. 1]

K = 20, G = 5, δ = 10.0, ρ = 0.005, γ →∞
K = 20, G = 7, δ = 61.7, ρ = 0.037, γ →∞, [7, Alg. 1]

K = 10, G = 5, δ = 37.1, ρ = 0.011, γ = 40

K = 10, G = 5, δ = 146.1, ρ = 0.057, γ = 40, [7, Alg. 1]

K = 20, G = 5, δ = 12.4, ρ = 0.006, γ = 40

K = 20, G = 7, δ = 58.2, ρ = 0.036, γ = 40, [7, Alg. 1]

K = 50, G = 11, δ = 7.0, ρ = 0.007, γ = 40

Pd ∼ 10−3

Fig. 3: The error probability Pd against positioning error d for
N = 2 targets achieved by Alg. 1 and the `0-localization of
[7]. The transmit power of targets are unknown and parameters
I1 = 8 and I2 = 12 have been chosen. The values of δ and ρ
are shown in the legend.
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K = 10, G = 5, δ = 115.7, ρ = 0.266, γ →∞
K = 10, G = 5, δ = 143.8, ρ = 0.058, γ →∞, [7, Alg. 1]

K = 20, G = 5, δ = 44.1, ρ = 0.268, γ →∞
K = 20, G = 7, δ = 61.7, ρ = 0.037, γ →∞, [7, Alg. 1]

K = 10, G = 5, δ = 180.1, ρ = 0.258, γ = 40

K = 20, G = 5, δ = 43.6, ρ = 0.268, γ = 40

K = 50, G = 11, δ = 10.1, ρ = 0.268, γ →∞
K = 50, G = 11, δ = 34.9, ρ = 0.268, γ = 40

Pd ∼ 10−3
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K = 10, G = 5, δ = 115.7, ρ = 0.266, γ →∞
K = 10, G = 5, δ = 143.8, ρ = 0.058, γ →∞, [7, Alg. 1]

K = 20, G = 5, δ = 44.1, ρ = 0.268, γ →∞
K = 20, G = 7, δ = 61.7, ρ = 0.037, γ →∞, [7, Alg. 1]

K = 10, G = 5, δ = 180.1, ρ = 0.258, γ = 40

K = 20, G = 5, δ = 43.6, ρ = 0.268, γ = 40

K = 50, G = 11, δ = 10.1, ρ = 0.268, γ →∞
K = 50, G = 11, δ = 34.9, ρ = 0.268, γ = 40

Pd ∼ 10−3

Fig. 4: The error probability Pd against positioning error d for
N = 3 targets achieved by Alg. 1 and the `0-localization of
[7]. The transmit power of targets are unknown and parameters
I1 = 8 and I2 = 12 have been chosen. The values of δ and ρ
are shown in the legend.



VI. COMPLEXITY ANALYSIS

Alg. 1 consists of three main stages as follows:
1) from iteration 1 to I1: the problem (34) which belongs

to the family of QP. Such problems are known to have a
complexity of O(n3), where n is the number of variables.
In this problem n = 4NG2 and thus the problem in all
the I1 iterations has a complexity of O(64I1N

3G6).
2) from iteration 1 to I1: solving the k-means clustering

problem to find the sets Π1, · · · ,ΠN for the averaging
rule (24).
There exist numerous algorithms to solve the k-means
clustering problem, among which the Lloyd’s heuristic
algorithm is the most famous one. Its complexity is
O(2G2Ni) in the case of two dimensional (2D) local-
ization and O(3G2Ni) in the case of three dimensional
(3D) localization [23]. Here i denotes the number of
iterations for convergence, which is often small if the data
has a clustering structure. Therefore, Lloyd’s algorithm
is known to have practically linear complexity, and its
worst-case complexity is superpolynomial [24].

3) from iteration I1 + 1 to I1 + I2: the QP in (31) with 3N
variables. Because µ = 0 causes the objective function
to become independent from the variables s̃m. Thus, the
problem (34) reduces to (31). Indeed, the three variables
dx̃m, dỹm, and dp̃m for each of the N targets make for
3N variables in total. Hence, this stage of the algorithm
imposes a complexity of O(27I2N

3).
As the k-means clustering algorithm is linear in the
number of targets, its complexity can be neglected in
compassion with the one QP. Therefore, the complexity
of Alg. 1 is O(64I1N

3G6 + 27I2N
3), which yields

O(N3), i.e., a cubic order of complexity in the number
of targets. Therefore, the presented `1-localization algo-
rithm in this paper, unlike `0-localization in [7], has a
polynomial complexity.
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