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Optimality of Dual Methods for Discrete Multiuser
Multicarrier Resource Allocation Problems

Simon Görtzen and Anke Schmeink, Member, IEEE

Abstract—Dual methods based on Lagrangian relaxation are
the state of the art to solve multiuser multicarrier resource
allocation problems. This applies to concave utility functions
as well as to practical systems employing adaptive modulation,
in which users’ data rates can be described by step functions.
We show that this discrete resource allocation problem can
be formulated as an integer linear program belonging to the
class of multiple-choice knapsack problems. As a knapsack
problem with additional constraints, this problem is NP-hard,
but facilitates approximation algorithms based on Lagrangian
relaxation. We show that these dual methods can be described
as rounding methods. As an immediate result, we conclude that
prior claims of optimality, based on a vanishing duality gap, are
insufficient. To answer the question of optimality of dual methods
for discrete multicarrier resource allocation problems, we present
bounds on the absolute integrality gap for three exemplary
downlink resource allocation problems with different objectives
when employing rounding methods. The obtained bounds are
asymptotically optimal in the sense that the relative performance
loss vanishes as the number of subcarriers tends to infinity.
The exemplary problems considered in this work are sum rate
maximization, sum power minimization and max-min fairness.

Index Terms—Resource allocation, adaptive modulation, or-
thogonal frequency division multiple access (OFDMA), duality
theory, combinatorial optimization.

I. INTRODUCTION

THE problem of resource allocation in multicarrier com-
munication systems has been widely studied. For the

single-user case, the optimal solution is achieved by classical
bit-loading [1]. The problem becomes much more complex
when multiple users have to be serviced, as subcarriers have
to be allocated to users in a way that maximizes a specific
objective function which depends on the user’s data rate and
power consumption on each subcarrier. Additional constraints
regarding power consumption and/or data rate requirements
further complicate the problem. In [2], the authors present
dual methods for non-convex multicarrier resource alloca-
tion problems (RAPs) with both concave as well as non-
differentiable, ”discrete” utility functions. These methods are
based on prior advances in optimization theory [3], [4] and
have been investigated further for RAPs by various authors.
In general, the main focus is on concave utility functions [5]–
[8] but discrete utility functions are also considered [9]–[12],
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usually in addition to the concave case. In [13], a discrete
RAP is analysed with a Minimum Cost Network Flow model
and dual methods are applied. This list is not intended to be
exhaustive but showcases the popularity of dual methods in
this field. To date, dual methods are applied as a powerful tool
to solve arbitrary RAPs, which are often discrete due to their
application in practical systems. The performance of these
methods is attributed to the fact that the duality gap vanishes
when the number of subcarriers tends to infinity, which can
be interpreted as allowing arbitrary time-sharing within the
system. In this paper, we show that the vanishing duality gap
of discrete RAPs alone is not sufficient to guarantee near-
optimal performance of dual methods.

To the best of the authors’ knowledge, these discrete prob-
lem formulations have never been analysed in detail from the
perspective of linear and integer linear optimization. In this
paper, we show that all multicarrier RAPs with discrete util-
ity functions can be formulated as multiple-choice knapsack
problems (MCKPs), which form a special class of NP-hard
integer linear programs (ILPs). These combinatorial problems
have been studied intensively and applied in various fields,
including but not limited to operations research, VLSI design,
and data compression. As an immediate conclusion, arbitrary
time-sharing corresponds to a linear relaxation of the integer
problem. Furthermore, the dual problems of the discrete and
the relaxed formulation are identical, which means that all
dual methods based on [2] can be shown to be rounding
algorithms based on ”discretizing” the linear programming
solution. In combinatorial optimization, this is a common ap-
proach to obtain feasible approximative solutions, for example
to be used in branch-and-bound algorithms. Interestingly, the
performance of these rounding algorithms does not depend
on the duality gap between the primal and dual problem, but
on the rounding strategy and the costs induced by rounding
towards a feasible solution. This implies that, at least for the
discrete case, the optimality arguments of [2] and subsequent
research have to be re-evaluated, as a small duality gap does
not imply optimal performance of rounding algorithms.

In this work, we analyse three formulations of the RAP
commonly encountered in wireless multiuser multicarrier sys-
tems, for example in the OFDMA downlink setting. These
problems are sum rate maximization, sum power minimization
and max-min fairness. All of them have been previously stud-
ied and solved by dual methods for concave utility functions.
Dual methods for the sum rate maximization problem (SRMP)
and the sum power minimization problem (SPMP) with con-
cave utility functions are derived in [5], while problems of
proportional fairness are considered in [14]. The latter can be
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formulated as a max-min fairness problem (MMFP). In the
case of a practical system with a finite number of modulation
and coding schemes (MCSs), it is obviously advantageous to
solve the discrete formulation instead of the concave one. Even
if the utility step functions can be approximated by a concave
function, one suffers quantization losses from rounding to-
wards the nearest MCS. As this happens on every subcarrier,
the performance loss scales with the number of subcarriers
in the system. Furthermore, the discrete formulation is not
limited to a certain shape or structure of the power-rate
pairs of each subcarrier. Finally, the integer linear formulation
and the dual methods discussed in this paper rely only on
basic arithmetics, whereas dual methods for concave utility
functions usually include at least some potentially complex
logarithmic functions as well as the need to differentiate.

The remainder of this paper is structured as follows: In
Section II, the discrete RAP is formally formulated. We show
that discrete RAPs belong to the class of MCKPs. In this
section, we also introduce the three exemplary RAPs on which
we focus our analysis. Section III deals with the Lagrangian
dual problems corresponding to the discrete RAPs. In this
section, we present the connection between dual and rounding
methods and show that the duality gap is not a sufficient
measure of performance. We follow this up with an analysis
of the integrality gap and feasibility of rounding solutions
in Section IV, which is where we present bounds on the
integrality gap as well as results on the asymptotic optimality
of dual methods. Section V concludes the paper.

II. RESOURCE ALLOCATION PROBLEMS

We consider a wireless communication system with K users
and N subcarriers, in which every subcarrier can only be
used by at most one user. Let pk,n denote the transmit power
spent for user k on subcarrier n. Then, user k’s data rate
on subcarrier n is given as rk,n = uk,n(pk,n) for a rate
utility function uk,n incorporating channel gain information
and other factors. In the case of concave utility functions,
these can usually be described by

uk,n(pk,n) = c log2

(
1 +

pk,n
Γ

)
(1)

with appropriately chosen fitting factors c and Γ. This log-
arithmic formulation is based on the Shannon bound but
can also be used to approximate the data rates of practical
systems [15]. However, in the case of a finite number of
MCSs m = 1, . . . ,M , the utility functions are monotonically
increasing non-negative step functions of the form

uk,n(pk,n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

rk,1,n, if pk,1,n ≤ pk,n < pk,2,n,
rk,2,n, if pk,2,n ≤ pk,n < pk,3,n,

...
rk,M,n, if pk,M,n ≤ pk,n.

(2)

In this formulation, the channel gain information is incor-
porated into the power values pk,m,n, m = 1, . . . ,M . As
it is possible to not utilize a subcarrier at all, we as-
sume that (pk,1,n, rk,1,n) = (0, 0) holds. The power-rate
pairs (pk,m,n, rk,m,n), m = 1, . . . ,M , denote the discrete set
of optimal operating points of the system. A visualization is
given in Fig. 1, in which a step utility function uk,n and the
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Fig. 1. Utility function uk,n and corresponding power-rate pairs. The dashed
line shows a fitted logarithmic utility function.

corresponding power-rate pairs (pk,m,n, rk,m,n) are depicted.
For comparison, the dashed line shows a concave logarithmic
utility function which has been fitted to the power-rate pairs
of uk,n. However, the results of this paper apply to arbitrary
step utility functions and do not depend on the structure of
the power-rate pairs.

We now introduce binary decision variables xk,m,n ∈ {0, 1}
which denote if user k is using MCS m on subcarrier n. If
this is the case, xk,m,n is one, and zero otherwise. Because
every subcarrier can only be used by exactly one user with a
unique MCS, we obtain the set of constraints

K∑
k=1

M∑
m=1

xk,m,n = 1, n = 1, . . . , N. (3)

A general RAP is a linear optimization problem of the form

max
K∑

k=1

M∑
m=1

N∑
n=1

ck,m,nxk,m,n (4)

s.t.
K∑

k=1

M∑
m=1

N∑
n=1

a
(i)
k,m,nxk,m,n ≤ b(i), i = 1, . . . , s, (5)

K∑
k=1

M∑
m=1

xk,m,n = 1, n = 1, . . . , N, (6)

xk,m,n ≥ 0, ∀ k,m, n. (7)

Parameter ck,m,n describes the profit gained from allocating
the user-MCS pair (k,m) to subcarrier n. Positive values can
be used to formulate a utility maximization problem, while
negative values refer to costs that have to be minimized, as,
for example, in power minimization problems. Similarly, the
parameters a

(i)
k,m,n and b(i) in each of the s inequalities (5)

can be used to describe system constraints like power budgets
and data rate demands. Note that the constraint xk,m,n ≤ 1
does not have to be enforced explicitly as it is implied by (6).
The domain of the RAP is D = Z

q with q = KMN , which
makes it an ILP. Clearly, we can also formulate the RAP in
matrix-vector notation. We denote the vector (xk,m,n)k,m,n

by x without specifying an enumeration order for reasons of
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Fig. 2. Two users competing for resources on subcarrier n. No user dominates
the other due to the different utility functions u1,n and u2,n.

simplicity. The RAP then reads

maximize cTx (8)

subject to Ax ≤ b, (9)

Cx = 1, (10)

x ≥ 0, (11)

in which the nth row of C is one in positions corresponding
to the set {xk,m,n | k = 1, . . . ,K, m = 1, . . . ,M}, and zero
elsewhere. Here, comparisons between vectors are componen-
twise, 0 = (0, . . . , 0)T , and 1 = (1, . . . , 1)T .

In general, all users are competing for resources on each
subcarrier. On these subcarriers, varying channel gains influ-
ence the values of pk,m,n. Furthermore, depending on the
system and problem formulation, the utility rk,m,n gained
from utilizing MCS m on subcarrier n varies between users.
Fig. 2 shows an exemplary situation of two users competing
for resources on a subcarrier. In this case, the second user has
a weaker channel but a higher utility than the first user.

We present three RAPs in the following subsections: Sum
rate maximization and max-min fairness under a global power
constraint as well as sum power minimization under individual
rate constraints.

A. Sum Rate Maximization

Let the power-rate pairs (pk,m,n, rk,m,n) be as defined in (2)
and a global power budget constraint p be given. Then, the
SRMP is formulated as follows:

max
K∑

k=1

M∑
m=1

N∑
n=1

rk,m,nxk,m,n (12)

s.t.
K∑

k=1

M∑
m=1

N∑
n=1

pk,m,nxk,m,n ≤ p, (13)

K∑
k=1

M∑
m=1

xk,m,n = 1, n = 1, . . . , N, (14)

xk,m,n ≥ 0, ∀ k,m, n. (15)

To introduce an additional degree of fairness, some for-
mulations of the SRMP include weights w1, . . . , wK and

objective values wkrk,m,n. Because we allow arbitrary values
for rk,m,n, this so-called weighted SRMP is covered by the
above formulation.

B. Sum Power Minimization

The second problem formulation is the SPMP under rate
demand constraints rk for each user:

min
K∑

k=1

M∑
m=1

N∑
n=1

pk,m,nxk,m,n (16)

s.t.
M∑

m=1

N∑
n=1

rk,m,nxk,m,n ≥ rk, k = 1, . . . ,K, (17)

K∑
k=1

M∑
m=1

xk,m,n = 1, n = 1, . . . , N, (18)

xk,m,n ≥ 0, ∀ k,m, n. (19)

The so-called weighted SPMP replaces pk,m,n in the objective
function with wkpk,m,n for given weights w1, . . . , wK . As
before, this formulation is covered by an appropriate transfor-
mation of variables.

C. Max-Min Fairness

The last problem is the MMFP, which strives to distribute
data rate as evenly as possible among users under a global
power budget constraint p:

max min
1≤k≤K

{
M∑

m=1

N∑
n=1

rk,m,nxk,m,n

}
(20)

s.t.
K∑

k=1

M∑
m=1

N∑
n=1

pk,m,nxk,m,n ≤ p, (21)

K∑
k=1

M∑
m=1

xk,m,n = 1, n = 1, . . . , N, (22)

xk,m,n ≥ 0, ∀ k,m, n. (23)

The objective function in (20) is not linear. However, by
introducing an auxiliary variable z, the MMFP can be given
in an equivalent linear formulation

max z (24)

s.t.
K∑

k=1

M∑
m=1

N∑
n=1

pk,m,nxk,m,n ≤ p, (25)

M∑
m=1

N∑
n=1

rk,m,nxk,m,n ≥ z, k = 1, . . . ,K, (26)

K∑
k=1

M∑
m=1

xk,m,n = 1, n = 1, . . . , N, (27)

xk,m,n ≥ 0, ∀ k,m, n. (28)

Because there is only a discrete range of possible values
for rk,m,n, it can be assumed w.l.o.g. that z takes only
integer values, which means that the MMFP is an ILP. Strictly
speaking, the introduction of z violates the prior definition of
an RAP, but it is obvious that the MMFP is a problem which
is not only closely related but also important for practical
multicarrier systems.
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A related problem is the proportional fairness problem, in
which the data rates of all users have to be proportional to
given factors φ1 : φ2 : · · · : φK . The problem of proportional
fairness can be formulated as an MMFP by replacing rk,m,n

in the objective function with φ−1
k rk,m,n.

In the general RAP, we use indices k and m to distinguish
between users and MCSs, respectively. However, this distinc-
tion is not needed from a formal point of view and user-MCS
pairs can be indexed by a single variable j = 1, . . . , J . Doing
so results in the following problem formulation:

maximize
J∑

j=1

N∑
n=1

cj,nxj,n (29)

subject to
J∑

j=1

N∑
n=1

a
(i)
j,nxj,n ≤ b(i), i = 1, . . . , s, (30)

J∑
j=1

xj,n = 1, n = 1, . . . , N, (31)

xj,n ≥ 0, ∀ j, n. (32)

The above problem is known in combinatorial optimization
as the MCKP if s = 1, and the multidimensional MCKP
for s ≥ 2. The interpretation is to maximize the overall profit
in a knapsack with weight constraint(s) b(i), i = 1, . . . , s,

by filling it with items of weight(s) a
(i)
j,n and profit cj,n.

As an additional restriction, each item belongs to a class
of items n = 1, . . . , N , and exactly one item of each class
has to be put into the knapsack. This restriction is called
uniqueness or multiple-choice constraint. More details can be
found in [16]. In summary, we obtain the following result.

Proposition 1. The RAP in Section II is an MCKP with s
additional inequality constraints. Thus, it is multidimensional
for s ≥ 2. The SRMP is a classical MCKP, while the SPMP
is a multidimensional MCKP with K inequality constraints.
In its original formulation, the MMFP is a one-dimensional
MCKP with a max-min objective. In its linear formulation, it
has K + 1 inequality constraints.

III. DUAL METHODS AND ROUNDING

As shown above, RAPs are ILPs. As MCKPs they are
NP-hard [16]. Their discrete nature means that optimization
techniques based on continuity or convexity are not directly
applicable. In [2], a dual method based on Lagrangian relax-
ation is proposed. The approach is to optimally and efficiently
solve the dual problem, and follow this up with a method to
obtain a solution to the original RAP. The main steps of this
procedure can be broadly summarized as

1) Formulate the discrete RAP.
2) Formulate and solve the dual problem.
3) From the optimal solution of the dual, obtain a solution

to the RAP.

If sensible, additional optimization steps can be performed at
any point. In this case, questions of performance and time
complexity have to be taken into account.

Note that for an ILP of the form (8) with variable x ∈ D =
Z
q and c ∈ R

q, A ∈ R
r×q , b ∈ R

r, C ∈ R
s×q and d ∈ R

s,

the Lagrangian dual problem is

minimize bTλ+ dTμ (33)

subject to − c+ATλ+CTμ ≥ 0, (34)

λ ≥ 0. (35)

The problem is optimized over the dual variables λ ∈ R
r

and μ ∈ R
s corresponding to inequality and equality con-

straints, respectively. Note that this dual problem is also the
dual problem D of the linear program P obtained by extending
the domain of x to D = R

q . In that case, the duality theorem
of linear programming implies that strong duality holds [17].
Denoting the optimal objective values of P and D by p∗

and d∗, respectively, strong duality translates to p∗ = d∗.
In general, the difference d∗ − p∗ describes the duality gap
between the dual and the primal problem. In the following,
we formulate the dual problems corresponding to the resource
allocations problems above.

A. Sum Rate Maximization

For the SRMP, we introduce Lagrangian multipliers λ ∈ R

and μ ∈ R
N . The corresponding Lagrangian dual problem is

minimize λp+

N∑
n=1

μn (36)

subject to − rk,m,n + λpk,m,n + μn ≥ 0 ∀ k,m, n, (37)

λ ≥ 0. (38)

This formulation can be simplified by implicitly moving the
constraints (37) into the objective function. The constraints
in (37) are equivalent to

μn ≥ rk,m,n − λpk,m,n ∀ k,m, n, (39)

⇔ μn ≥ max
k,m

{rk,m,n − λpk,m,n} ∀n. (40)

From (36), it is clearly optimal to chose each μn as small as
possible, i.e., μn = max

k,m
{rk,m,n−λpk,m,n} for n = 1, . . . , N .

Thus, the dualized SRMP is

minimize λp+
N∑

n=1

max
k,m

{rk,m,n − λpk,m,n} (41)

subject to λ ≥ 0. (42)

Despite not being linear, this formulation is advantageous
for different reasons. Most importantly, it reduces the La-
grangian dual problem to an optimization problem with a
single variable λ, which can be efficiently solved with bisec-
tion methods. Furthermore, the computation of μn provides an
optimality criterion for the user-MCS pairs of each subcarrier,
which we analyse in detail later.

B. Sum Power Minimization

For the SPMP, we introduce Lagrangian multipliers λ ∈
R

K and μ ∈ R
N . This yields the corresponding Lagrangian

dual problem

maximize
K∑

k=1

λkrk −
N∑

n=1

μn (43)

subject to pk,m,n − λkrk,m,n + μn ≥ 0 ∀ k,m, n, (44)

λ ≥ 0. (45)
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Analogously to the SRMP, it is optimal to chose each μn

as small as possible while satisfying (44). With μn =
maxk,m {λkrk,m,n − pk,m,n} we obtain the dualized SPMP
as

maximize
K∑

k=1

λkrk −
N∑

n=1

max
k,m

{λkrk,m,n − pk,m,n} (46)

subject to λ ≥ 0. (47)

C. Max-Min Fairness

For the MMFP, we introduce Lagrangian multipliers λ =
(λ0, . . . , λK) ∈ R

K+1 and μ ∈ R
N . Dualizing the linear

formulation in (24) yields the corresponding Lagrangian dual
problem

minimize λ0p+

N∑
n=1

μn (48)

subject to − 1 +

K∑
k=1

λk = 0, (49)

λ0pk,m,n − λkrk,m,n + μn ≥ 0, (50)

λ ≥ 0. (51)

With μn = maxk,m{λkrk,m,n − λ0pk,m,n}, the dualized
MMFP can be written as

minimize λ0p+

N∑
n=1

max
k,m

{λkrk,m,n − λ0pk,m,n} (52)

subject to
K∑

k=1

λk = 1, (53)

λ = (λ0, λ1, . . . , λK) ≥ 0. (54)

In general, due to the multiple-choice-constraint, the dual-
ized RAP is a minimization problem that includes

∑N
n=1 μn

in the objective. Choosing each μn, n = 1, . . . , N , as small
as possible leads to an optimality criterion

μn = max
k,m

{αk(λ)rk,m,n − βk(λ)pk,m,n} (55)

for a set of functions αk and βk, k = 1, . . . ,K . For each λ,
this allows to solve the sub-problem of determining μn for
each subcarrier n. The dual methods proposed by [2] are based
on this property, which is usually called separability across
subcarriers. See Fig. 3 and Fig. 4 for a geometric visualization
of the optimality criterion.

Definition 1 (Dual Method). Let P be an RAP with multiple-
choice constraint such that the dual problem D satisfies the
separability property described by (55). Denote by (λ∗,μ∗)
the optimal solution of D. A dual method is an approach
to obtain a binary vector x = (xk,m,n)k,m,n satisfying the
multiple-choice constraint such that xk,m,n = 1 implies that
the user-MCS pair (k,m) is optimal on subcarrier n with
respect to (55), i.e.,

μ∗
n = αk(λ

∗)rk,m,n − βk(λ
∗)pk,m,n. (56)

We call a dual method feasible if x is feasible, i.e., x satisfies
the constraints Ax ≤ b.

0
0

μn

(−1, 1)

βk(λ)pk,n

α
k
(λ

)r
k
,n

u1,n(p1,n)

u2,n(p2,n)

Fig. 3. This figure of the utility functions of two users shows a geometric
interpretation of optimality criterion (55). As before, rate is plotted against
power, but the axes have been scaled by αk(λ) and βk(λ), respectively.
Normalized this way, a user-MCS pair satisfies (55) if it is maximal with
respect to the dashed line with normal (−1, 1). In this case, only the single
encircled pair does.

0
0

μn

(−1, 1)

βk(λ)pk,n

α
k
(λ

)r
k
,n

u1,n(p1,n)

u2,n(p2,n)

Fig. 4. Different from the situation in Fig. 3, multiple user-MCS pairs
are maximal with respect to the dashed line with normal (−1, 1). The three
encircled pairs all satisfy optimality criterion (55).

In Fig. 3, assuming a dual optimal λ, a dual method as
defined above assigns a value of xk,m,n = 1 to the user-MCS
pair on the dashed line, allocating subcarrier n to user k to be
used with MCS m. For the situation given in Fig. 4, three user-
MCS pairs satisfy (55). A dual method consists of choosing
one of these pairs for resource allocation on this subcarrier.
Applying dual methods to continuous and discrete RAPs is
suggested by [2]. The performance of the above method is
attributed to the fact that the duality gap of any RAP tends to
zero for N → ∞. This vanishing duality gap is given as the
reason for the dual method to be dual optimal. We claim that
this reasoning is insufficient. Our claim is proved as follows:

Irrespective of the number of subcarriers N , a discrete
RAP is never convex. The two main ways to obtain a convex
problem are linear and Lagrangian relaxation. However, as
noted before, the dual problems of ILPs and their linear
relaxation coincide. Denote by P the linear relaxation and
by D its dual problem, which is also the dual to the discrete
RAP. P and D are linear problems with zero duality gap,
which means that solving D is equivalent to solving P . This
means that a dual method that takes the optimal solution of D
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into account is equivalent to a method that takes the optimal
solution of P into account. Approaches to obtain a discrete
solution y ∈ Z

q from a linearly relaxed one x∗ ∈ R
q are

commonly described as rounding methods.
In the case that the optimal solution to the relaxed problems

happens to be binary, it is also the optimal solution to the
primal problem. In general, this will not be the case. In fact,
for general multidimensional MCKP, it is not always possible
to guarantee the feasibility of y. Furthermore, it might not be
possible to give a tight bound for the integrality gap, which
describes the performance loss induced through rounding.

Definition 2 (Integrality Gap). Let P be a linearly relaxed
RAP with domain D = R

q and x∗ its optimal solution. Let y ∈
Z
q be the result of a rounding method. If y is feasible, the

integrality gap is defined as their difference in objective value,
i.e.,

cTx∗ − cTy = cT (x∗ − y). (57)

Proposition 2. The integrality gap is an upper bound on the
duality gap between the discrete RAP and its dual.

Proof: Let y∗ denote the optimal solution to the discrete
RAP and d∗ the objective value of the optimal solution to its
dual problem. With the notation of Definition 2, it holds that

d∗ − cTy∗ = cTx∗ − cTy∗ ≤ cTx∗ − cTy, (58)

in which the first transformations follow from strong duality
between P and D, and the inequality follows from the opti-
mality of y∗.

We conclude that the duality gap, however small, is not suf-
ficient to guarantee the performance of any rounding method.
To analyse the performance of duality methods, we describe
the rounding process in the primal domain in detail.

Proposition 3. Let x = (xk,m,n)k,m,n denote the output of
a dual method. Denote by (x∗,λ∗,μ∗) the optimal solution
of P and D, respectively. For each subcarrier n, the rounding
process implied by a dual method depends on the number of
user-MCS pairs fulfilling the optimality condition (56).

1) Let J denote the number of user-MCS
pairs (k1,m1), . . . , (kJ ,mJ), fulfilling (56). Then,
xkj ,mj,n = 1 holds for exactly one j ∈ {1, . . . , J}.
The linearly relaxed variables x∗

kj ,mj ,n
take arbitrary

values between zero and one and sum up to one.
2) In the case that J = 1 holds, there is exactly one

user-MCS pair (k,m) fulfilling (56), and it holds that
xk,m,n = x∗

k,m,n = 1.

Proof: For a primal-dual solution (x∗,λ∗,μ∗) of a
linear program, the complimentary slackness condition holds.
This means that for λi > 0, x∗ satisfies the i-th inequality
constraint with equality. As the primal problem is the dual
of its dual, the same holds for the inequality constraints of
the dual problem. These are given by (34) and x∗ is the
corresponding dual variable. It follows that for x∗

k,m,n > 0,
the constraint μn ≥ αk(λ

∗)rk,m,n−βk(λ
∗)pk,m,n is fulfilled

with equality, which is equivalent to the user-MCS pair (k,m)
fulfilling (56). Thus, x∗

k,m,n > 0 implies that (k,m) =
(kj ,mj) for a j ∈ {1, . . . , J}. As there has to be at least one
non-zero xk,m,n on each subcarrier, the proposition holds.

We conclude that dual methods are rounding methods in
which the user-MCS pair (k,m) that gets rounded up to
one is picked from the set of pairs (kj ,mj), j = 1, . . . , J ,
fulfilling (56). In the case of J ≥ 2 this choice is non-trivial
for different reasons. On the one hand, iterative algorithms to
solve the dual problem might not be able to identify all the
pairs (kj ,mj), j = 1, . . . , J, for numerical reasons. On the
other hand, the choice affects both the feasibility as well as
the performance of the obtained solution.

IV. INTEGRALITY GAP BOUNDS AND FEASIBILITY

In this section, we assume that the RAP’s dual problem
has been solved and the optimal solution of the linearly
relaxed primal problem x∗ has been obtained. The following
proposition gives bounds on the integrality gap of rounding
methods for the RAPs discussed in this paper.

Proposition 4. For each of the RAPs discussed above, there
exists an upper bound B for the integrality gap of feasible
roundings x̂. These bounds are:

1) B = maxk,m,n{rk,m,n} for the SRMP,
2) B = K ·maxk,m,n{pk,m,n} for the SPMP, and
3) B = (K + 1)maxk,m,n{rk,m,n} for the MMFP.

Proof: We cite a theorem which is known from its appli-
cation to the simplex algorithm. From [18, Ch. I.2, Th. 3.5], if
a linear program has a finite optimal value, it has an optimal
basic feasible solution. A solution is defined as basic if the
columns which correspond to its non-zero components are
linearly independent. Geometrically, a basic solution lies on
a simplex of the polyhedral solution space defined by the
constraint set. Let x∗ be a basic solution to the linearly
relaxed RAP. Note that x∗ optimally solves a linear program
with N+C constraints. For the SRMP, it holds that C = 1, for
the SPMP, it holds that C = K and for the MMFP, it holds
that C = K + 1. As a set of linearly independent columns of
dimension N + C can have at most cardinality N + C, this
limits the number of non-zero components of x∗ to N +C as
well.

Let N ′ denote the number of subcarriers n for which x∗ has
non-binary components, i.e., there exist user-MCS pairs (k,m)
with x∗

k,m,n ∈ (0, 1). Then, each of the remaining N −
N ′ subcarriers n has exactly one user-MCS pair (k,m)
with x∗

k,m,n = 1. Let r = #{(k,m, n) |x∗
k,m,n ∈ (0, 1)}

denote the number of non-binary components of x∗. Then, r
can be computed by subtracting the number of components
equal to one from the number of non-zero components, i.e.,
r ≤ N + C − (N −N ′) = N ′ + C.

Let x̂ be a feasible rounding of x∗. In order to round,
exactly one component in each of the N ′ subcarriers with non-
binary components is rounded up to one, and the remaining
components are rounded down to zero. For the SRMP, this
means that at most C = 1 component is rounded down to zero.
As this is the only potential source of sum rate loss compared
to x∗, the integrality gap is bounded by maxk,m,n{rk,m,n}.

For the MMFP, up to C = K +1 components are rounded
down to zero. In the worst case, this procedure disadvantages
only a single user, which reduces the max-min rate by the
corresponding rk,m,n for every one of those components. Thus,
the integrality gap is bounded by (K+1)maxk,m,n{rk,m,n}.
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For the SPMP, we suffer a loss in performance when
spending more power than necessary. Therefore, the number
of components that are rounded up to one influences the
integrality gap. From above, this number is defined as N ′. In
order to bound N ′, note that each subcarrier with non-binary
components contributes at least two non-binary components,
as a single non-binary value can never satisfy the multiple-
choice constraint (19). It follows that 2N ′ ≤ r ≤ N ′ + C.
Subtracting N ′ from both sides yields N ′ ≤ C, which, in the
case of the SPMP, corresponds to N ′ ≤ K . We conclude that
at most K components are rounded up to one. This procedure
increases the sum power by the corresponding pk,m,n for each
of those components. Thus, the integrality gap is bounded
by K ·maxk,m,n{pk,m,n}.

All bounds of Proposition 4 are independent of N . Thus,
any feasible rounding x̂ is asymptotically optimal in the sense
that the relative integrality gap vanishes for N → ∞ as long
as the objective of the RAP scales with N , which is given for
any system with sufficient subcarrier usage. In a next step, we
cover the existence of feasible roundings in general.

A. Sum Rate Maximization and Max-Min Fairness

In the case of both the SRMP and the MMFP, it is always
possible to obtain a feasible rounding. As it suffices to satisfy
the power budget constraint, this is achieved by picking the
item with lowest pk,m,n from each subcarrier with non-binary
variables. Let x∗ denote the optimal solution to the linearly
relaxed primal problem. Define

x̂k̂,m̂,n =

{
1, (k̂, m̂) = arg min

(k,m)

{
pk,m,n

∣∣∣ x∗
k,m,n > 0

}
,

0, else. (59)

Then x̂ is a feasible rounding for the discrete RAP. The power
budget constraint is satisfied due to

K∑
k=1

M∑
m=1

N∑
n=1

pk,m,nx̂k,m,n (60)

=

N∑
n=1

min
(k,m)

{
pk,m,n

∣∣ x∗
k,m,n > 0

}
(61)

≤
K∑

k=1

M∑
m=1

N∑
n=1

pk,m,nx
∗
k,m,n ≤ p. (62)

B. Sum Power Minimization

For the SPMP, it is not straightforward to obtain a feasible
rounding from x∗ due to the problem’s multiobjective nature.
While it is generally not a problem to efficiently convert a
relaxed solution to a feasible discrete resource allocation by
swapping MCSs between subcarriers as needed, there is no
general rounding procedure which guarantees that the rate
demand of every user is fulfilled.

Proposition 5. There exists no rounding method for the SPMP
that guarantees feasibility.

Proof: This is a property of general multidimensional
MCKPs, which also applies to the SPMP. As a counterex-
ample, consider two users sharing a single subcarrier such
that both rate demands are satisfied with equality. A rounding

method has to allocate the subcarrier to one of those users,
which means that the data rate of the other user decreases
below the allowed threshold. A minimal numerical example is
given by r1,m,n = r2,m,n = 2 and r1 = r2 = 1. The optimal
solution to this problem is x∗ = (0.5, 0.5), but both x̂ = (1, 0)
and x̂ = (0, 1) are infeasible. This shows that the discrete
problem cannot be feasibly solved by rounding.

The above also holds for dual methods as they are ef-
fectively rounding methods. While still applicable to obtain
heuristic solutions to the SPMP, asymptotic optimality results
rely on bounds for the integrality gap, which can only be
given if feasibility is guaranteed. To the best of the authors’
knowledge, this has not been done for the SPMP or compara-
ble problems. However, Proposition 4 gives an asymptotically
optimal bound on the integrality gap for the case that a feasible
rounding exists.

Practical Comments

Formulating the discrete RAP as an ILP has multiple
practical advantages compared to problem formulations with
concave utility functions. For a communication system with
a finite number of MCSs, the discrete formulation does not
require fitting and is the most accurate as it does not suffer
performance loss due to quantization. Furthermore, to evaluate
both the primal as well as the dual problem of the discrete
formulation only basic arithmetics are required.

In addition to these advantages, the theoretical insights
presented in this paper are relevant in practice as well. One
practical example is a reduction of the time needed to compute
a solution. From the results of Section III, how to identify
and deal with multiple user-MCS pairs fulfilling (56) is of
crucial importance for any kind of computation. Depending
on the terminating conditions and numerical implementation,
it is easily possible that one ends up with suboptimal choices.
Assuming an iterative method is applied to solve the dual
problem, a high number of iterations might be necessary to
achieve the desired accuracy. Despite the fact that the dual
problem is relatively easy to solve, it still demands a local
search with additional computations, thus making each step
of the iteration costly. The following facts can be used to
reduce the number of iterations:

1) For each problem, there is a fixed limit to the number
of competing user-MCS pairs, where two pairs are
competing if they fulfill (56) on the same subcarrier.
This knowledge can be used to identify competing pairs
long before the dual algorithm terminates. As can be
derived from the results in Section IV, specifically the
bounds derived in the proof of Prop. 4, the number of
competing user-MCS pairs is at most C ∈ {1,K,K+1}
depending on the problem.

2) Once each subcarrier is assigned to a user, the resulting
RAP is easy to solve by assigning MCSs in a bit-loading
fashion. Therefore, there is no need to chose between
competing user-MCS pairs belonging to the same user.

3) The dual algorithm provides upper bounds for the opti-
mal solution in each iteration, which can be used as a
termination criterion once a sufficient primal solution is
found via 1) and 2).
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V. CONCLUSIONS

Dual methods have proven to be one of the most efficient
ways to approximately solve practical RAPs encountered in
wireless communications and many other fields. However,
when dealing with non-convex problems, one has to take care
not to take optimality for granted. In this paper, we focused
on multiuser multicarrier RAPs with discrete utility functions
and analyzed three exemplary problems in detail. This covered
a wide range of problems encountered in practical systems
employing a finite number of MCSs. The discrete nature of
these problems allowed for a formulation as MCKPs, a well-
known problem class in combinatorial optimization. Next, we
computed the dual problems corresponding to the SRMP,
the SPMP and the MMFP. We showed that all of them are
separable across the subcarriers, and thus efficiently solvable.
However, the approximate solutions obtained this way were
shown to be equivalent to rounded solutions of the linearly
relaxed primal problem. To give a performance guarantee of
these methods, the integrality gap had to be bounded. We
demonstrated that optimality arguments based on the duality
gap are insufficient by showing that the integrality gap is
always larger than the duality gap. We next derived bounds for
the integrality gap of feasible roundings for the RAPs above.
Furthermore, the existence of feasible roundings was shown
for the SRMP and the MMFP. Both asymptotically optimal
bounds of the discussed methods as well as structural prop-
erties to be utilised in practical computations were presented.
We believe that this paper contributes to the understanding
and analysis of dual methods for general RAPs, and discrete
RAPs in particular.
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