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ABSTRACT

A fair allocation of scarce resources is crucial in systems where multiple entities compete for the same goods. General
interference-limited communication systems with rate adaption are investigated in this paper and the problem of fair resource
allocation is addressed by two different approaches. First, a non game theoretic fairness approach is applied to the system
model. Then bargaining theory is exploited to derive a game theoretic fairness concept. To compensate the information
transmission necessary in the bargaining game, so-called incentive parameters are introduced. The solution of the thereby
obtained local problem coincides with the Nash bargaining solution of the global problem if the incentive parameters are
properly chosen. Numerical results show the advantage of the game theoretical modelling with respect to fairness and
efficiency. Copyright © 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

With the increasing demand for wireless communication
services, better radio resource management, particularly
sophisticated resource allocation, is needed. One of the
first publications considering resource allocation in con-
nection with the signal-to-interference ratio (SIR) is Ref.
[1]. In an elegant setup, the author develops a general
framework for proving convergence of a whole class of
power assignment algorithms. Since then, various inter-
esting approaches and algorithms on this topic have been
presented. One advancement is the implementation of rate
adaption in systems as this is known to increase through-
put remarkably compared to fixed rate systems. In recent
years, game theory has attracted attention in connection
with resource management. In particular, many publications
focus on noncooperative games to model power control in
wireless systems. Reference [2] presents a noncooperative
power control game which is shown to have a Nash equi-
librium. In Ref. [3] the approach is extended to the multiple
receiver case. A noncooperative game for a multirate code-
division multiple access system where all users have the
same rate and vary their data rate is presented in Ref. [4]. A
similar approach is presented in Ref. [5] where a single cell
noncooperative power control game is analysed. A good
overview of activities in this field is given in Ref. [6]. One
well-known deficiency of these games is that the resulting
Nash equilibrium is not necessarily Pareto optimal and that

and pricing concepts only provide limited remedy. That is
the reason why we concentrate on cooperative game theory
in this work.

In this paper we consider systems with rate adaption and
approach the task of fair rate allocation from two sides.
First, we investigate the fairness and efficiency of a non
game theoretic max--min, sum-rate and log-utility approach.
Then, we model the resource allocation as a cooperative
game, a bargaining game. This axiomatic branch in game
theory provides a suitable approach to address the prob-
lem as it guarantees fairness by three axioms, which are
used to ensure desirable properties of the solution, and effi-
ciency by Pareto optimality (PO). It is important to note
that the Pareto optimal Nash bargaining solution (NBS) and
the Nash equilibrium are different, not related concepts. In
a cooperative game the performance of each player may
be better than the performance achieved in a noncoopera-
tive game at a Nash equilibrium. Cooperative bargaining
theory has been applied to a number of resource alloca-
tion scenarios. In Ref. [7], bargaining theory is applied to
load balancing in distributed systems. In Ref. [8], a NBS is
derived for a bandwidth allocation game in broadband net-
works with elastic traffic. OFDMA networks are considered
in Ref. [9], where a NBS is discussed as a fair power alloca-
tion. Reference [10] presents a bargaining game for shared
networks, where both symmetric and asymmetric bargain-
ing models are applied. Cooperative game theory is also
the topic in reference [11], where the feasible set of SIR is

Copyright © 2011 John Wiley & Sons, Ltd.



Rate adaption in interference-limited systems A. Schmeink

analysed by studying both NBS and proportional fairness.
An elegant correlation to the proportionally fair resource
allocation is derived for certain log-convex utility functions.
Further, cooperative games have proven useful in spectrum
allocation as shown in Refs. [12, 13].

This paper is organised as follows. In Section 2 we present
the system model and prerequisites for the fairness analy-
sis. Given QoS requirements and power restrictions, which
rates can be supported by the system? And given the sup-
ported rate vectors, which one is the best to choose? To allow
for the formulation of a cooperative game, we transform
the original set of feasible rates to a convex set. Thereby,
we model the rate assignment as a multi-objective convex
optimisation problem. In Section 3, we introduce the fair-
ness concepts, we apply to the rate adaption problem. Both
non game theoretic and game theoretic concepts are pre-
sented. The solution to the bargaining game is given in
Section 4. For the symmetric case, an explicit solution is
obtained, whereas for the general case, a characterisation is
derived. Further, this centralised approach is decentralised
by using so-called incentives. Numerical results are pre-
sented in Section 5. We give an overview of the results and
some proposals for possible extensions in Section 6.

2. SYSTEM MODEL

Consider a power-controlled interference-limited commu-
nication system with limited resources, T users and a SIR
of user i given by

SIRi(p) = aipi∑
ji

ajpj + σ
, 1 ≤ i ≤ T (1)

where ai∈(0, 1] denotes the channel coefficient of user i,
p = (p1, · · · , pT ) > 0 the vector of transmit powers and
σ > 0 the noise coefficient. This system model applies,
for example, to the uplink scenario from mobile users to the
base station of a DS-CDMA system with a linear receiver
structure. We assume rate adaption to be a feature of our
system. Whereas the data rate of a user in a 3G network
is fixed once he is admitted, rate adaption, as the name
implies, adapts the users’ data rates to the changing sys-
tem loads. Provided that each user can obtain its minimum
required data rate, we ask the question which one is the best
to allocate?

As sectors can be treated as cells, we do not distinguish
between sectors and cells. Starting point for the system anal-
ysis is the fraction of the energy per bit to the interference
per chip (Eb/I0)i = ω/ri SIRi(p) for user i, where ω > 0 is
the chip rate of the system and ri is the data rate of user i,
compare Refs. [14, 15]. Given lower bounds γi > 0 for this
performance measure, (Eb/I0)i ≥ γi, yields the inequalities

ω

γiri

aipi∑
ji

ajpj + σ
≥ 1, 1 ≤ i ≤ T. (2)

From an energy efficient point of view, the system should
use the smallest power setting which fulfills Equation (2).
As the numerator is monotonically increasing in pi and the
denominator is monotonically increasing in pj , the mini-
mum is attained at the boundary and Equation (2) reduces
to

ω

γiri

aipi∑
j �=i

ajpj + σ
= 1, 1 ≤ i ≤ T. (3)

There exists a unique solution to Equation (3) which is
obtained after some algebra as, cf. Ref. [16],

pi = σ

ai((ω/γiri) + 1)
(

1−∑T

j=1 1/((ω/γjrj) + 1)
) ,

1 ≤ i ≤ T.

Necessary and sufficient for pi to be non-negative is∑T

j=1 [ω/(γjrj) + 1]−1 < 1 which is assumed in the fol-
lowing. Further, we assume that the maximum transmit
power of each user i is bounded by pi,max. Abbreviate
xi = ω/(γiri) + 1. We transfer the problem of considering
feasible data rate vectors r = (r1, . . ., rT ) to the problem of
feasible vectors x. A standard argument in queueing the-
ory is to regard the reciprocal of the arrival rate as the
average interarrival time. As ω/(γiri) is usually large, we
may neglect the summand 1 in the definition of xi. Up to
a constant factor the values xi then have the interpretation
as average interarrival times. An elegant consequence is
that the corresponding set of feasible xi, defined below,
is convex. The feasible rates can be easily obtained by
ri = ω/[γi(xi−1)]. It holds that

pi ≤ pi,max ⇔ σ

aixi

(
1−
∑T

j=1
1
xj

) ≤ pi,max

⇔ xi

(
1−

T∑
j=1

1
xj

)
≥ ξi

⇔ 1−
T∑

j=1

1
xj

− ξi
xi

≥ 0

for all 1 ≤ i ≤ T with ξi = σ

aipi,max
.

We assume that each user demands a minimum data
rate and gives an upper bound for its data rate, thus,
ri ∈ [ri,min, ri,max] with ri,max > ri,min > 0. It follows that

xi,min ≤ xi ≤ xi,max

with xi,min = ω

γiri,max
+ 1 and xi,max = ω

γiri,min
+ 1.

Summarising the preliminaries, we define the fractional
data rate region as

X =
{

x = (x1, . . ., xT ) ∈RT |1−
T∑

j=1

1

xj

− ξi

xi

≥ 0,

xi,min ≤ xi ≤ xi,max, 1 ≤ i ≤ T

}
.

We assume that the parameters are chosen such that
X �= ∅. Further, we assume that for each user i there exists
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somexwithxi,max > xi.Using the above notation, this trans-
forms to ri > ri,min for all 1 ≤ i ≤ T for some rate vector r.
Thus, each user can achieve a data rate greater than the
minimum required rate. In a scenario, where we cannot
guarantee this, one or more users might be excluded by
some algorithm until the conditions holds.

Note that the problem can analogously be defined in terms
of the SIR instead of a the data rate. Starting point for this
is the SIR of user i, see Equation (1), which is supposed to
be above a certain threshold, say γ̂i. Further, as

xi = ω

γiri

+ 1 = 1 + ri
ω
γi

ri
ω
γi

the auxiliary variable xi can also be interpreteted in terms
of γi.

All elements in the fractional data rate region fulfill the
user and system requirements. In what follows, we will con-
sider the task of selecting one element, which is superior to
the other elements and a fair trade-off for each user.

For two vectors x = (x1, . . ., xn)T, y =
(y1, . . ., yn)T ∈Rn, we write x ≤ y if xi ≤ yi for all
1 ≤ i ≤ n.

3. FAIRNESS CONCEPTS FOR
RESOURCE ALLOCATION

There are many solution concepts to choose a reasonable
element of X. Clearly, the outstanding point should be
Pareto optimal. Given a Pareto optimal element, the data
rate of some user cannot be increased without decreasing
the rate of another user. The question that arises is which of
the infinitely many Pareto optimal points we should choose.
One way is by introducing further sensible criteria. From the
perspective of resource sharing, one of the natural criteria
is the notion of fairness. However, there are many notions
of fairness imaginable.

3.1. General fairness concepts

It is intuitive to choose an element of the fractional data rate
region that maximises some utility. Maximising the sum of
the rates is a desirable outcome and achieved by

max
x ∈X

T∑
i=1

−xi.

The log-utility of the sum rate objective is used for the
following problem

max
x ∈X

T∑
i=1

log(−xi).

A different, but also desirable outcome, especially with
respect to fairness, is the maximisation of the minimal

rate, i.e.

max
x ∈X

min
1≤i≤T

−xi.

Max--min fairness is one of the commonly used notions
of fairness and penalises large users. Max--min fairness
corresponds to a Pareto optimal point. However, it is not
easy to take into account that users might have different
requirements.

3.2. Game theoretical fairness

A more sophisticated approach is the use of fairness from
game theory, see Ref. [17]. In our cooperative resource allo-
cation bargaining game the users are the players, and they
have to agree upon some element of the fractional data rate
region X.

To analyse the game theoretic solution for our frame-
work in more detail, we define the necessary game theoretic
concepts. Consider some nonempty convex closed and com-
ponentwise upper bounded set U ⊂ RT and some element
u0∈RT such that u ≥ u0 for some u∈U. The pair (U, u0)
is called an T-person bargaining problem. The elements
of U are called outcomes and u0 is the disagreement out-
come. The interpretation of such a problem is as follows.
A number of T bargainers, respectively mobile users, are
faced with the problem that they have to negotiate for a fair
point on the convex set U. If no agreement can be reached
by the bargainers, the disagreement utilities (u0

1, . . . , u
0
T )

will be the outcome of the game. Let BT denote the family
of all T-person bargaining problems. A bargaining solu-
tion is a function F : BT → R

T such that F (U, u0)∈U for
all (U, u0)∈BT . Nash suggested a solution that is based on
certain axioms as given below.

Weak Pareto optimality (WPO).

F : BT → R
T is called weakly Pareto optimal, if for all

(U, u0)∈BT it holds that there exists no u∈U satisfying u >

F (U, u0).

Symmetry (SYM).

F : BT → R
T is symmetric if for all (U, u0)∈BT that are

symmetric with respect to some subset J ⊆ {1, . . . , n} it
holds that

Fi(U, u0) = Fj(U, u0) for all i, j∈J.

A bargaining problem (U, u0) ∈ BT is called symmetric
with respect to some subset J, if

u0
i = u0

j and

(u1, . . ., ui−1, uj, ui+1, . . ., uj−1, ui, uj+1, . . ., uT ) ∈U

for all u ∈U and for all i, j ∈ J, i < j.
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Scale covariance (SCC).

F : BT → R
T is scale covariant if

F (ϕ(U), ϕ(u0)) = ϕ(F (U), (u0))

for all ϕ : RT → R
T , u 
→ ũ with ũi = aiui + bi for some

ai, bi ∈R with ai > 0 for all 1 ≤ i ≤ n.

Independence of irrelevant alternatives (IIA).

F : BT → R
T is independent of irrelevant alternatives, if

F (U, u0) = F (Ũ, ũ0) for all (U,u0), (Ũ, ũ0) ∈ BT with u0 =
ũ0, U ⊆ Ũ and F (Ũ, ũ0) ∈U.

The interpretation of WPO is that it is impossible for
all bargainers to gain with respect to the solution outcome.
Symmetry, SCC and IIA are the so-called axioms of fair-
ness. The symmetry property states that the solution does
not depend on a specific label, i.e. users with both the same
initial points and objectives will obtain the same perfor-
mance. SCC requires the solutions to be covariant under
positive affine transformations. This implies that the solu-
tion is independent of any risk neutral utility specification,
see Ref. [18]. IIA demands that the solution outcome does
not change when the set of possible outcomes shrinks but
still contains the original solution.

A function N : BT → R
T is said to be a NBS if it holds

for all N(U, u0) ∈ BT that

N(U, u0) = argmax




∏
1≤j≤n, uj �=u0

j

(uj−u0
j )|

u = (u1, . . ., uT ) ∈U, u ≥ u0




if U\{u0} �= ∅ and that N(U, u0) = u0, if U\{u0} = ∅.

The NBS u∗ = N(U, u0) calls for the maximisation of
the product of the users’ gain from cooperation. It is well
defined, as the maximum is attained at a single value. In
addition it is uniquely characterised by the four axioms
stated above. The only solution satisfying WPO, SYM, SCC
and IIA is the NBS. A valuable attribute of the NBS is that
is satisfies another axiom, namely PO.

Pareto optimality.

F : BT → R
T is called Pareto optimal, if for all

(U, u0) ∈ BT it holds that:

u ∈U, u ≥ F (U,u0) implies u = F (U, u0).

The interpretation of PO is that it is impossible to increase
anyone’s utility without decreasing the utility of some other
player.

The main drawback in the NBS is that each user only con-
siders its individual gain and does not care about how much
the other users give up. In particular, Kalai and Smorodin-
sky argued that one’s gain should be proportional to its

maximum gain [19], which the NBS fails to satisfy. They
proposed to modify axiom (IIA) by another axiom.

Individual monotonicity.

F : BT → R
T is called individual monotone, if, if for all

(U, u0), (Ũ, u0) ∈ BT , Ũ∈U with maxu ∈ Ũ ui = maxu ∈U ui,

maxu ∈ Ũ uj ≤ maxu ∈U uj, i �= j it holds that: Fj(U, u0) ≥
Fj(Ũ, u0).

Thus, for any subset of U the solution for some player j
cannot be improved if the maximum utility of some player
i is constant.

The third well-known solution, the Thomson solution is
also known as utilitarian rule. As it violates axiom SCC,
the Nash and the Raiffa bargaining solution (RBS) are the
more natural solutions for the rate adaption game and we
will focus on those two in the following.

To embed the rate problem into the game-theoretic frame-
work, it is important to notice that X is convex and closed.
This follows from the fact that−1 +∑T

j=1 (1/xj) + (ξi/xi),
1 ≤ i ≤ T, are convex functions on RT

>0. Further, the func-
tions −(xi−xi,min) and −(xi,max−xi) are convex. By [Ref.
[20], Corollary 4.6.1] the level sets

{
x ∈RT

+|1−
T∑

j=1

1
xj

− ξi
xi

≥ 0

}
,{

x ∈RT
∣∣xi−xi,min ≥ 0

}
,{

x ∈RT
∣∣xi,max−xi ≥ 0

}
are convex for every i ∈ {1, . . ., T }. Since the intersection
of an arbitrary collection of convex sets is convex, cf. [Ref.
[20], Theorem 2.1], we obtain the convexity of X. Clearly,
X is closed.

It is natural to assume that each user aims at obtaining
a data rate greater than its minimum rate and as close to
its maximum value as possible. When the data rate ri of
some user i tends to its maximum, then −xi tends to its
maximum, too. If the users fail to reach an agreement, they
end up with the minimum data rate, which is expressed by
the disagreement outcome

u0 = −x1,max, . . ., −xT,max.

This holds since −xi ≥ −xi,max transforms to ri ≥ ri,min.

Thus, by choosing the disagreement outcome as above, the
minimum data rate for each user is assured, as desired.The
notation of our game is now as follows:

U = X,

u0 = (−x1,max, . . ., −xT,max).
(4)

The thereby defined game has a unique NBS which is char-
acterised as follows.

Proposition 1 The unique NBS and RBS to the bargain-
ing problem (U,u0) defined in Equation (4) are the solutions
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to the following convex optimisation problem (P)

maximize
T∏

i=1

(xi,max−xi) + β

N−1

∑
j �=i

(xj−xj,min)

subject to 1−
T∑

j=1

1
xj

− ξi
xi

≥ 0, 1 ≤ i ≤ T

xi−xi,min ≥ 0, 1 ≤ i ≤ T

xi,max−xi ≥ 0, 1 ≤ i ≤ T

where β = 0 for the NBS and β = 1 for the RBS.
Hence, the NBS and the RBS to a bargaining problem

can be calculated by implementing problem (P). Note that
the feasible region in (P) is convex as shown above.

3.3. Willingness to pay

The above bargaining concepts treats all users the same with
respect to their bargaining power. In reality, the bargaining
result will be influenced by a variety of factors such as the
tactics, the negotiation procedure or the willingness to pay
of each user. Here, we assume that each user i, 1 ≤ i ≤ T
chooses some price ηi ≥ 0 which reflects his willingness to
pay, see Ref. [21]. We define the bargaining ratio of user i as
η̂ = ηi/

∑T

j=1 ηi. The corresponding, so called asymmetric
solutions are obtained by including the bargaining ratios as
powers in the objective functions, i.e. the objective in (P) is
replaced by

T∏
i=1

(
(xi,max−xi) + β

N−1

∑
j �=i

(xj−xj,min)

)η̂i

.

When all users propose the same price this asymmetric
models corresponds to the symmetric bargaining outcome.

4. SOLVING THE GAME

In this section, we show that a concrete solution is obtained
in a special case, while for the general case we give a solu-
tion method. Further, we present a decentralisation for the
centralised approach.

4.1. The symmetric case

Consider the minimum and maximum data rates of the
users, and the constants ξi to be the same for all users, i.e.
it holds that xi,min = xmin, xi,max = xmax and ξi = ξ for some
xmax, xmin, ξ for all 1 ≤ i ≤ T. Then a solution to the above
maximisation problem can be obtained explicitly.

Recall that the solution to (P) is a NBS, and thus
satisfies the axiom SYM. Due to this axioms, the solu-
tion x∗ is the same for each user, i.e. x∗ = (x∗, . . ., x∗).
As the objective function is monotonically decreasing
in xi, the solution is either obtained at x∗ = xmin, or at
1−∑T

j=1 (1/x∗)−(ξ/x∗) = 0, which is equivalent to x∗ =
T + ξ.

Figure 1. Region X(2) and some level set.

Summarising the above arguments, the solution to (P) in
the symmetric case is

x∗ = (x∗, . . ., x∗) with x∗ = max {xmin, T + ξ}.

We consider a two- and a three-dimensional example.
First, consider the two user case with β = 0, xmin = 1.6,
xmax = 5 and ξ = 0.5 The corresponding fractional data rate
region is

X(2) =
{

x ∈R2|1−
2∑

j=1

1

xj

−0.5

xi

≥0, 1.6≤xi ≤5, i ∈{1, 2}
}

.

The solution to (P) is x∗ = (2.5, 2.5) with optimal value
6.25. Region X(2) is depicted in Figure 1 with the level
sets (5−x1)(5−x2) = c for c ∈ {2, 3.5, 5, 6.25}. The corre-
sponding region of rates, called R(2), is depicted in Figure
2. The corresponding parameters are ω = 129.6, γi = 1.5,
ri,min = 21.6 and ri,max = 144, i = 1, 2. The optimal rates
are r1 = r2 = 57.6. The level sets (r1−21.6)(r2−21.6) = c

are depicted for c ∈ {600, 900, 1296}. As expected, the frac-
tional data rate region turns out to be convex, whereas the
region of feasible rates is not. Second, consider the three
user case with β = 0, xmin = 3, xmax = 5 and ξ = 0.5. The
corresponding fractional data rate region is

X3 =
{

x ∈R3|1−
3∑

j=1

1

xj

−0.5

xi

≥0, 3≤xi ≤5, i ∈{1, 2, 3}
}

.

The solution to (P) is thus x∗ = (3.5, 3.5, 3.5) with opti-
mal value 3.375. Region X3 is depicted in Figure 3 with the
level set (5−x1)(5−x2)(5−x3) = 3.375.
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Figure 2. The corresponding region of rates, R(2).

Figure 3. Region X (3) and the optimal level set.

4.2. A solution concept for the general
case

We propose the Lagrange multiplier method to solve optimi-
sation problem (P) for β = 0. For the general case the NBS
is characterised in the subsequent corollary. The longish
proof is given in the Appendix. Numerical solutions can be
easily obtained using Ref. [22].

Corollary 2. Necessary and sufficient for x∗ =
(x∗

1, . . ., x
∗
T ) to be the unique NBS is the following. There

exist positive Lagrange multipliers µ1, . . ., µT such that for

each i ∈ {1, . . ., T }

(a) x∗
i ∈
{

xi,min, − αi

2 + 1
2

√
α2

i + 4αixi,max

}
with αi =∑T

j=1 µj + µiξi

(b)
(

1−∑T

j=1
1
x∗
j

− ξi
x∗
i

)
µi = 0.

Corollary 2 provides a characterisation of data rates, that
are optimal in the Nash bargaining sense. This is a global
approach, where the receiver needs information from all
users.

4.3. Decentralisation by a noncooperative
game

We now deal with the issue of how we can define a local
optimisation problem for each user. We utilise a technique
which is well known in the theory of nonlinear program-
ming as the concept of penalties, cf. Ref. [8]. As we use
negative penalties in our context, we prefer to refer to them
as incentives. In the local model, each user may optimise
only its own parameters. Unrestricted data rates cannot be
offered to each user. Giving incentives to the users to use a
small data rate yields a Pareto-optimal point, as is shown in
the following.

We introduce a set of positive parameters, denoted by
θi, 1 ≤ i ≤ T. User i with data rate ri receives an incentive
of θi

[
ω/(γiri) + 1

] = θixi. The intention of each user is to
maximise its utility, which is defined as the sum of the utility
and the incentive corresponding to data rate ri. The utility
of some user i corresponding to its data rate is defined as
ln(xi,max−xi). Taking the logarithm for the utility, but not
for the incentive corresponding to some data rate, stresses
the importance of the incentive and urges users to get by
with low rates.

This leads to the following optimisation problem (Ui) for
user i, 1 ≤ i ≤ T

maximize
T∏

i=1

ln
(
xi,max−xi

)+ θixi

subject to xi−xi,min ≥ 0
xi,max−xi ≥ 0.

The network’s aim is to give as little incentive to the users
as possible. Therefore, the network’s optimisation problem,
called (N), is as follows.

maximize −
T∑

i=1

θixi

subject to 1−
T∑

j=1

1
xj

− ξi
xi

≥ 0, 1 ≤ i ≤ T

xi−xi,min ≥ 0, 1 ≤ i ≤ T

xi,max−xi ≥ 0, 1 ≤ i ≤ T

If the incentive parameters θ1, . . ., θT are properly cho-
sen, the unique NBS of the global problem (P) solves
the user problem (Ui) for each user i ∈ {1, . . ., T } and the
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network’s problem (N). The proof of the following theorem
is given in the Appendix.

Theorem 3 Let x∗ be the unique NBS of problem (P) and
set

θi =




2
(
αi−
√

α2
i + 4αixi,max + 2xi,max

)−1

if x∗
i = − αi

2 + 1
2

√
α2

i + 4αixi,max

αi/x
2
i,min + µ̃i

if x∗
i = xi,min,

with αi and µ̃i given in the proof of Corollary 2, 1 ≤ i ≤ T.
Then x∗ solves the optimisation problem (N) and x∗

i solves
(Ui) for each 1 ≤ i ≤ T

The theorem states that the decentralised user problems
yield a Pareto optimal point, the same optimal point as the
global problem (P), if the incentive parameters a properly
chosen.

5. A NONCOOPERATIVE
INTERPRETATION

Another interesting game-theoretic interpretation is that the
presented decentralisation results in a noncooperative game.

A noncooperative game consists of players, strategies and
utility functions. Let G = (A,

∏
i∈A Si, {ui(.)}i ∈A

)
, denote

the noncooperative game where A = {1, 2, . . ., m} is the
set of players, Si ⊂ Rmi×ni , mi, ni ∈N, the strategy set of
player i and ui :

∏
i∈A Si → R the utility function of player

i.
∏

i∈A Si denotes the Cartesian product of S1, . . .,Sm.

The solution concept that is most widely used for such
games is the Nash equilibrium. A strategy x̃ ∈ ∏

i∈A Si is
called Nash equilibrium if for every i ∈A

ui(x̃i, x̃−i) ≥ ui(xi, x̃−i) for every xi ∈Si

where x̃−i = (x̃1, . . ., x̃i−1, x̃i+1, . . ., x̃n). The interpreta-
tion is that, given the strategies of the other players, no
user can improve its utility by making individual changes.
This corresponds to a player optimising its performance
regardless of the performance of other players. No one of
the players has an incentive to deviate from a Nash equilib-
rium. However, a Nash equilibrium is not necessarily Pareto
optimal.

In accordance with the above notation, the underlying
game of the decentralisation is given by

G =
(
A,
∏
i ∈A

Si, {ui(.)}i ∈A

)

with

A = {1, . . ., T },
Si = {x ∈RT

∣∣ xi,min ≤ xi ≤ xi,max

}
, 1 ≤ i ≤ T,

ui(x) = ln
(
xi,max−xi

)+ θixi, 1 ≤ i ≤ T.

The noncooperative game consists of T players. The strat-
egy set of user i is the set of all vectors x such that the
ith component lies between the minimum and maximum

value of user i. The utility function is the sum of utility and
incentive corresponding to some data rate.

Seeking for the Nash equilibrium, we are looking for
some xNe = (xNe

1 , . . ., xNe
T

)
with

ln
(
xi,max−xNe

i

)+ θix
Ne
i ≥ ln(xi,max−xi) + θixi

for all x ∈ ∏
j∈A Sj , 1 ≤ i ≤ T. Thus, we need to find the

maximum of the function h(x) = ln(xi,max−x) + θix. The
first derivative vanishes and the second derivative is pos-
itive for x = xi,max−1/θi. Taking into account the domain∏

i∈A Si of ui(x), the unique Nash equilibrium of the game
G is

xNe = (xNe
1 , . . ., xNe

T

)
with

xNe
i = max

{
xi,min, xi,max− 1

θi

}
.

The Nash equilibrium is Pareto optimal as the utility of
each user is maximal at xNe. With the incentives chosen
according to Theorem 3, the Nash equilibrium of the gameG
is the NBS xNe to the problem (P). Thus, the decentralisation
is a noncooperative implementation of a system’s optimal
point.

6. NUMERICAL RESULTS

To analyse the diverse advantages of the different solutions,
we compare the sum of utility, the fairness and the total
revenue of the above concepts. Figure 4 depicts the sum of
utilities versus ξ1 with ξ2 = 0.5 fixed for a two user case. It
can be seen that the NBS always lies between the solution to
the sum-rate and the max--min problem. This holds because
the max--min approach aims not at optimising some overall
value but at avoiding single bad performance peaks. In that
sense, this approach is fairer than the sum-rate approach.
The performance loss of the NBS is small compared to the
sum-rate approach, but it maintains the fairness in the pre-
sented game theoretic sense. Figure 5 presents the fairness
of the different approaches, where fairness here means the
ratio of x1 and x2 again for a two-user scenario where ξ2

Figure 4. A two-person bargaining problem.
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Figure 5. Fairness analysis of the different approaches.

Figure 6. The total revenue of the Raiffa and NBS.

is set to 0.5. When ξ1 is close to ξ2 the performance of the
approaches are the same. This fits to the above mentioned
symmetry property. For the max--min problem, the ratio
always equals one, which means both users have the small
utility. The NBS lies between the sum-rate and the max--min
problem. For the log-utility problem, the investigated ration
shows the most variation for changing ξ1. Finally, we com-
pare the revenue of the different concepts. The total revenue
of the game is defined as the sum of rates with respect to
the willingness to pay

T∑
i=1

riη̂i.

Figure 6 compares the total revenue of the Nash and the
RBS for a two user case. It depends on the willingness to pay
of each user which outcome gives a higher total revenue. For
high or low willingness, Raiffa is better, whereas a user with
medium willingness better goes for the NBS. Calculating
further the total revenue of the remaining three approaches,
we obtain Figure 7. Again, the outcome depends on the
willingness to pay. Interestingly no concepts is outstanding

Figure 7. The total revenue of the five fairness concepts.

for all ranges. Those concepts that are better for a high or
low willingness to pay perform worse in a medium range.

7. CONCLUSION

In this paper, we investigated fairness concepts for rate allo-
cation in interference limited systems with rate adaption.
Starting from general fairness concepts like the max--
min fairness, we presented a cooperative game theoretical
approach. In this game fairness is ensured by three axioms,
while further efficiency is derived from PO. Both the NBS
and the RBS have been investigated. To overcome the chal-
lenge of cooperation, a decentralisation has been proposed
by exploiting so-called incentives. If the incentives a prop-
erly chosen, the decentralised solution coincides with the
centralised one. Further, the decentralisation has an inter-
esting interpretation as a noncooperative game, where the
underlying Nash equilibrium was shown to be Pareto opti-
mal. This proves that the system’s optimal point can be
decentrally determined by finding optimal strategies in a
noncooperative game. Numerical results compare the fair-
ness and efficiency of the proposed approaches. The game
theoretic solutions turn out to be reliable candidates both
for fairness and throughput, whereas the nongame theo-
retic solution have clear disadvantages. An open task which
is dedicated to future research is the modelling of rate-
adaption for multi-cell networks thereby taking into account
the various interfering factors.

APPENDIX

Proof of corollary 2

Our aim is to use the Kuhn-Tucker Theorem, see, e.g. Ref.
[23]. If xi = xi,max for some i the objective function in (P) is
equal to zero. Thus, the solution satisfies x∗

i < xi,max for all
1 ≤ i ≤ T. The ln-function is strictly monotonic increasing,
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so we can consider the objective function

ln

(
T∏

i=1

(xi,max−xi)

)
=

T∑
i=1

ln(xi,max−xi).

As the objective function is strictly concave and as the
constraints in (P) are concave the Kuhn-Tucker conditions
are necessary and sufficient for optimality, see Ref. [24].

Hence, we get the following necessary and sufficient con-
ditions for the optimumx∗. There exist Lagrange multipliers
µi, µ̃i,



µi ≥ 0, 1 ≤ i ≤ T such that

∇h(x∗)=
T∑

i=1

µi∇gi(x
∗)+

T∑
i=1

µ̃i∇g̃i(x
∗) +

T∑
i=1



µi∇i(x

∗)

(5)

gi(x∗)µi = 0, g̃i(x∗)µ̃i = 0

i(x∗)


µi = 0, 1 ≤ i ≤ T

(6)

where

h(x) = −
T∑

i=1

ln(xi,max−xi),

gi(x) = 1−
T∑

j=1

1
xj

− ξi
xi

,

g̃i(x) = xi−xi,min, i(x) = xi,max−xi

(7)

for 1 ≤ i ≤ T. Again, noting that xi < xi,max we get
{i ∈ {1, . . ., T } |i(x∗) = 0 } = ∅ and



µi = 0 for all 1 ≤ i ≤ T.

Differentiating h(x), gi(x) and g̃i(x), Equation (5) trans-
forms to

1

xi,max−x∗
i

= 1

x∗
i

2

(
T∑

j=1

µj + µiξi

)
+ µ̃i, 1 ≤ i ≤ T.

(8)

Let αi = (∑T

j=1 µj + µiξi

)
, then Equation (8) yields

µ̃ix
∗
i

3 + (1−µ̃ixi,max

)
x∗

i
2+αix

∗
i −αixi,max =0, 1 ≤ i ≤ T.

(9)

Further, using Equation (7), Equation (6) reads as(
1−

T∑
j=1

1

x∗
j

− ξi

x∗
i

)
µi = 0,

(
x∗

i −xi,min

)
µ̃i = 0.

Thus, either x∗
i = xi,min or µ̃i = 0. If µ̃i = 0, (9)

yields x∗
i

2 + αix
∗
i −αixi,max = 0, which transforms to x∗

i =
− αi

2 ± 1
2

√
α2

i + 4αixi,max and the assertion follows as x∗
i ≥

xi,min > 0.

Proof of theorem 3

First, we prove that the NBS x∗ solves (N). We exploit
the Kuhn-Tucker Theorem as shown in the proof of
Corollary 2 and define

h(x) =
T∑

i=1

θixi, gi(x) = 1−
T∑

j=1

1
xj

− ξi
xi

g̃i(x) = xi−xi,min, i(x) = xi,max−xi

for all vgi ≤ i ≤ T. Let ηi, η̃i and


ηi be the corresponding

Lagrange multipliers. Denote by xnet a solution to the net-
work problem (N). Substituting the derivative of h, gi, g̃i

and


gi, 1 ≤ i ≤ T, in Equation (5), it follows that

θi =
(

T∑
i=1

ηj + ξiηi

)
1(

xnet
i

)2 + η̃i−

ηi, 1 ≤ i ≤ T.

As the solution must be positive it transpires that

xnet
i =
√

α′
i

θi−η̃i + 

ηi

for all 1 ≤ i ≤ T

where α′
i =∑T

j=1 ηj + ξiηi. Applying the Kuhn-Tucker
Theorem, the following conditions are necessary and suf-
ficient for an optimum of (N). For all 1 ≤ i ≤ T it holds
that

xnet
i =
√

αi′

θi−η̃i + 

ηi

(10)

(
1−

T∑
j=1

1

xnet
j

− ξi

xnet
i

)
ηi = 0 (11)

(
xnet

i −xi,min

)
η̃i = 0

(
xi,max−xnet

i

)


ηi = 0

Now assume ηi = µi,


ηi = 0 and η̃i = µ̃i with µi and µ̃i

from the proof of Corollary 2. Then x∗
i fulfills Equation (11)

for all 1 ≤ i ≤ T. It remains to show the validity of Equa-
tion (10). If µ̃i = 0, we receive η̃i−


ηi = 0. Furthermore,
Corollary 2 tells us

x∗
i = −αi

2
+ 1

2

√
α2

i + 4αixi,max
.
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We show that x∗
i = − αi

2 + 1
2

√
α2

i + 4αixi,max fulfills
Equation (10). With α′

i = αi Equation (10) transforms to

xnet
i =
√

α′
i

θi

=
√

αi

2

(
αi−
√

α2
i + 4αixi,max + 2xi,max

)
=
√(

α2
i

4 − αi

2

√
α2

i + 4αixi,max +
(

α2
i

4 + αixi,max

))
=
√(

− αi

2 + 1
2

√
α2

i + 4αixi,max

)2

= − αi

2 + 1
2

√
α2

i + 4αixi,max = x∗
i .

The case µ̃i �= 0 for some 1 ≤ i ≤ T is obvious as it sim-
plifies to x∗

i = xi,min. This proves that the NBS solves (N).
It remains to show that the NBS x∗

i solves (Ui), too. In
what follows, we assume that i ∈ {1, . . ., T } is arbitrary but
fixed. Calculating the roots of the derivative of

h̃(xi) = ln
(
xi,max−xi

)+ θixi

yields xi = xi,max−1/θi. As D2h̃(xi) = −(xi,max−xi)−2

< 0, we observe that xi,max−1/θi solves the optimisa-
tion problem if it fulfills the constraints, i.e. if xi,min ≤
xi,max−1/θi ≤ xi,max. Noting that θi > 0, this simplifies to
xi,max−1/θi ≥ xi,min. As f(xi) is strictly monotonic decreas-
ing for all xi < xi,max− 1

θi
and strictly monotonic increasing

for all xi > xi,max− 1
θi
, the solution to the optimisation prob-

lem (Ui) is given by

xuser
i =

{
xi,max− 1

θi
, if xi,min < xi,max− 1

θi

xi,min, if xi,min ≥ xi,max− 1
θi

(12)

It remains to prove that x∗
i = xuser

i for all 1 ≤ i ≤ T. If
µ̃i �= 0, then x∗

i = xi,min. By Equation (12) we have to show
that xi,min ≥ xi,max−(1/θi). With θi = αi/x

2
i,min + µ̃i it holds

that

xi,min ≥ xi,max− 1
θi

⇔ xi,min ≥ xi,max− x2
i,min

αi+µ̃ix
2
i,min

.

This transforms to

µ̃ix
3
i,min + (1−µ̃ixi,max

)
x2

i,min + αixi,min−αixi,max ≥ 0

which is true by Equation (9).
If µ̃i = 0 then

x∗
i = −αi

2
+ 1

2

√
α2

i + 4αixi,max.

It holds that

xi,max− 1
θi

= xi,max− 1
2

(
αi−
√

α2
i + 4αixi,max + 2xi,max

)
= − αi

2 +
√

α2
i + 4αixi,max = x∗

i . (13)

If x∗
i = xi,min, Equation (13) yields xi,max− 1

θi
≥ xi,min and

with Equation (12) we obtain xuser
i = xi,min, so x∗

i = xuser
i .

If x∗
i > xi,min, Equation (13) yields xi,max− 1

θi
> xi,min, and

again with Equation (12) we observe xuser
i = xi,max− 1

θi
=

x∗
i . This concludes the proof.
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