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Abstract—In the present paper a diffusion channel for molec-
ular communication is investigated. We assume that different
amounts of particles are transmitted by an emitter, which diffuse
through a medium and are partially absorbed by a receptor.
This models biological information exchange, particularly in
neural networks. We investigate the capacity of this channel. A
novel general representation of mutual information is obtained.
Lower and upper bounds for the capacity are derived and their
accuracy is numerically assessed. Explicit results are achieved
for the truncated Poisson channel, which is a prominent model
for biological information exchange, however, notoriously hard
to deal with.

I. INTRODUCTION AND OVERVIEW

The model used in this paper is inspired by biological infor-
mation exchange between neurons in the brain. Neurons form
a huge network and pass information by axons. Information
from connected neurons is collected by the dendritic tree.
Information exchange takes place by synapses. Vesicles are
transmitted by the axon, which diffuse through the synaptic
cleft and are received by receptors of the dendrites. The
intensity of the connection varies by controlling the number
of vesicles to be transmitted.

In this paper we model and investigate molecular informa-
tion systems of this type in steady state. Different amounts of
particles are transmitted in L bulks with average x1, . . . , xL ∈
N. They form an L-ary alphabet of symbols which are sent
over the diffusive channel. The receiver absorbs a certain
number of emitted particles, overlaid by noise from other
sources. We will keep the stochastic assumptions on the
channel model rather general in the present work.

Specific approaches are used in a number of papers on
molecular communication and biological information ex-
change. We briefly cite a view of the most recent ones related
to the model used in the present work. A comprehensive
overview of contributions to the area of molecular commu-
nication as of 2015 with an extensive literature survey is
presented in [1]. Following the autors’ scheme on different
ways of molecular communications, the present work best fits
into neurochemical propagation through gap junction where
modulation is done by the number of particles. We do not
consider error correction and we model the memory of the
channel simply through a random number of molecules re-
maining from previous transmission.

Particle-intensity modulation is considered in [2]. Symbols
are encoded by duration of transmission, which translates into
the number of particles if the generation rate is constant over

Fig. 1: Molecular communication with input X , transition
function FZ , and additive noise W to yield the output Y .

time. The authors start with a Bernoulli distribution of particle
counts and finally use a Poisson approximation to achieve
conditions under which binary input is capacity-achieving.

In order to model past emissions of particles, hence memory
of the channel, the authors [3] consider an autoregressive
model at the receptor. Using a Poisson approximation for the
number of detected particles a training-based channel impulse
response estimator is derived under statistical knowledge of
the channel. A maximum a-posteriori and a linear mean
square error estimator are proposed if no channel knowledge
is available.

The main contributions of this work are upper and lower
bounds on the capacity of the diffusive channel in general.
Most importantly, however, an explicit formula for the capacity
of the truncated Poisson diffusion channel is derived. Numer-
ical evaluations give insight into the unexpected behavior of
the molecular communication channel.

II. SYSTEM MODEL FOR MOLECULAR COMMUNICATIONS

We assume that different amounts of molecular particles,
e.g., vesicles are released in discrete time steps. The particles
float through a medium to a receptor, which counts the number
of received particles per time unit. Messages are encoded in the
respective number of particles released. The transport process
is by diffusion, hence random. Typical models for this type
of information exchange are considered in [4] and [5]. In this
work we use a more general system model.

A discrete-time memoryless channel with additive and
stochastically independent noise is assumed. The communi-
cation system consists of a single transmitter and receiver
with a diffusion channel in between. The channel input to the
diffusion channel at each time step is described by a discrete
random variable X with a finite number L ∈ N of pairwise



different and nonnegative support points xxx = (x1, . . . , xL)
and corresponding probabilities ppp = (p1, . . . , pL). Due to
inaccuracies the actual number of particles released into the
medium is random governed by a probability mass function
(PMF) fZ(z) with positive support z ≥ 0. Only a certain rate
0 < α ≤ 1 of emitted particles is received by the receptor, so
that the conditional expectation of Z is assumed to be

E(Z | X = x`) = αx`.

Furthermore, the number of particles Y that are absorbed
by the receptor is subject to additive random noise W with
PMF φ(w) and nonnegative support w ≥ 0. The noise W
accounts for the number of particles left over in the medium
from past transmissions not yet being absorbed. This simplifies
the elobarate assumptions of an autoregressive process as
considered in [3]. We assume that the number of left-over
particles has a finite first and second moment, E(W ) < ∞
and E(W 2) <∞, so that they are vanishing at a constant rate
by absorption. In summary, the system model reads as

Y = Z(X) +W,

as depicted in Fig. 1.
A common assumption for the counting processes is the

Poisson distribution, which leads to

fZ|X=x(z) =
αzxz

z!
e−αx and φ(w) =

λw

w!
e−λ

z, w ∈ N0 and λ > 0 being the noise intensity. Poissonian
models of this type are the starting point for the work [4],
[5], [6]. Other distributions like the geometric or binomial are
conceivable and have been investigated in the literature, confer,
e.g., [2], [3], [7], [8].

III. MUTUAL INFORMATION OF THE MOLECULAR
CHANNEL

We set out to obtain a convenient expression for the mutual
information which will allow determining capacity by maxi-
mizing over all input distributions. With the probabilities1

Pr(Y = k | X = x`) = Pr(Z +W = k | X = x`)

=
∑
z

fZ|X=x`
(z)φ(k − z)

and

Pr(Y = k) = Pr(Z +W = k)

=

L∑
`=1

p`
∑
z

fZ|X=x`
(z)φ(k − z)

1The logarithm of q > 0 with respect to the base a > 1 is denoted by
loga(q) and the self-information of q ≥ 0 by ρa(q) = −q loga(q). It holds
for the first derivative that ρ′a(q) = − loga(e q), where e is the Euler’s
number. The discrete entropy of a probability vector qqq = (q1, . . . , qn) is
then defined as ha(qqq) =

∑n
i=1 ρa(qi). If the base is a = e, we write in

short ln(q), ρ(q) and h(qqq).

mutual information I(X;Y ) between input X and output Y
may be written as

I(X;Y ) = H(Y )−H(Y | X)

=

∞∑
k=0

[
ρa

( L∑
`=1

p`
∑
z

fZ|X=x`
(z)φ(k − z)

)

−
L∑
`=1

p` ρa

(∑
z

fZ|X=x`
(z)φ(k − z)

)]
.

(1)

Using the notation ∆k(x`) =
∑
z fZ|X=x`

(z)φ(k − z) a
concise representation of (1) is obtained as

I(X;Y ) =

∞∑
k=0

[
ρa

( L∑
`=1

p`∆k(x`)

)
−

L∑
`=1

p` ρa
(
∆k(x`)

)]
.

(2)
It holds that ∆k(x`) =

(
fZ|X=x`

∗ φ
)
(k) is the convolution

of the conditional PMF fZ|X=x`
and φ. Hence, ∆k(x`) is a

PMF with respect to k such that ∆k(x`) ≥ 0 for all k, ` and∑∞
k=0 ∆k(x`) = 1 for all `. However, ∆k(x) is not necessarily

increasing nor decreasing in x.
For a fixed transition distribution fZ , mutual information (2)

is hence a function of the amount of input molecules xxx =
(x1, . . . , xL) and their probabilities ppp = (p1, . . . , pL), which
motivates the notation I(ppp,xxx) instead of I(X;Y ). Since ρa
is a strictly concave function, mutual information I(ppp,xxx) is
also strictly concave as a function of ppp. Despite concavity
maximization over ppp seems to be very hard.

In the special case that fZ|X and φ are Poisson distributions
the sum Z + W conditional on X = x` is also Poisson
distributed with parameter γ` = αx` + λ. Hence,

∆k(x`) =
γk`
k!

e−γ`

and mutual information for the Poissonian diffusion channel
reads as

I(ppp,γγγ) =
∞∑
k=0

[
ρa

( L∑
`=1

p`
γk
`

k! e−γ`
)
−

L∑
`=1

p` ρa
(γk

`

k! e−γ`
)]
.

(3)
Equation (3) may also be written as the difference between the
entropy of a mixture of Poisson distributions and the weighted
sum of the entropies of Poissonians:

I(ppp,γγγ) = h
( L∑
`=1

p`Poi(γ`)
)
−

L∑
`=1

p`h
(
Poi(γ`)

)
.

After some algebra and using the explicit form of the
entropy of a Poisson distribution the following interesting
representation is obtained

I(ppp,γγγ) = 1−
L∑
`=1

p`γ`(1−ln γ`)−D
( L∑
`=1

p`Poi(γ`)
∥∥Poi(1)

)
,

where D(·‖·) denotes the Kullback-Leibler divergence.



IV. OPTIMIZATION OF MUTUAL INFORMATION

Maximizing mutual information (2) w.r.t. ppp subject to the
constraints p` ≥ 0 and

∑L
`=1 p` = 1 leads to the following

Karush-Kuhn-Tucker (KKT) conditions. A solution ppp is opti-
mal iff it satifies for all i = 1, . . . , L

0 ≤ pi , (4a)
0 ≤ µi , (4b)
0 = µi pi , (4c)

1 =

L∑
`=1

p` , (4d)

µi = λ̃+

∞∑
k=0

∆k(xi) loga

(
e

L∑
`=1

p`∆k(x`)

)
+ρa

(
∆k(xi)

)
, (4e)

where µµµ and λ̃ are Lagrangian multipliers. For any optimal
p?i > 0 it follows µ?i = 0 from (4c) and by (4e) we obtain

λ? = −
∞∑
k=0

[
∆k(xi) loga

( L∑
`=1

p?`∆k(x`)

)
+ρa

(
∆k(xi)

)]
, (5)

where λ? = λ̃? + loga(e). Multiplying the previous equation
by p?i and summing up over all i yields

λ? =

∞∑
k=0

[
ρa

( L∑
`=1

p?`∆k(x`)

)
−

L∑
`=1

p?`ρa
(
∆k(x`)

)]
, (6)

which is identical to the objective function (2). Hence,
the maximum value of the mutual information is given by
I(ppp?,xxx) = λ?, i.e.,

I(ppp?,xxx) = −
∞∑
k=0

∆k(xi) loga

( L∑
`=1

p?`∆k(x`)

)
+ ρa

(
∆k(xi)

)
=

∞∑
k=0

∆k(xi) loga

(
∆k(xi)∑L

`=1 p
?
`∆k(x`)

)
(7)

for any i with p?i > 0. The optimal values of the input
probabilities p?` cannot be determined in closed form, however,
they can be computed numerically using (5). Once the optimal
input probabilities are known, equation (7) describes the
channel capacity for molecular communication for a given
support xxx. The maximization of I(ppp,xxx), or even of I(ppp?,xxx),
over xxx is extremely challenging. Both I(ppp,xxx) and I(ppp?,xxx) are
neither convex nor concave functions of xxx.

Identity (7) shows that the maximum value is equal to the
Kullback-Leibler divergence between the probabilities ∆k(xi)
and

∑L
`=1 p

?
`∆k(x`) over k. Using the notations

uuui =
(
∆0(xi),∆1(xi),∆2(xi), . . .

)
(8)

and

vvv =

( L∑
`=1

p?`∆0(x`),

L∑
`=1

p?`∆1(x`),

L∑
`=1

p?`∆2(x`), . . .

)
(9)

a compact characterization of the optimum is obtained by (7)
and the Kullback-Leibler divergence, i.e., D(uuui‖vvv) = λ∗ for
all i such that p?i > 0.

V. CAPACITY BOUNDS FOR THE MOLECULAR CHANNEL

The formula for the unknown channel capacity in (7) can
be used to develop lower and upper bounds on the capacity.
Any ppp substituted in (7) yields a lower bound on the capacity.

An easy upper bound can be found with the aid of [9, p. 41,
Lemma 3.11], which states that D(uuui‖vvv) ≤ D(ũuui‖ṽvv) for any
row stochastic matrix AAA with uuui = ũuuiAAA and vvv = ṽvvAAA for all i.
Without loss of generality we can assume that all probabilities
are positive, i.e., p?` > 0 for all ` = 1 . . . L. The L×∞ matrix

AAA =


∆0(x1) ∆1(x1) ∆2(x1) . . .
∆0(x2) ∆1(x2) ∆2(x2) . . .
∆0(x3) ∆1(x3) ∆2(x3) . . .

...
...

...
∆0(xL) ∆1(xL) ∆2(xL) . . .

 (10)

with the vectors2

ũuui = eeei (11)

and
ṽvv =

(
p?1, p

?
2, p

?
3, . . . , p

?
L

)
(12)

satisfy the assumptions and we obtain D(ũuui‖ṽvv) = − loga(p?i ).
Since the previous equation holds for all i, a simple upper
bound is obtained as

I(ppp?,xxx) ≤ D(ũuui‖ṽvv) ≤ − loga
(

1
L

)
= loga(L) . (13)

This upper bound is sharp whenever the distance between any
two mass points is much greater than the standard deviation of
the noise. In this case the input probabilities will converge to
the uniform distribution and the mass points are equidistant.

For finding sharper upper bounds more effort is needed. By
the aid of [10, Theorem F] the inequality

D(uuu‖vvv) ≤ loga

( 1− η
− ln(η)

)
− loga(η)

1− η − loga(e) (14)

holds for arbitrary uuu and vvv with η = mink vk/uk

maxk vk/uk
. From

this inequality an upper bound for the molecular channel is
obtained by

D(uuui‖vvv) ≤ min
j

{
loga

( 1− ηj
− ln(ηj)

)
− loga(ηj)

1− ηi
−loga(e)

}
(15)

for all i and for all j with p?j > 0 and ηj =
mj

Mj
, where

mj = min
k

∑L
`=1 p

?
`∆k(x`)

∆k(xj)
and Mj = max

k

∑L
`=1 p

?
`∆k(x`)

∆k(xj)
.

Since the right hand side of (14) is decreasing in η, we can
eliminate the influence of ppp? by replacing each ηj by

η̌j =
min
k

min` ∆k(x`)
∆k(xj)

max
k

max` ∆k(x`)
∆k(xj)

≤ ηj , (16)

since

mj ≥ min
k

min` ∆k(x`)

∆k(xj)
and Mj ≤ max

k

max` ∆k(x`)

∆k(xj)
(17)

2The canonical unit vectors are denoted by eee1, eee2, eee3 and so on.
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Fig. 2: Capacity of the molecular channel with both Poissonian
diffusion and noise distribution.

for all j. Hence, we obtain the upper bound

I(ppp?,xxx) ≤ min
j

{
loga

( 1− η̌j
− ln(η̌j)

)
− loga(η̌j)

1− η̌j
−loga(e)

}
(18)

for which we only need to determine the terms η̌j from (16)
for all j with p?j > 0. The upper bound in (18) still depends
on the input constellation xxx and the knowledge of the index of
positive probabilities. Since the extreme mass-points x1 and
xL always have positive probabilities, we obtain a looser upper
bound as

I(ppp?,xxx) ≤ min
j∈{1,L}

{
loga

( 1− η̌j
− ln(η̌j)

)
− loga(η̌j)

1− η̌j
− loga(e)

}
.

(19)
We can further relax this upper bound to eliminate the position
of the input symbols by replacing each η̃j by

η̂ =
min
k

minx∈[x1,xL] ∆k(x)

maxx∈[x1,xL] ∆k(x)

max
k

maxx∈[x1,xL] ∆k(x)

minx∈[x1,xL] ∆k(x)

≤ η̌j (20)

for all j. This yields the ultimative upper bound

I(ppp?,xxx) ≤ loga

( 1− η̂
− ln(η̂)

)
− loga(η̂)

1− η̂ − loga(e) . (21)

The attraction of both bounds (13) and (21) is that they do
not depend on the distribution of the mass points and their
probabilities. While (13) only depends on the number L of
mass points, the upper bound (21) is depending on the span
xL − x1.

VI. NUMERICAL RESULTS

In this section we discuss some numerical results regard-
ing the capacity and the upper bounds on the capacity of
a diffusion channel. In Fig. 2 we show some results that
are obtained for the case of Poissonian diffusion and noise
distribution. All the curves are showing the throughput over the
span γm−γ1 = maxi{xi}−mini{xi} The solid blue curve is
the true capacity, obtained by numerically maximizing mutual
information over ppp and xxx. The solid purple curves are the
upper bounds on the capacity if the number of input symbols
is limited by 2, 3, and 4, respectively. The dashed curves
are the most interesting results. The dashed red curve is the
maximum mutual information for the case that the number
of input symbols are limited by 3 and the input symbols
are equidistantly arranged. The dashed green curve, which is
located above the dashed red curve, shows the results for the
same scenario whith the exception that the maximum mutual
information is further maximized over the position of the input
symbols. For L = 2 input symbols the dashed green curve
nearly coincides with the dashed red curve.
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