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Abstract—In this paper, the robustness of Support Vector
Machines (SVMs) against adversarial instances is considered in
relation to the design parameters. After generating adversar-
ial instances using convex programming, it is shown through
extensive numerical analysis that the robustness is significantly
affected by parameters which change the linearity of the models.
Interestingly, robustness is only slightly sensitive to the parameter
determining the margin between classes. It is shown that adver-
sarial robustness not only depends on the geometric properties
of the classifier but is also subject to the accuracy of the model.
The results are discussed in the light of the so-called linearity
hypothesis, regarding adversarial robustness of machine learning
algorithms.

I. INTRODUCTION

Despite the success of machine learning algorithms and par-
ticularly Deep Neural Networks (DNNs) in various tasks [1],
[2], [3], it is well known that they are vulnerable to so called
adversarial perturbations [4], [5]. Adversarial perturbations
are purposefully designed and added to input images. They
mislead classifiers to decide for an incorrect class with high
confidence [6], [7], [8]. It is peculiar for these perturbations
that they are hardly visible to the human eye, and even if
they can be spotted, it is difficult to infer how they change
the classifier’s output. Given the sensitivity of safety critical
systems to these examples, many researchers focused on
understanding the nature of adversarial instances for machine
learning applications [9], [10], [11], [12].

There are different ways of generating adversarial examples.
In [5], adversarial perturbations are obtained such that the
classifier output is changed to a target class by additional
constraints on the minimum `2-norm perturbation. A non-
convex optimization problem, the solution is approximated
using a box-constrained limited memory Broyden-Fletcher-
Goldfarb-Shanno algorithm (L-BFGS). Another method con-
sists of maximizing a certain function that is related to
the classification error of the classifier. The algorithm Fast
Gradient Sign Method (FastGrad) in [6] maximizes the output
perturbation for the approximate linearized version of a DNN
under some `∞-norm constraint on the input perturbation. The
linearization idea was used further for proposing other meth-
ods as in DeepFool [7]. The effectiveness of this method gave
rise to the linearity hypothesis about the nature of adversarial
instances. As stated in [6], the linearity hypothesis attributes
the existence of adversarial images to the approximate linearity
of classifiers. There are many discussions about the validity of
this assumption as it can be seen in [12], [13]. There are other

theories focusing mostly on decision boundaries of classifiers
and their analytic properties [14], [15].

There are some difficulties in understanding the nature of
adversarial instances for DNNs. One particular reason is that
the interpretation of these models is challenging and therefore
it is difficult to see which design parameters matter most
for robustness. Although the focus has been on robustness
of DNNs, a similar study was initiated in [16] for SVMs,
which are more convenient for studying the interrelation of
robustness and design parameters.

In this work, we continue this line of work by considering
robustness of SVMs against adversarial instances. We consider
SVMs with polynomial and radial basis function (RBF) ker-
nels and study their robustness as a function of parameters
like the degree of polynomials, the RBF kernel exponent or
the parameter implicitly determining the margin of SVM. The
adversarial instances are generated in a similar fashion to [7],
[6], and formulated as optimization problems.

By extensive numerical simulations it can be seen that
parameters like the polynomial degree visibly affect the ro-
bustness while other parameters do not have a similar effect.
Note that the attacks in this paper are based on linearization
of the model, which implicitly means that robustness in this
work is meant against certain classes of algorithms that are
based on linearization. Hence, it is not surprising that non-
linear kernels are more robust against these attacks since the
linear approximation is not accurate. It can also be seen that
the adversarial perturbations are easier to detect with the naked
eye for non-linear SVMs.

However, the above conclusion should be pondered with
care. First of all, the robustness cannot be considered in
isolation from accuracy. In other words, lower accuracy clas-
sifiers can be more robust, as it can be seen for RBF kernels.
Increasing the RBF kernel exponent is a way to make the
classifier more non-linear. Although non-linearity improves
robustness, accuracy finally drops by increasing the exponent.
If the exponent becomes very large, even a small perturbation
can change the class labels significantly.

After introducing the framework and formulation of the
adversarial generation problem, we discuss our above conclu-
sions in detail.

II. GENERATING ADVERSARIAL EXAMPLES FOR SVMS

In this section, we introduce the framework that is used to
generate adversarial examples for SVMs as an adaptation of



the algorithms proposed in [7]. We use the short-hand notation
[A] to denote the set [A] = {1, 2, ..., A} for some integer
A ∈ N. Further, let X ∈ RD be a D-dimensional random
variable and Y ∈ [L] its corresponding label for L > 1. The
goal of a classifier is to predict Y given X. In order to tune
such a classifier, a training set composed of M independent
realizations of (X, Y ), denoted by {(x1, y1), . . . , (xM , yM )},
is used.

We study the effect of hyper-parameter selection and non-
linearity of the classifier function on the robustness of SVMs
against adversarial examples. More precisely, we are interested
to investigate the behavior of SVMs for two widely used
kernels, namely the polynomial kernel

Kpoly(xi,xj) = (ζxi
>xj + 1)d with d ∈ N, ζ ∈ R+ , (1)

and the Radial Basis Function (RBF) kernel

Krbf(xi,xj) = exp(−γ‖xi − xj‖22) with γ ∈ R+ . (2)

In a one-vs.-rest scheme, the proxy functions fl are trained
separately as binary ”l-vs.-rest” classifiers. For this pur-
pose binary l-vs.-rest labels are constructed as y
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for all l ∈ [L]. There is a vast existing literature on methods
for efficiently solving this optimization problem. Moreover,
the solution of this problem yields λ(l)

∗

i , which are used for
computing the SVM parameters as α(l)

i = λ
(l)
i y

(l)
i and
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i > 0

0, λ
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for all i ∈ [M ], l ∈ [L] . (4)

Note that only the vectors w
(l)
i such that w(l)

i 6= 0 are needed
to compute the parameters. These vectors are called support
vectors.

In the same spirit as [7] we construct adversarial examples
x̃ ∈ RD as perturbed versions of x. We consider additive
adversarial perturbation r ∈ RD, so that x̃ = x + r. For a
given x some classifier k is said to be fooled by the adversarial
example if k(x) 6= k(x̃). The problem of finding a perturbation
r such that k(x) 6= k(x̃) can be written as determining some
r such that

min
l 6=k(x)

{fk(x)(x+ r)− fl(x+ r)} < 0 . (5)

If there is no constraint on r, fooling a classifier is trivial.
In the literature, adversarial examples are considered a threat

to the stability of the system if they are indistinguishable
from undisturbed inputs by a human observer. This is usually

modeled by constraining the `p norm of the perturbation for
some p ≥ 1. A popular choice is p = ∞, which corresponds
to a box constraint on r. Including this constraint in (5), the
problem of finding optimal adversarial perturbations reads as

min
l 6=k(x)

min
r
θl(x+ r)

s.t. ||r||∞ ≤ ε ,
(6)

where θl(x) := fk(x)(x)− fl(x).
Solving (6) is challenging since θl(x) is in general non-

convex. Hence, we relax the problem by linearly approxi-
mating θl(x + rl) by its first-order Taylor expansion, that is
θl(x+rl) ≈ θl(x)+rl

>∇θl(x). This leads to the approximate
version of generating adversarial examples by solving

min
l 6=k(x)

min
r
{θl(x) + r>∇θl(x)}

s.t. ||r||∞ ≤ ε .
(7)

For fixed l 6= k(x) the problem

rl = argmin
r
{θl(x) + r>∇θl(x)} s.t. ||r||∞ ≤ ε

has a closed form solution rl = −ε sign(∇θl(x)). Therefore,
since θl(x) + rl

>∇θl(x) = θl(x) − ε‖∇θl(x)‖1, the relaxed
problem (7) has the closed-form solution

l∗ = argmin
l∈[L]

θl(x)− ε‖∇θl(x)‖1 (8)

r∗ = −ε sign(∇θl∗(x)) . (9)

In order to compute (9) the gradients ∇fl for all l ∈ [L]
are needed since

∇θl(x) = ∇fk(x)(x)−∇fl(x) .

In case of the polynomial kernel the gradients are given by

∇fl(x) = dζ

M∑
i=1

α
(l)
i (ζw

(l)
i

>
x+ 1)d−1w

(l)
i , (10)

while for the RBF kernel we have

∇fl(x) = −2γ
M∑
i=1

α
(l)
i (x−w

(l)
i ) exp(−γ||x−w

(l)
i ||

2

2) .

(11)
For continuous differentiable functions and sufficiently

small ε the solution of the relaxed problem (7) with linear
approximations will be close to the one of the original problem
(6). In general, however, one may encounter highly non-
linear functions or large values of ε, entailing inaccurate
approximations of (6). This problem is addressed in [7] by
iteratively solving approximate versions (6) in T ∈ N steps
with constraint ε/T . The next anchor point for the linear
approximation is the previous one shifted by the optimal
perturbation vector of `∞-norm less than ε/T . The final
perturbation vector is obtained as the sum of all intermediate
perturbations. Algorithm 1 gives the correspondig details. By
this approach a neighborhood of the vector to be fooled is
searched and approximate solutions of (6) even for large values
of ε and highly non-linear classifiers can be obtained.
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Fig. 1. Fooling ratios for polynomial kernel SVMs with variation of d ∈ {1, 2, ..., 9}, C ∈ {0.1, 1, 10} and ζ ∈ {0.1, 1, 10}. The test accuracy is indicated
by the color bar.

Algorithm 1 Adversarial noise design through iterative ap-
proximations

input: x, f1, . . . , fL, T , ε.
output: r∗.
Initialize x(1) ← x.
for t = 1, . . . , T do
l∗ ← argmin

l∈[L]

θl(x
(t))− ε

T ‖∇θl(x
(t))‖1

r(t)∗ ← − ε
T sign(∇θl∗(x(t)))

x(t+1) ← x(t) + r(t)∗

end for
return: r∗ ←

∑T
t=1 r

(t)∗

III. EXPERIMENTAL RESULTS FOR THE MNIST DATA

In this section, we present our experimental results on the
10-class MNIST handwritten digit dataset [17]. This dataset
contains 55 000 gray-scale images of dimension 28 × 28 for
training and 10 000 for testing. Images are vectorized to
784-dimensional vectors. All classifiers are trained using the
LibSVM [18] implementation.

The fooling ratio [7] is employed as an empirical measure
of the sensitivity of classifiers against adversarial perturbations
for a given upper bound ‖r‖∞ ≤ ε. Adversarial perturbations
are computed using Algorithm 1.

The fooling ratio is defined as the percentage of correctly
classified unperturbed images whose perturbed versions, given
a certain ε, are incorrectly classified. This ratio is calculated
on a subset of 1 000 randomly chosen images from the test
set.

We first study the impact of the polynomial kernel degree
d ∈ {1, 2, ..., 9} on the fooling ratio. The kernel degree allows
for curved decision boundaries such as quadratic shapes for
d = 2 (parabolas, hyperbolas, ellipses) and more complex
shapes for d > 2. Further, we study how the inverse regulariza-
tion parameter C and the polynomial kernel parameter ζ affect
the fooling ratio by computing results for C ∈ {0.1, 1, 10}
and ζ ∈ {0.1, 1, 10}. The choice of C determines the trade-
off between misclassification and simplicity of the decision
boundary. For large C, a decision boundary with smaller
margin will be obtained by the optimization if more training
samples can be correctly classified. On the other hand, for



input d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 d = 9

Fig. 2. Illustration of sample images and the corresponding adversarial noise computed for models with different values of d and fixed ε = 0.25. In the
additive noise images, black pixels refer to +ε, white pixels to −ε, and gray pixels to 0.
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Fig. 3. Resulting fooling ratio for RBF kernel SVM with variation of γ ∈
{0.01, 0.02, ..., 0.09} and fixed C = 10.

small values of C, a larger margin and smoother decision
boundary will be obtained by the optimization, at the cost
of more misclassified training samples.

The results for the polynomial kernel are shown in Figure 1.
The color bar indicates the test accuracy for each setup.
Increasing d ∈ {1, 2, ..., 6} improves robustness indicated by
a decrease of the fooling ratio. This observation is aligned
with our expectation that increasing non-linearity of a decision
boundary also increases the robustness against adversarial
examples, which supports the linear hypothesis of [6]. In other

words, linear modeling in SVMs results in weak robustness
against adversarial examples.

Nevertheless, it can be seen that the decrease in the fool-
ing ratio becomes rather insignificant if d ∈ {7, 8, 9} is
further increased. This result shows that increasing the non-
linearity of the model does not necessarily lead to higher
robustness. We even observe that for some setups such as
(C, ζ) ∈ {(0.1, 10), (10, 10)} the fooling ratio increases when
increasing d ∈ {7, 8, 9}. Note that the increase of fooling ratio
for d ∈ {7, 8, 9} is most visible for ζ = 10, while it is not
visible for ζ = 0.1. We conjecture that this effect may be
partially caused by a substantial performance drop in terms
of test accuracy of the classifier (compare test accuracies for
d ∈ {7, 8, 9} to those with d < 7).

Further, we see that C has the most impact on the fooling
ratio for small d. In particular, in the linear and quadratic
cases d ∈ {1, 2} an increasing fooling ratio is observed as C
increases. The impact of C on the fooling ratio becomes less
significant as d becomes larger. It can be argued that for large
d the classifier is already quite flexible so that an increase of
C does not lead to fewer misclassifications in the training set
and therefore does not lead to a smaller margin classifier with
larger fooling ratio.

We observe a very similar impact of ζ. For small d,



input γ = 0.01 γ = 0.02 γ = 0.03 γ = 0.04 γ = 0.05 γ = 0.06 γ = 0.07 γ = 0.08 γ = 0.09

Fig. 4. Illustration of sample images and the corresponding adversarial noise for models with different values of γ and fixed ε = 0.15. In the additive noise
pictures, black pixels refer to +ε, white pixels to −ε, and gray pixels to 0.

enlarging ζ substantially increases the fooling ratio while for
larger d this effect is rather insignificant. We find that the least
robust SVMs are obtained for small d, and large C and ζ. We
hence conjecture that the classifier with (C, ζ, d) = (10, 10, 1)
is least robust.

Our analysis suggests that C and ζ need to be chosen
carefully for small d in order to achieve robustness while their
impact is rather insignificant for rather non-linear classifiers
as d gets larger. Figure 2 shows adversarial perturbations for
different choices of d. It is interesting to see that clear patterns
arise in the adversarial perturbations as models become more
non-linear.

Figure 3 shows a similar study for the RBF kernel with
varying γ ∈ {0.01, ..., 0.09} and fixed C = 10. Recall the
inverse relation γ = 1/(2σ2) where σ denotes the standard
deviation of the RBF kernel, i.e., enlarging γ decreases
the kernel width. We observe that the fooling ratio initially
decreases with increasing γ ∈ {0.01, 0.02, ..., 0.05}, while
moving backwards towards a larger fooling ratio when further
increasing γ ∈ {0.06, ...0.09}. Interestingly, the RBF kernel
parameter γ seems to have a similar impact on the fooling
ratio as d in case of the polynomial kernel.

We also visualize the adversarial noise for fixed ε = 0.15
and different choices of γ (see Figure 4), where the same

trend as in Figure 2 is observed. Again, very similar to what
has been observed in the case of polynomial kernels, we see
that the shape of the adversarial noise aligns to the shape of
the unperturbed input as γ increases.

IV. CONCLUSIONS

In the literature, adversarial noise for artificial neural net-
works is extensively investigated. There is much less work
on how support vector machines react to perturbations which
are intentionally crafted for misleading classification. In the
present paper, we first derive a mathematical framework for
constructing adversarial noise, which cannot be detected by
a human observer. To circumvent the hardness of the cor-
responding optimization problem, the objective function is
approximated by its first order Taylor expansion. The relaxed
problem allows for explicit solutions. On the basis of this
framework extensive numerical tests are carried out, and
visualized for the MNIST data set of handwritten digits. As a
general tendency we observe that increasing non-linearity in
the polynomial and radial basis function kernels provides im-
proved robustness against adversarial attacks. An analytically
quantified description of this relation is still missing and will
be a topic of future research.
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