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Abstract The wireless network planning problem consists of base station
placement and traffic node assignment to base stations. To incorporate traffic
demand uncertainties, we follow the Γ -robustness approach by Bertsimas and
Sim. In this paper, we develop a branch-and-price algorithm, with the aim to
enhance the solution process and improve the dual bounds. Instead of assigning
individual traffic nodes to base stations, subsets of traffic nodes are assigned
to a base station, implying the pricing problem essentially being a robust
knapsack. Since a straightforward implementation does not give satisfactory
results, we present techniques, which we apply to the master problem as well
as to the pricing problems, to improve the performance. We investigate the
effectiveness of these techniques in an extensive computational study.
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1 Introduction

The optimal planning of wireless networks of the third generation (3G) has at-
tracted a great deal of attention during the last decade, see for instance, Amaldi
et al (2003); Siomina et al (2006); Amaldi et al (2008), and remains a crucial
and complex problem in the future not least because corresponding optimi-
sation problems belong to the class of NP-hard problems, e.g. (Amaldi et al
2003; Glaßer et al 2005). Wireless networks of the fourth generation (4G)
such as the Long Term Evolution (LTE) or LTE Advanced (3rd Generation
Partnership Project 2012) utilise a couple of sophisticated techniques such as
Orthogonal Frequency Division Multiple Access (OFDMA) for downlink (DL)
or Single-Carrier Frequency Division Multiple Access (SC-FDMA) for uplink
to overcome the resource restrictions of 3G networks (Dahlman et al 2008).
Hence, an optimal planning which respects the modified requirements of future
wireless networks, see e.g., Gordejuela-Sanchez and Zhang (2009); Engels et al
(2010); Siomina and Yuan (2012), is inevitable to fully utilise the gains of these
techniques. Besides the consideration of OFDMA etc., also the energy efficient
planning (Boiardi et al 2012; El-Beaino et al 2012) comes into focus. Further-
more, significantly increasing user demands (Cisco Systems 2012) impair the
planning problem. The bit rate requirements increase since the user behaviour
of mobile customers shifts from ordinary telephony or short message services
towards data transfer such as web browsing, data download, broadcasting or
Voice-over-IP (VoIP).

Another aspect which should be considered already in the planning of a
wireless network are non-deterministic factors, e.g., user mobility, fluctuating
bit rate requirements and channel conditions. To handle such uncertainties,
robust optimisation is a recently proposed technique. For uncertain factors
with an unknown probability distribution, Bertsimas and Sim (2003, 2004)
introduced the Γ -robustness approach which limits the number of uncertain
entries by a robustness parameter Γ . The application of this concept does not
significantly increase the complexity of the problem.

A straightforward (compact) formulation of the (robust) wireless network
planning problem consists of a huge number of variables since, e.g., one variable
for each base station-traffic node (BS-TN) pair is needed, and can have a weak
linear program (LP) solution. A prominent procedure to tackle these problems
is to reformulate the model via a column generation approach, see Lübbecke
and Desrosiers (2005) for a survey. For the column generation formulation, the
solution process starts with a subset of variables (columns) and only variables
having the potential to improve the objective are generated on the fly. This
method can significantly improve the LP solution compared to the compact
model.

In this paper, we develop a branch-and-price (B&P) algorithm for the ro-
bust planning of wireless networks which is based on the integer linear program
(ILP) presented in Claßen et al (2011, 2013). The model considers DL data
transmission and guarantees a certain link quality while the inter-cell interfer-
ence is limited. Since variables of this problem are integer, we have to develop
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problem specific branching rules to be able to price further variables after
leaving the root node of the branch-and-bound (B&B) tree.

The main contribution of this paper besides the presentation of a novel
B&P algorithm are the performance improvements presented in Section 3
which are necessary since a straightforward implementation does not give sat-
isfactory results. First, some general applied settings such as a good initial
solution and cutting planes are stated. Furthermore, we introduce a lower
bound, which is used as a stop criterion for the solving of a single B&B node,
and techniques to speed up the pricing problems (PPs), which compute fur-
ther columns. Finally, we adjust the number of added columns per pricing
round and present a primal heuristic to compute better primal bounds. The
performance of these techniques is analysed in a computational study using six
test instances of different dimensions. By means of this study, we are able to
reveal the best setting for the B&P approach for the robust wireless network
planning problem among the evaluated strategies.

The remainder of this paper is organised as follows. In Section 2, we present
some preliminaries and the complete B&P algorithm for the planning of a
Γ -robust wireless network, which includes the master problem (MP), the re-
stricted master problem (RMP), the PPs, and problem specific branching rules.
The techniques to speed up the column generation are presented in Section 3
and their performance is evaluated in a computational study in Section 4.
Section 5 concludes the paper with some final remarks.

2 Problem Formulation

In this section, we briefly describe the problem at hand as well as the Γ -robust
approach by Bertsimas and Sim (2004) and give a motivation for the column
generation approach. Furthermore, we introduce the MP, the RMP, and the
PPs based on the robust model of the wireless network planning problem
presented in Claßen et al (2011, 2013). To obtain a full B&P algorithm, we
develop problem specific branching rules in the last subsection.

2.1 Problem Statement

Given a geographical area and the task to design a new wireless network in-
frastructure, both locations for antennae and traffic estimations have to be
defined. A possible site location and a configuration are consolidated in a BS
candidate site s ∈ S which entails costs cs and provides a total DL band-
width bs. Traffic demands, i.e., bit rate requirements, of users in a small area
are accumulated in a traffic node t ∈ T which has a demand wt. To include
the demand uncertainties in the problem formulation, following the approach
by Bertsimas and Sim (2004), we model the demand values as symmetric and
bounded random variables wt taking values in the interval [w̄t − ŵt, w̄t + ŵt].
Here, w̄t denotes the nominal demand and ŵt the highest deviation. Hence,
the peak demand of TN t is w̄t + ŵt.
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Table 1 Overview of the system parameters

Description of Parameters Notation

set of BS candidates S
costs of BS s cs
total DL bandwidth of BS s bs
conflict graph of conflicting BSs G = (S,E)
set of TNs T
nominal demand of TN t w̄t

highest demand deviation of TN t ŵt

DL spectral efficiency from s to t est
min. required spectral efficiency emin

max. allocated bandwidth w̄t+ŵt
est

The intra-cell interference for DL in 4G networks is negligible due to
OFDMA whereas the inter-cell interference is limited by means of a con-
flict graph G = (S,E). The concept of conflict or interference graphs has
been applied, e.g., in the planning of GSM (Global System for Mobile Com-
munications) (Mathar and Niessen 2000) networks, WLANs (Riihijarvi et al
2005), and LTE networks (Engels et al 2011) and in a modified way via com-
plement sets for the deployment of cooperation clusters in wireless cellular
networks (Niu et al 2012).

Two BSs are adjacent in G if they cannot be deployed at the same time.
Hence, all installed BSs are obliged to constitute an independent set in G. We
would like to point out that the conflict graph is a quite general concept to
model different levels of interference. Hence, it is possible that even for BSs in
a maximum independent set of the conflict graph inter-cell interference occurs
to some extent depending on the definition of the conflict graph.

We guarantee a certain link quality by requiring a minimum spectral ef-
ficiency emin for each BS-TN link. The spectral efficiency, denoted by est
(s ∈ S, t ∈ T ), gives the ratio between required data rate and allocated band-
width. It incorporates, among other things, the modulation and coding scheme
that is supported by the associated signal-to-noise ratio (SNR). We include
the constraint on the spectral efficiency in the following auxiliary sets.

S ∗ T := {(s, t) ∈ S × T : est ≥ emin},
St := {s ∈ S : (s, t) ∈ S ∗ T} ∀t ∈ T,

Ts := {t ∈ T : (s, t) ∈ S ∗ T} ∀s ∈ S.

A summary of the system parameters is given in Table 1.
From a financial point of view, the costs caused by the installed BSs are

an important factor. Hence, the objective is to minimise the total costs of the
network while minimising the number of not covered TNs. These two objectives
are combined via a scaling parameter λ. However, if we regard the costs cs of
a BS as the consumed power, the minimisation of the total costs is equivalent
to the minimisation of the total power consumption of the network which is
also an important factor from an ecological prospect. Thus, “costs” should be
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regarded as a generalised term and can be adapted to the specific aims of the
network planning, possibly adjusting the scaling parameter λ.

Moreover, we introduce the robustness parameter Γ ∈ {0, . . . , |T |} which
limits the number of TNs deviating from their nominal value simultaneously
(in the worst case towards the peak demand ŵt + w̄t).

For each BS s ∈ S, we introduce a deployment indicator xs ∈ {0, 1} equal
to 1 if the BS is installed. Moreover, we introduce an assignment variable zst ∈
{0, 1} denoting whether TN t is assigned to BS s. Finally, the binary slack
variable ut is equal to 1 if TN t is not served by any BS. Hence, the original or
compact model of the robust wireless network planning problem can be stated
as follows, see Claßen et al (2011, 2013) for details.

min
∑
s∈S

csxs + λ
∑
t∈T

ut (1a)

s.t.
∑
s∈St

zst + ut = 1 ∀ t ∈ T (1b)

∑
s∈U

xs ≤ 1
∀U ⊂ S,
U max. clique

(1c)

∑
t∈Ts

w̄t

est
zst + max

T ′⊆Ts,|T ′|≤Γ

∑
t∈T ′

ŵt

est
zst ≤ bsxs ∀ s ∈ S (1d)

zst ≤ xs ∀ (s, t) ∈ S ∗ T (1e)

xs, zst, ut ∈ {0, 1} ∀s, ∀ (s, t), ∀ t (1f)

As stated before, the objective (1a) minimises the total costs and the number of
not covered TNs combined by the scaling parameter λ. Constraints (1b) ensure
that each TN is covered by at most one BS (hard handover). The independent
set constraints xi + xj ≤ 1 ∀ij ∈ E are strengthened by maximal clique
inequalities (1c), i.e., at most one BS in a maximal clique of the conflict graph
can be installed. The maximal cliques of the conflict graph are precomputed
by the Bron-Kerbosch algorithm (Bron and Kerbosch 1973). Constraints (1d)
are the non-linear robust capacity constraints guaranteeing that all nominal
demands and the Γ -worst deviations of all TNs assigned to one BS do not
exceed the capacity. Finally, constraints (1e) are the so-called variable upper
bound constraints which guarantee that a TN can only be assigned to a BS if
the BS is installed.

To linearise constraints (1d), we reformulate the maximisation term for a
fixed s ∈ S and a solution (x, z) as the following ILP.

max
∑
t∈Ts

ŵt

est
zstϕt (2a)

s.t.
∑
t∈Ts

ϕt ≤ Γ (2b)

ϕt ∈ {0, 1} ∀t ∈ Ts (2c)
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Introducing dual variables µs and νst and exploiting LP duality, constraints (1d)
can be replaced by the (linear) robust counterpart∑

t∈Ts

w̄t

est
zst + Γµs +

∑
t∈Ts

νst ≤ bsxs ∀ s ∈ S (3)

and adding further constraints

µs + νst ≥
ŵt

est
zst ∀t ∈ Ts (4a)

µs ≥ 0, νst ≥ 0 ∀(s, t) ∈ S ∗ T. (4b)

For more details, see Claßen et al (2013).
There exist usually several arguments to apply a column generation ap-

proach rather than to solve the compact model. For the robust wireless network
planning problem, one reason is the potential weakness of the LP relaxation
of the compact model (1), i.e., we can compute a better LP solution by the
column generation method than by the compact model which we present in
the next subsections. To confirm this, we give a tiny non-robust example after
the statement of the master problem at the end of Section 2.2. However, even
the B&P algorithm with the best setting cannot compete with the compact
model regarding the time consumption.

Another reason for a B&P algorithm is the decomposition of the compact
model into master and pricing problems. In the compact formulation, there
is a robust knapsack problem embedded (via the capacity constraints). Due
to the decomposition described in Section 2.3, this robust knapsack problem
is completely sourced out to the pricing problems. Hence, the MP is identical
for all Γ values. Moreover, we can exploit all known approaches such as ex-
tended robust cover inequalities (see Section 3.1) to enhance the performance
of solving the robust knapsack problem.

2.2 The Master Problem

We reformulate the compact model (1) via a Dantzig-Wolfe decomposition to
obtain a column generation approach. For this purpose, we consider a set-wise
assignment of TNs to BSs. For each BS s ∈ S we introduce a set Ts which
consists of all possible subsets of TNs that can be assigned to s:

Ts = {τ ⊆ Ts : all t ∈ τ can be assigned to s simultaneously},

i.e., in particular the BS capacity is not exceeded. Obviously, Ts ⊆ 2Ts . The
assignment variables are denoted by ζsτ for s ∈ S and τ ∈ Ts with

ζsτ =

{
1, set τ ⊆ Ts is assigned to BS s (and Ts \ τ not)

0, otherwise.

Furthermore, as in the compact model (1) we introduce a deployment indica-
tor xs ∈ {0, 1} for each BS s ∈ S, which is equal to 1 if the BS is installed,
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and a binary slack variable ut, which is equal to 1 if TN t is not served by any
BS. The following ILP represents the MP.

min
∑
s∈S

csxs + λ
∑
t∈T

ut (5a)

s.t.
∑
s∈St

∑
τ∈Ts:t∈τ

ζsτ + ut = 1 ∀t ∈ T (5b)

∑
s∈U

−xs ≥ −1 ∀U ⊂ S,U max. clique in G (5c)

xs −
∑
τ∈Ts

ζsτ ≥ 0 ∀s ∈ S (5d)

xs, ζsτ , ut ∈ {0, 1} ∀s ∈ S, τ ∈ Ts, t ∈ T (5e)

The objective (5a) and the maximal clique inequalities (5c) have not changed
compared to the compact model. Furthermore, constraints (5b) are the re-
formulated constraints (1b) and (5d) the reformulated variable upper bound
constraints (1e).

Note, any restriction on the assignment of TNs to a BS (capacity con-
straints) is incorporated in the definition of the sets Ts and hence, does not
occur in the MP.

In the ILP, it is sufficient to consider only “≥”, i.e.,∑
s∈St

∑
τ∈Ts:t∈τ

ζsτ + ut ≥ 1 ∀t ∈ T (6)

instead of the equality condition (5b). By this decision, it is sufficient to con-
sider only maximal sets τ , i.e., no further TNs can be added without violating
the capacity constraint. Furthermore, the definition of the variables as binary
variables is not necessary. Instead it is sufficient to have

xs, ζsτ , ut ∈ Z≥0 ∀s ∈ S, τ ∈ Ts, t ∈ T. (7)

The upper bound of 1 for all variables is guaranteed by constraints (5c)
and (5d) as well as the minimisation in the objective (5a).

As pointed out before, the LP solution computed by the column generation
can be significantly better than the LP relaxation of the compact model (1).
To demonstrate this, we give a tiny non-robust example with two BSs and
three TNs, see Figure 1. Every BS has an available DL bandwidth of 40 and
entails costs of 4000. We assume that the BSs are not interfering with each
other so that no conflict graph exists. Every TN has a nominal demand of 30
and no deviation. We choose the spectral efficiencies such that TNs 0 and 1
can be assigned to BS 0 and TNs 1 and 2 to BS 1 represented by arrows in
the figure. The scaling parameter λ is set to 10000.

The LP solution of the compact model is 8000 with assignment vari-
ables z00 = z12 = 1 and z01 = z11 = 0.5 installing both BSs. The column
generation algorithm gives an LP solution of 18000 with exactly two assign-
ment variables equal to one (ζ0{0} = ζ1{2} = 1), installing both BSs and TN 1
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0 1
210

Fig. 1 An example consisting of two BSs and three TNs to demonstrate the improvement
of the the LP solution by means of column generation.

remains uncovered. Since we have a minimisation problem, this is a much bet-
ter lower bound. In fact, for this tiny example the LP solution of the column
generation is the optimal integer solution.

The MP (5) describes the Γ -robust wireless network planning problem
completely. However, for each BS there exists (potentially) an exponential
number of sets τ ∈ Ts resulting in a huge model. Hence in the following
section, we restrict the MP to subsets T ′

s ⊆ Ts for each s ∈ S obtaining the
RMP and compute further necessary columns by PPs.

2.3 The Restricted Master Problem and the Pricing Problems

As stated before, the RMP does not consider the total amount of assignment
variables at the outset. To decide which variable has to be added to the RMP,
we can compute the reduced cost of ζsτ for all τ ∈ Ts \ T ′

s by means of dual
variables.

We introduce dual variables αs for each constraint (5d) and dual vari-
ables βt for each constraint (6). The reduced cost of ζsτ are computed via

0− (−αs)−
∑
t∈τ

βt.

The variable ζsτ has to be added to the RMP if the reduced cost are negative,
hence if ∑

t∈τ

βt > αs.

To detect variables with negative reduced cost, we introduce a PP for each
BS. For s ∈ S fixed, we introduce variables

at =

{
1, TN t is in the newly constructed set τ ∈ Ts \ T ′

s

0, otherwise
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for all TNs t ∈ Ts. The corresponding PP now reads as follows.

max
∑
t∈Ts

β̃tat (8a)

s.t.
∑
t∈Ts

w̄t

est
at + Γµ+

∑
t∈Ts

νt ≤ bs (8b)

µ+ νt ≥
ŵt

est
at ∀t ∈ Ts (8c)

at ∈ {0, 1}, µ, νt ≥ 0 ∀t ∈ Ts, (8d)

where β̃t is the optimal value of the dual βt of the current RMP and µ, νt are
the dual variables introduced by reformulating the non-linear robust capacity
constraints (1d) to constraints (3) and (4) leading to (8b) and (8c) in the PP.
The index s is dropped as the BS is fixed in every PP. Note, these constraints
form a robust knapsack problem.

If the objective value (8a) is greater than the optimal value α̃s, we have
found a variable ζsτ with negative reduced cost. Let (ã, µ̃, ν̃) be an optimal
solution of (8) with an objective value greater than α̃s. Then the new vari-
able ζsτ with τ = {t ∈ Ts : ãt = 1} is added to the RMP. The process, i.e.,
solving the RMP with new dual values and then solving the PPs to decide if
further variables are needed, is repeated until no more variables with negative
reduced cost exist.

2.4 Branching Rules

So far, the previous section just explains how to solve the LP relaxation of the
MP by column generation. This LP solution is not necessarily integer. Hence,
a branching process should be started.

If the branching is performed in a straightforward way without taking
special care of the variables computed in a pricing problem, this can lead to
problems like loops as explained in the following. Assume that we branch on
variable ζsτ , i.e., we construct two child nodes with ζsτ ≤ 0 and ζsτ ≥ 1,
respectively. Enforcing the ζ-decision in the first child node, corresponds to
adding the additional constraint∑

t∈τ

at +
∑
t/∈τ

(1− at) ≤ |Ts| − 1

to the PP (8) corresponding to BS s. Hence, the PP consist of a robust knap-
sack problem with an additional constraint. Future branching decisions lead
to more additional constraints which further destroy the structure of the PPs.
On the other hand, if we do not enforce the ζ-decision, it is possible that we
compute exactly the same set τ again when solving the PP corresponding to s.
Hence, we would add ζsτ afresh in this subtree ending in a loop. This is the
reason why we have to develop problem specific branching rules as presented
in this subsection.
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The first branching rule we apply is to branch on the BS deployment in-
dicator variables as long as there is a non-integer value x̃s in the current LP
solution left. If there is no BS s ∈ S left for which xs is not integer, we start
to branch on non-integer non-coverage indicator variables creating two child
nodes with ut ≤ 0 and ut ≥ 1, respectively.

The third branching rule comes into operation when all values x̃ and ũ are
integer in the current LP solution. We then have to consider non-integer values
of pricing variables ζ. As described above, we cannot create two child nodes
based on the integrality criterion. Instead, we apply the common technique to
branch on the variables of the original problem, see e.g. Barnhart et al (1998).
The compact formulation (1) includes the assignment variables zst which are
equal to 1 if TN t is assigned to BS s. Branching on the original variables
in the B&P approach therefore describes the generation of two child nodes
with zst ≤ 0 and zst ≥ 1, respectively, if z̃st :=

∑
τ∈T ′

s :t∈τ ζ̃sτ is not integer
in the current LP solution. In each branching step, we branch on the most
fractional variable that is the variable closest to 0.5.

Hence, for a BS-TN pair (s, t) with a non-integer value z̃st, we generate
two child nodes containing constraints∑

τ∈T ′
s :t∈τ

ζsτ ≤ 0 (9)

and ∑
τ∈T ′

s :t∈τ

ζsτ ≥ 1, (10)

respectively. Constraint (9) implicitly fixes every ζsτ to 0 for all τ ∈ T ′
s with t ∈

τ . This implies that only new variables with at = 0 can be beneficial in this
subproblem. Constraint (10) guarantees that TN t is served by BS s. Enforcing
this constraint, we have to consider the dual of (10) for the computation of the
reduced cost of a new pricing variable for BS s. Hence, we have to introduce a
dual variable for (10), multiply it by at and add this product to the objective
function of the PP. To avoid the consideration of further dual variables, we
instead reformulate constraint (10) as follows. By constraints (5b), ut = 0
as TN t is assigned to BS s and further, ζs̄τ = 0 for all BSs s̄ 6= s and τ
containing t in this child node. Hence, (10) is equivalent to∑

s̄∈S\{s}

∑
τ∈T ′

s̄ :t∈τ

ζs̄τ + ut ≤ 0. (11)

Replacing (10) by (11), we do not have to consider the dual in the PP corre-
sponding to s anymore and we can further reduce the number of variables by
setting at = 1 in the PP corresponding to s and by setting at = 0 in the PPs
corresponding to s̄ ∈ S \ {s}.

Note, in each node of the B&B tree, it is necessary to know the path to
the root node, i.e., to know all constraints of type (9) and (11) that have been
added on this path, to adjust the PPs. Additionally, in a B&B node containing
constraints of type (9) or (11) subsequent computed variables have to be added
to the corresponding constraints (respecting s and t).
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Proposition 1 The presented branching scheme is complete, i.e., all variables
at every leaf of the complete B&B tree are integer.

Proof It is directly evident that the variables x and u are integer at the leaves
of the B&B tree as we branch if they are fractional. On the other hand, the
assignment variables ζ are fixed to 0 if they occur in any of the constraints
of type (9) or (11). However, constraints of type (9) or (11) do not explicitly
forbid fractionality of the remaining ζsτ variables. Thus, assume the original
assignment variables zst are integer but there exist a BS s and a set τ1 with ζsτ1
fractional. By integrality of zst, it holds that zst = 1 for all t ∈ τ1. Since

zst =
∑

τ∈Ts:t∈τ

ζsτ = 1,

there must exist at least one set τ2 6= τ1 containing t with ζsτ2 fractional.
W.l.o.g., τ1 \ τ2 6= ∅ and ζsτ1 + ζsτ2 = 1 (for ζsτ1 + ζsτ2 < 1, we replace ζsτ2 by
the sum over all assignment variables ζsτ with τ ∈ Ts, t ∈ τ and τ 6= τ1). For
every t′ ∈ τ1 \ τ2 there must exist (at least) one set τ3 containing t′ with ζsτ3
fractional but t /∈ τ3. But then∑

τ∈Ts:t∈τ

ζsτ + ζsτ3 > 1,

which violates constraint (5d) for BS s as xs ≤ 1, a contradiction. ut

Note that based on the values of the original assignment variables zst,
we can define one set of TNs τs := {t ∈ Ts | zst = 1} per BS s ∈ S such
that ζsτs = 1 and ζsτ = 0 for all τ ∈ Ts \ {τs} should hold in the integer
solution.

3 Performance Improvements

A straightforward implementation of the B&P algorithm presented in the pre-
vious section does not give satisfying results, i.e., many small test instances
cannot be solved to optimality. Hence, we investigate several techniques to im-
prove and to speed up the column generation for the robust wireless network
planning problem in this section.

3.1 General Settings

In this subsection, we present general settings which we use for all computa-
tions.
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Initial solution. For the initialisation of the column generation approach, a
(dual) feasible initial solution of the MP is required (or infeasibility of the MP
must be proved). The quality of the initial solution impacts the dual solution
of the initial RMP and thus, also the quality of the lower and upper bounds
for the optimal solution of the MP.

A promising initial solution can be computed by means of the LP relaxation
of the original/compact formulation (1). Denote by (x̃, ũ, z̃) the optimal LP
solution of the compact formulation, where zst is an assignment variable as
mentioned in Subsection 2.1. For every BS s ∈ S with x̃s 6= 0 sort the set of
TNs with z̃st 6= 0 such that z̃s0 ≥ z̃s1 ≥ . . .. For some n ≥ 1 it holds z̃st = x̃s

for the first n TNs due to the variable upper bound constraints zst ≤ xs in
the compact formulation. Hence, let τ denote the set of these TNs:

τ := {t ∈ Ts : z̃st = x̃s} = {0, . . . , n− 1}.

By scaling, we have τ ∈ Ts. Then, we consider the next TN n with z̃sn < x̃s.
If the Γ -robust capacity constraint∑

t∈τ∪{n}

w̄t

est
+ max

I⊆τ∪{n},|I|≤Γ

∑
t∈I

ŵt

est
≤ bs (12)

is still valid, we add this TN to the set τ , i.e., τ = τ ∪ {n}. We add the
subsequent TNs one by one as long as the BS capacity is not exceeded. In
this way, we create one appropriate (and as large as possible) initial column
per s ∈ S.

Absolute gap limit. In a B&P algorithm, it is not obvious when the current
primal bound is an optimal solution since the solving process cannot stop
until no more pricing variables with negative reduced cost are found. Let PB
and DB be the primal and dual bound of the MP, respectively. If |PB −
DB| <abs gap, with abs gap:= gcd(mins∈S cs, λ) for integer values of cs and λ
and gcd denotes the greatest common divisor, then there cannot be another
integer solution between PB and DB. Therefore, we stop the solving process
of the B&P formulation. Note, this absolute gap limit is automatically known
by the solver for the compact formulation as all variables are present.

Aging. Since we compute many columns, it is possible that not all pricing
variables are needed during the complete solving process. Hence, we mark
the pricing variables as “removable” so that the corresponding column can be
removed from the LP due to aging or cleanup which is automatically performed
by the branch-and-price-and-cut framework SCIP (Achterberg 2009).

Cutting planes. Since the PPs (8) are robust knapsack problems, we can apply
the so-called extended robust cover inequalities as presented in Claßen et al
(2013) which represent cutting planes. We explain the main idea briefly.
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A robust cover (C ∪ J) ⊆ Ts for BS s is a set of TNs for which holds

|J | ≤ Γ, |C| ≥ 0, C ∩ J = ∅ and
∑
t∈C

w̄t

est
+
∑
t∈J

w̄t + ŵt

est
> bs,

i.e., the sum of the demands of the TNs, including the deviation of up to Γ
many demands from the nominal demand, in the robust cover exceeds the BS
capacity. The following robust cover inequality for BS s is therefore a valid
inequality of the robust knapsack problem in the corresponding PP.∑

t∈C∪J

at ≤ |C ∪ J | − 1

A robust cover can be extended by adding TNs which have a higher nominal
demand as well as a higher peak demand than the highest values of the TNs
already contained in the robust cover (Büsing 2011; Büsing et al 2011). The
extended robust cover is denoted by E(C, J) := (C ∪ J) ∪ E with

E :=

{
t ∈ Ts \ (C ∪ J) :

w̄t

est
≥ max

t′∈C

w̄t′

est′
,
w̄t + ŵt

est
≥ max

t′∈J

w̄t′ + ŵt′

est′

}
.

The extended robust cover inequality∑
t∈E(C,J)

at ≤ |C ∪ J | − 1

is also a valid inequality.
The separation problem of robust cover inequalities is NP-hard (Klopfen-

stein and Nace 2009) while the complexity of the separation of extended ro-
bust cover inequalities is unknown. Hence, we use a separation heuristic based
on Klopfenstein and Nace (2009). Details on the separation algorithm can be
found in Claßen et al (2013).

Set extension. In the first pricing rounds, many dual variables βt have a value
equal to 0 since the RMP contains only very few columns providing poor
dual information. Vanderbeck (2005) calls this the heading-in effect. A TN t
with β̃t = 0 is not considered in the PPs. Hence, the first sets computed in
the PPs have a low cardinality. This is why we extend the computed sets
of TNs as follows. Assume, a PP for BS s has found a set of TNs τ . For
all t ∈ Ts \ τ with βt = 0, we include t in τ if the set τ ∪ {t} does not violate
the robust capacity constraint (compare (12)). This extension is performed
for every computed set of TNs in every B&B node. As a consequence, it is
possible that a TN is assigned to more than one BS in an optimal solution.
However, we can just drop the redundant assignments.

All these enhancements are implemented by default and we refer to the
B&P algorithm as simple henceforth.
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3.2 The Lagrangian Bound

To evaluate the quality of the current LP solution found by the column gen-
eration algorithm, we apply the so-called Lagrangian bound (Desaulniers et al
2005). Let Z?

MP be an optimal objective value of the LP relaxation of the
MP (5), Z?

RMP of the current LP relaxation of the RMP and Z?
s of the PP (8)

corresponding to BS s ∈ S. Obviously, every optimal solution of the current
RMP yields an upper bound for the MP. Thus,

Z?
MP ≤ Z?

RMP

holds. Further, denote by

κ? = min
s∈S

(α̃s − Z?
s )

the minimum reduced cost in the current pricing round regarding all BSs.
If κ? ≥ 0, there does not exist a variable ζsτ with negative reduced cost and
the optimal solution of the current RMP is also an optimal solution of the MP.
Furthermore, we know that at most |S| many variables ζsτ are set to one in an
optimal solution of the MP. Hence, we have an upper bound on the number
of pricing variables to be set to one:

|S| ≥
∑
s∈S

∑
τ∈Ts

ζsτ .

Based on this, we can derive a lower bound on Z?
MP for κ? < 0:

Z?
RMP + |S|κ? ≤ Z?

MP, (13)

i.e., we cannot reduce the optimal objective value of the current RMP by
more than |S| times the minimum reduced cost. This lower bound is called
the Lagrangian bound.

Now, let ξ denote the cardinality of the maximum independent set in the
conflict graph G. At most ξ many BSs can be deployed at the same time.
Hence, we can enhance the lower bound (13) by replacing |S| with ξ.

The Lagrangian bound is used to speed up computations at B&B nodes,
in particular at the root node. Given a value gap, we leave the current node
if −ξκ? < gap. In fact, in case Z?

RMP is a multiple of gcd(mins∈S cs, λ), and
gap≤ gcd(mins∈S cs, λ), we can be sure that no integer solutions have a value
less than Z?

RMP and this value is a lower bound. In general, there might exist
integer solutions with a value less than the LP value Z?

RMP.

We denote the B&P algorithm which includes the settings presented in
the previous subsection and the Lagrangian bound as a stop criterion by LB

henceforth.
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3.3 Speeding Up the Pricing Problems

The time spent on the solving process of the PPs has significant influence on
the performance of the B&P algorithm since it has an impact, e.g., on the
number of visited B&B nodes. Therefore, we present several techniques to
speed up the PPs in this subsection.

Stabilisation. As explained, e.g., in Vanderbeck (2005); Leitner et al (2011),
column generation suffers from several drawbacks such as slow convergence
(tailing-off effect), generation of irrelevant columns mainly in the first itera-
tions (heading-in effect), and primal degeneracy entailing multiple dual opti-
mal solutions. These computational instabilities cause long running times with
many iterations. Many stabilisation techniques have been developed to dimin-
ish these drawbacks (see Lübbecke and Desrosiers (2005) for an overview).

Here, we focus on the primal degeneracy of the RMP and apply stabilisation
using alternative dual optimal solutions (Leitner et al 2011). The dual of the
RMP, the Restricted Dual Problem (RDP), can be described as the following
LP.

max
∑
t∈T

βt −
∑

U⊆S: max. clique

γU (14a)

s.t.
∑
t∈τ

βt − αs ≤ 0 ∀s ∈ S, τ ∈ T ′
s (14b)

βt ≤ λ ∀t ∈ T (14c)

αs −
∑

U⊆S: max. clique, s∈U

γU ≤ cs ∀s ∈ S (14d)

αs, βt, γU ≥ 0, (14e)

where γU is the dual variable corresponding to constraint (5c). Further, con-
straints (14b) correspond to variables ζsτ , (14c) to ut and (14d) to xs. For
a dual optimal solution (α̃, β̃, γ̃), we define the dual slack of variable xs as
follows.

∆s := cs − α̃s +
∑

U⊆S: max. clique, s∈U

γ̃U

For every dual optimal solution (α̃, β̃, γ̃), there exists another optimal solu-
tion (α?, β?, γ?) of the RDP computed as

α?
s = α̃s +∆s = cs +

∑
U⊆S: max. clique, s∈U

γ̃U ,

β? = β̃,

γ? = γ̃.

The solution (α?, β?, γ?) is optimal for the RDP since the objective value is
not changed, constraints (14d) are fulfilled with equality and constraints (14b)
are fulfilled more conspicuously. Obviously, α?

s ≥ α̃s. Hence, if we compare the
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objective value of the PP to α?
s instead of α̃s the comparison becomes more

restrictive and the generated columns are more likely to be relevant.

Even though the variables βt are of greater importance since they occur
as costs in the objective of the PPs, we cannot increase their value in a given
dual optimal solution by adding the dual slack of variable ut. This would on
the one hand increase the objective value of the RDP and on the other hand
we could not guarantee the compliance of constraints (14b) anymore.

Note, the stabilisation is only performed at the root node since the dual
values of the branching constraints are typically unknown and cannot be com-
puted easily in the subsequent B&B nodes.

We denote the B&P algorithm which includes the settings of algorithm LB

and the stabilisation approach by PP stab henceforth.

Suboptimal solving of PPs. The proof that a primal solution of a PP is optimal
can be rather time consuming for larger test instances. Hence, we stop the
solving process of a PP if the integrality gap is less than 1%. Furthermore,
we restrict the number of B&B nodes per PP to 500. If the gap limit is not
reached within the first 500 B&B nodes, the gain of solving this PP any further
is not sufficient to justify the additional time consumption.

In the case that we have not found any pricing variable at the current B&B
node, we solve all PPs again without a gap limit and without the restriction
on the number of B&B nodes. By this means, we can guarantee that we have
not missed to compute a necessary pricing variable in any node.

The algorithm based on PP stab with the suboptimal solving of the PPs
is denoted by PP subopt.

3.4 Limited Number of Added Columns

Per pricing round, we can add up to |S| many variables which can lead to a
high number of total variables. Therefore, it seems reasonable to investigate
the restriction of the number of added variables per pricing round, e.g., to 1, 5
or 10. Even though we restrict the number of variables added per pricing round,
we solve all (necessary) PPs and sort the computed variables by their reduced
cost in ascending order. We then add the variable with the most negative
reduced cost (or the 5, 10 variables). The setting which fixes the number of
added columns per pricing round is denoted by added cols and includes the
setting PP subopt.

3.5 A Primal Heuristic

The primal bounds computed during a B&P procedure are in general rather
poor. To overcome this drawback we could solve the current RMP to optimality
once in a while. However, this can take some time if the solving process has
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progressed due to the number of currently added columns. This is why we
develop a primal heuristic which can be called at the end of each B&B node.

We intend to compute a feasible solution (x̂, û, ζ̂) from the current LP
solution (x̃, ũ, ζ̃). For this purpose we define a new set of BSs based on the
current LP solution x̃s:

S? := {s ∈ S : x̃s > 0.5}.

For all BSs not in this set, we fix x̂s = 0 and ζ̂sτ = 0 ∀s ∈ S \ S?, τ ∈ T ′
s .

Furthermore, we ignore all already decided assignments, i.e., we set ζ̂sτ =
1 ∀(s, τ) if ζ̃sτ = 1.

To determine the remaining values we solve the following subMIP (based
on the current RMP).

min
∑
s∈S?

csxs + λ
∑
t∈T

ut (15a)

s.t.
∑
s∈S?

t

∑
τ∈T ′

s :t∈τ

ζsτ + ut = 1 ∀t ∈ T (15b)

∑
s∈U

−xs ≥ −1 ∀U ⊂ S?, U max. clique (15c)

xs −
∑
τ∈T ′

s

ζsτ ≥ 0 ∀s ∈ S? (15d)

xs, ζsτ , ut ∈ {0, 1} ∀s ∈ S?, τ ∈ T ′
s , t ∈ T (15e)

To speed up the primal heuristic we set a limit of one on the number of
solutions, i.e., as soon as an integer solution with a value better than the
known primal solution of the RMP is found, the solving process of the subMIP
is stopped. Based on this solution, we set the remaining values for (x̂, û, ζ̂) to

the values of (15) and add (x̂, û, ζ̂) as a new primal solution to the RMP. We
denote the B&P algorithm which applies this primal heuristic and includes the
setting added cols with the best parameter (to be determined) by heuristic.

4 Computational Study

In this section, we present a comprehensive computational study to investigate
the performance of the techniques illustrated in Section 3. First of all, we
describe the considered scenarios and give some information on the general
settings for the performed computations. Afterwards, we analyse the gains of
the different settings achieved at the root node and for the complete solving
process.

4.1 The Scenarios

The planning scenarios considered in this study are based on signal propaga-
tion data for Munich available at COST 231 (1996). We consider six different
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instances of two dimensions as displayed in Table 2. For all instances, the TNs

Table 2 Number of BSs and TNs, and the maximum independent set number of the six
test instances.

identifier # BSs # TNs ξ

scen 20 200a 20 200 12
scen 20 200b 20 200 11
scen 20 200c 20 200 12
scen 30 300a 30 300 14
scen 30 300b 30 300 14
scen 30 300c 30 300 15

are randomly distributed, where the BSs are randomly chosen from a larger
set of 60 BS candidate sites. We consider simplified scenarios since the compu-
tational study focuses on the performance of the different settings for the B&P
algorithm. Hence, the BS candidate sites are limited to the location of the BS.
However, the integration of configuration options would not change the imple-
mentation. For the robustness parameter Γ , we take values in {0, 1, . . . , 20}
for all scenarios into account. We fixed the maximum value to 20 since initial
computations performed with the compact model showed a constant solution
for Γ ≥ 20 for all scenarios.

Signal prediction, which is needed for the computation of the spectral ef-
ficiencies, is done by a cube oriented ray launching algorithm (Mathar et al
2007). Furthermore, two BSs are adjacent in the conflict graph if and only if
the distance between them is less than or equal to 500m. As an example, the
resulting graph for scenario scen 30 300b is illustrated in Figure 2.

0 500 1000 1500 2000 2500 3000 3500
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2000

2500
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Fig. 2 The conflict graph for scenario scen 30 300b: BSs are denoted by crosses, TNs by
dots and the conflict graph is displayed by the connecting lines.

Furthermore, we use the following parameters for all instances: bs = 10, 000,
cs = 4000 ∀s ∈ S (based on Deruyck et al (2010)), emin = 0.5, and λ = 1000.
Due to these parameters, we set abs gap = gcd(4000, 1000) = 1000.



Speeding Up Column Generation for Robust Wireless Network Planning 19

We compute the demand values w̄t and ŵt for each t ∈ T as explained in
detail in Claßen et al (2013). Mainly, we randomly generate user profiles from
Table 3. For the nominal demands w̄t, we consider a regular traffic demand

Table 3 Profiles for TNs

service regular [%] high [%] bit rate [kbps]

data [10,20] [30,40] [512,2000]
web [20,40] [40,50] [128,512]

scenario whereas we consider a high traffic demand scenario for the peak de-
mand values w̄t+ŵt. A percentage for both data and web services is uniformly
drawn from the considered percentage column and multiplied by a bit rate uni-
formly drawn from the “bit rate” column. Then the remaining percentage is
used for VoIP with a bit rate of 64 kbps.

All computations are performed on a Linux machine with 3.40GHz Intel
Core i7-2600 processor, a memory limit of 11GB RAM and a general CPU time
limit of 2h. We use SCIP 3.0.0 (Achterberg 2009) with cplex 12.4 (IBM –
ILOG 2012) as underlying LP solver. Furthermore, the PPs are directly solved
using cplex.

The different algorithms we investigate in the computational study are
summarised in Table 4 based on the descriptions given in Section 3.

Table 4 Summary of settings considered in Section 4.

Identifier Description

simple straightforward B&P, initial solution via compact LP, absolute gap limit,
aging of pricing variables, extended cover inequalities for PPs, extended sets
of TNs

LB uses the Lagrangian bound as stop criterion at each B&B node

PP stab as LB plus stabilisation at the root node

PP subopt as PP stab plus solving the PPs suboptimal: gap limit of 1%, at most 500
B&B nodes

added cols as PP subopt plus the number of added variables per pricing round is limited

heuristic as added cols plus deploying a primal heuristic

In the following two subsections, we analyse the quality of the LP relaxation
and the behaviour of the Lagrangian bound exemplarily for scen 30 300b.
We chose this scenario randomly from the three largest instances since the
root node of scenarios scen 20 200a–c is mostly solved too fast to reveal the
information we would like to present.
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4.2 LP Relaxation

In Section 2.1 we have demonstrated via a small example that the LP relax-
ation of the compact model can be weak and the column generation approach
can compute a better LP solution. Exemplarily for scenario scen 30 300b, we
present the LP relaxation of the compact model and the LP solution computed
at the root node via the column generation approach for Γ ∈ {0, 1, . . . , 50}
in Figure 3. Obviously, the LP solution of the column generation is at least

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

48000

49000

50000

51000

52000

Γ

compact LP solution

root LP ColGen

Fig. 3 Comparison of the LP solution of the compact model and the LP solution at the root
node of the column generation algorithm for scenario scen 30 300b and Γ ∈ {0, 1, . . . , 50}.

as good as the LP relaxation of the compact model. For 6 ≤ Γ ≤ 32, the
LP solution of the column generation approach is significantly better than the
compact LP solution. The considerable improvement lies in the actual values
of the LP solutions rather than in the percentage value. In half of the instances
for 6 ≤ Γ ≤ 32, the LP solution of the column generation is above the next
higher multiple of thousand, e.g., for Γ = 14, 50038 versus 49462. Due to
the fact that the parameters in the objective are multiples of thousand, the
LP solution of the column generation gives a significantly better lower bound
than the LP relaxation of the compact model. The instances for small and
large values of Γ are easier to solve, which is why the two curves (almost)
meet. We consider values for Γ of up to 50 here to illustrate the complete be-
haviour of the LP solutions for this specific scenario even though for all other
computations we set Γ ≤ 20.
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4.3 Lagrangian Bound

In this subsection, we analyse the behaviour of the Lagrangian bound in-
troduced in Section 3.2. Exemplarily for scen 30 300b and Γ = 4, Figure 4
presents the Lagrangian bound and the current LP solution per pricing round
at the root node. For a better readability, we have omitted the value of the
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−20000
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20000

40000

60000

pricing round

LP solution

Lagrangian bound

Fig. 4 LP solution and Lagrangian bound per pricing round at the root node for scenario
scen 30 300b and Γ = 4.

Lagrangian bound at the first round (−611000) in the figure. The Lagrangian
bound has a stepwise behaviour since we update this value only if the cur-
rent bound is better than the best known bound. Otherwise, the bound would
fluctuate extensively. In the first 60 rounds, the Lagrangian bound is quite
far from the LP solution. However, it converges fast against the LP solution,
where the LP solution decreases per pricing round. For a more detailed view
of this convergence between pricing round 60 and 133 we refer to Figure A.1
in the appendix. As explained before, we stop the solving of the root node
if the value of the LP solution and the Lagrangian bound are closer together
than the abs gap, i.e., 1000, which is the reason why there is still a gap be-
tween the two curves at the last pricing round. Without the application of the
Lagrangian bound as a stop criterion (the setting simple), the solving of the
root node takes 692 rounds whereas with setting LB, it takes 133 rounds (see
Tables A.2 and A.4 in the appendix for all results).

4.4 Performance of Column Generation at the Root Node

In this subsection, we analyse the performance of the column generation algo-
rithm at the root node. Since we have focused on scen 30 300b in the current
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and the previous subsection, we present the detailed analysis only for this
scenario. The complete results for all scenarios are given in the appendix in
Tables A.1 to A.8.

The settings LB, PP stab, PP subopt and added cols strongly influence
the solution performance at the root node. Hence, in this section we compare
the consumed time, the number of pricing rounds and the number of computed
variables at the root node for these settings.

First, we take the setting simple as a basis and compute the reductions
we gain by applying the settings LB, PP stab and PP subopt. Therefore, the
time reduction is computed as follows.

simple time − advanced time

simple time
,

where “advanced time” has to be replaced by the time of the considered setting.
Thus, a value of 20% means that we can reduce the solving time by 20% due
to the application of the setting compared to the time needed by simple, while
a value of −20% says that the computation is 20% slower than for simple.

We display the time reductions and the actual time of simple exemplarily
for scen 30 300b in Figure 5. The absolute times for all scenarios considered in
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Fig. 5 Time reduction for LB, PP stab and PP subopt compared to simple (bars) and ab-
solute time consumed by simple (dotted line) for scenario 30 300b.

this study can be found in the appendix in Table A.1 for scenarios with 20 BSs
and in Table A.3 for the remaining scenarios. For small values of Γ , instance
scen 300 30b is rather easy to solve with low total running time. Hence, the
time reductions by LB, PP stab and PP subopt can be marginal. However, for
larger values of Γ all three settings give time reductions of more than 85%
compared to the straightforward approach simple. In addition for Γ ≥ 12, the
time limit of two hours is reached by simple (except for Γ = 19), implying
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a time reduction of at least the reported values. However, tests with a time
limit of 8 h led to the same results since the values are close to 100%.

The reductions in the number of pricing rounds and in the number of
variables needed at the root node are computed in a similar way as the time
reduction before. Clearly, the number of pricing rounds is strongly related to
the number of added columns. Hence, we just present the round reduction
and the absolute rounds needed by simple in Figure 6 for scen 30 300b. The
results regarding the number of variables are illustrated in Figure A.2 in the
appendix.
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Fig. 6 Round reduction for LB, PP stab and PP subopt compared to simple (bars) and
absolute number of rounds needed by simple (dotted line) for scenario 30 300b.

The highest reductions are, in general, achieved by LB and PP stab since
the utilisation of the Lagrangian bound as a stop criterion obviously reduces
the number of necessary pricing rounds and hence, added pricing variables.
The stabilisation approach influences the number of rounds and variables only
slightly by the possibility of computing different pricing variables. However, the
results demonstrate that the applied stabilisation is not strong. On the other
hand, even though the setting PP subopt also uses the Lagrangian bound,
the number of pricing rounds decreases only slightly compared to simple and
the number of added variables can even increase. This happens because a
pricing variable found by a suboptimal solution of the PP might not be as
effective as a variable of an optimal solution. Hence, the good performance of
the Lagrangian bound at the root node can be weakened by the suboptimal
solving of the PPs.

For a complete overview on the performance of the different settings, we
count the cases in which each setting gives the best result (either lowest time,
number of rounds, or number of variables) per scenario. Note, in the case
that two settings give the same best result, we count it for each setting. The
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summarised results for scenarios scen 30 300a–c are given in Table 5 and for
scen 20 200a–c in Table A.5 in the appendix. The last four lines in each table

Table 5 Number of instances for which each of the four settings simple, LB, PP stab and
PP subopt gives the best results per scenario and in total for scen 30 300a–c.

simple LB PP stab PP subopt

time 0 2 4 15
scen 30 300a rounds 1 14 4 3

vars 0 1 17 3

time 0 8 8 5
scen 30 300b rounds 0 14 6 1

vars 0 6 14 1

time 0 5 5 11
scen 30 300c rounds 0 18 4 0

vars 0 1 19 1

total

time 0 15 17 31
rounds 1 46 14 4
vars 0 8 50 5
total 1 69 81 40

give the totals regardless of the different scenarios in each group. We do not
sum over the scenarios with different sizes since they are too different in their
solving behaviour, especially the solving times vary extremely. Considering the
total for each group, i.e., time, rounds and variables, the setting PP subopt

gives the best results most frequently independent of the size of the considered
scenarios. For the number of rounds, already the LB setting performs best and
for the number of variables, PP stab most frequently gives the best results.
However, in real world applications the time is usually the most restrictive
resource. This is the reason why we consider PP subopt as the most appropri-
ate setting since it most frequently gives the best results concerning the time,
with a significant distance to the other settings.

The number of computed pricing variables is in general quite high. This
leads to the question if it is beneficial to restrict the number of added pric-
ing variables per pricing round. We tested the effect of adding at most 1, 5
or 10 variables per round. The results can be found in the appendix in Ta-
bles A.7 and A.8, respectively. Again, we count the times each setting gives
the best results regarding running time, number of rounds and number of
variables, see Table 6 for scen 30 300a–c and Table A.6 in the appendix for
scen 20 200a–c. The lowest number of variables is clearly most frequently com-
puted by added cols with a limit of 1. However, the restriction on the number
of variables in general deteriorates the solving process at the root node com-
pared to PP subopt (without these limitations). Hence, we will not consider
the added cols setting in the following computations.
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Table 6 Number of instances for which each of the four settings PP subopt, added cols 1,
added cols 5 and added cols 10 gives the best results per scenario and in total.

PP subopt
added cols added cols added cols

1 5 10

time 16 0 0 5
scen 30 300a rounds 16 0 0 5

vars 2 17 0 2

time 12 0 1 8
scen 30 300b rounds 16 0 1 5

vars 0 18 3 0

time 10 0 2 9
scen 30 300c rounds 14 0 0 7

vars 0 13 3 5

total

time 38 0 3 22
rounds 46 0 1 17
vars 2 48 6 7
total 86 48 10 46

4.5 Performance of B&P

In this section, we present the B&P results for all scenarios given in Table 2
within the time limit of two hours. Note that since the set S is chosen arbitrar-
ily, even scenarios of the same size can behave completely different. The times
and optimality gaps for all scenarios can be found in Tables A.9 and A.10,
respectively, in the appendix. Scenarios scen 20 200b and scen 20 200c are for
most values of Γ solved within a few seconds regardless the chosen setting.
Hence, we focus on scenario scen 20 200a and the larger scenarios in this sec-
tion.

Analogue to the previous subsection, we consider the time reduction which
can be achieved by the application of settings LB, PP stab, PP subopt and
also heuristic compared to simple. Note, a reasonable evaluation of the
time reduction for one scenario is not possible if the algorithms run into the
time limit for many values of Γ . For scen 20 200a, most of the instances are
solved to optimality within the time limit. Hence, we focus on this scenario
for the following evaluations and display the time reduction in Figure 7.

A time reduction of zero indicates that both simple and the other setting
could not solve the instance within the time limit. As explained before, the
instances with a low value of Γ are easier (and faster) and thus, the applied
performance improvements can slow down the solving process. However, for
larger values of Γ (but Γ ≤ 11) PP subopt and heuristic perform best with
up to 99% of time reduction for Γ = 4. The settings LB and PP stab in
contrast are subject to high fluctuations see, e.g., Γ = 10, which partly result
from the fluctuations in the solving time. For 13 ≤ Γ ≤ 16, simple computes
the optimal solutions quite fast, even though the problems are not as easy as
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Fig. 7 Time reduction for LB, PP stab, PP subopt and heuristic compared to simple (bars)
and absolute time consumed by simple (dotted line) for scenario 20 200a.

for Γ ≤ 4. Thus, actually no performance improvements are necessary and the
improved settings rather slow down the solving process.

To evaluate the instances which could not be solved within the time limit,
we compute the gap reduction as follows. If the optimality gap computed by
simple is not 0, the gap reduction is

simple gap − advanced gap

simple gap
.

Hence, the maximum possible reduction is 100%. If simple gap equals 0, we
set the gap reduction to 0 if the advanced gap is equal to 0 and to −100% if
the advanced gap is strictly greater than 0. Note, if no optimality gap could be
computed since no dual bound was found, we assume a gap of 100% for these
evaluations. This is why we also assume the highest occurrent optimality gap
is 100% even though higher gaps are possible in theory.

The gap reduction for scen 20 200a is presented in Figure 8. For the in-
stances with no time reduction in Figure 7, there exists a significant gap re-
duction, e.g., consider Γ = 9, 18. This occurs as no optimality gap could
be computed quite frequently for simple when running into the time limit.
For Γ ≥ 14, the optimality gap computed by simple is rather small and thus,
LB, PP stab, PP subopt and heuristic give quite often relatively high in-
creases of the gap even though the computed gaps are in most cases be-
low 5%. Note, the instances for consecutive values of Γ are completely de-
coupled. Hence, fluctuations of the optimality gap such as for 7 ≤ Γ ≤ 12 can
occur.

As explained before, the gap reduction cannot reveal any information on
the absolute gaps which can in general be rather low. Therefore, we give a dif-
ferent evaluation of the settings for scenarios scen 30 300a–c to accommodate
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Fig. 8 Gap reduction for LB, PP stab, PP subopt and heuristic compared to simple (bars)
and absolute gap computed by simple (dotted line) (worst case 100%) for scenario 20 200a.

this aspect. We focus on the set of larger scenarios since most of these in-
stances cannot be solved within the time limit. Thus, the absolute gaps are of
great interest. In total, we have considered 63 different instances for scenarios
scen 30 300a–c with Γ ∈ {0, 1, 2, . . . , 20}. For an overview on the performance
of the different settings simple, LB, PP stab, PP subopt, and heuristic dur-
ing the complete solving process and a comparison to the compact model, we
compute the percentage of these 63 instances which have at most a certain
gap after the time limit of two hours is reached. The results are displayed in
Figure 9.

All instances solved by the setting heuristic have an optimality gap of less
than 12%, which is the best we could achieve for the set of the largest scenarios.
However, already by means of PP subopt (which is included in heuristic)
more than 60% of the instances are solved with a gap less than or equal
to 4%. Concerning the straightforward approach simple, around 43% of the
instances are solved to optimality, whereas for 30% an optimality gap could
not be computed at all (due to missing dual bounds).

Overall, the results suggest a clear outperformance of the PP subopt and
heuristic settings for computing small gaps within two hours. Nevertheless,
the compact model solves 57% of the largest scenarios to optimality and all
instances regarded with a gap less than 9%.

4.6 Proportion of Time Spent in PPs

Finally, we evaluate the percentage of the total solving time spent in the PPs
for each setting in Table 4. In Figure 10, we illustrate these percentage values
and the average solving time for scen 30 300b and Γ ∈ {0, 2, 4, . . . , 20}. We
consider this scenario instead of scen 20 200a here since for scen 20 200a only
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Fig. 9 Percentage of the 63 instances (scen 30 300a–c, Γ ∈ {0, 1, 2, . . . , 20}) with a gap
less than optimality gap given at the x-axis for a time limit of two hours and the different
settings.

very few instances spent less than 90% of the solving time in the PPs (see
Figure A.3 in the appendix). In contrast, for scen 30 300b we can in general
say that the percentage of time spent in the PPs is higher, the longer the
average solving time is. Certainly, PP subopt spends the shortest time in the
PPs but still up to 86% (Γ = 16). These long times spent to initialise and
solve the PPs are a strong indicator that even the improved B&P algorithms
presented are not competitive with the compact model regarding the solving
time.

5 Conclusion

In this paper, we presented a full B&P approach for the robust wireless net-
work planning problem. Furthermore, we investigated in total seven different
settings to improve the solving performance compared to a straightforward
implementation. We presented an extensive computational study performed
on six test instances of two dimensions and evaluated the settings at the root
node and for the complete solving process.

The limitation on the number of added variables per pricing round crys-
tallised to have a negative effect on the solving performance. However, all other
enhancements have in general a positive effect, i.e., can reduce the solving time,
the number of needed pricing rounds and the number of added pricing vari-
ables. The best performance at the root node gives the suboptimal solving of
the PPs and for the complete solving process the primal heuristic which also
includes the suboptimal solving of the PPs. However, the judgement of the
best performance depends on the focus of the evaluation.
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Fig. 10 Percentage of total solving time which is spent in the PPs for all five settings
(bars) and the average solving time (dotted line) for scenario scen 30 300b, displayed only
for Γ ∈ {0, 2, 4, . . . , 20}.

In summary, the results presented in this paper show that it is a complex
task to implement a B&P approach for the wireless network planning problem
at hand. Since the column generation and the Lagrangian relaxation give the
same dual bound in theory, as an alternative, Lagrangian relaxation combined
with a B&B framework might be more effective. Furthermore, for more so-
phisticated robustness models such as the multi-band robustness (Büsing and
D’Andreagiovanni 2012), the presented B&P algorithms might give better re-
sults compared to a blown-up compact model since the applied robustness
approach just affects the PPs instead of the complete problem.
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Fig. A.1 LP solution and Lagrangian bound per pricing round at the root node for scenario
scen 30 300b and Γ = 4 zoomed in to rounds 60 to 133.
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Fig. A.2 Variable reduction for LB, PP stab and PP subopt compared to simple (bars) and
absolute number of variables generated by simple (dotted line) for scenario 30 300b.
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Fig. A.3 Percentage of total solving time which is spent in the PPs for all five settings
(bars) and the average solving time (dotted line) for scenario scen 20 200a, displayed only
for Γ ∈ {0, 2, 4, . . . , 20}.
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Table A.1 Solving time (in sec.) at the root node for scen 20 200a–c and the different
settings.

Γ simple LB PP stab PP subopt

sc
e
n

2
0
2
0
0
a

0 1 0.91 0.24 0.19
1 0.32 0.32 0.51 0.28
2 0.58 0.56 0.45 0.46
3 38.77 13.44 12.73 6.05
4 7200.16 13.84 15.52 6.02
5 7200.2 7200.26 7200 127.36
6 7200.01 7200.14 562.07 179.52
7 7200.3 7201.07 1474.67 429.37
8 4963.32 4744.16 2823.13 68.69
9 7204.61 7202.38 7201.19 419.3

10 2396.38 1925.7 5583.15 45.02
11 7204.1 7209.42 7208.48 404.76
12 440.53 68.86 87.44 39.87
13 209.24 66.71 141.02 41.48
14 210.45 117.76 90.36 92.63
15 390.63 133 128.94 101.39
16 386.01 92.78 108.8 60.97
17 319.96 109.67 112.66 72.87
18 240.78 125.11 128.3 63.16
19 288.3 86.17 123.87 85.08
20 410.47 182.86 111.21 61.74

sc
e
n

2
0
2
0
0
b

0 0.16 0.16 0.13 0.12
1 0.37 0.35 0.21 0.23
2 0.91 1.07 0.56 0.53
3 1.07 1.14 0.61 0.6
4 0.66 0.73 0.66 0.65
5 0.8 0.78 0.53 0.64
6 1.44 1.45 0.77 0.57
7 1.12 1.15 0.66 1.05
8 1.16 1.21 1.17 0.62
9 1.01 1.03 0.87 0.72

10 3.44 3.53 2.46 1.96
11 19.39 7.35 15.98 7.53
12 23.23 10.47 8.7 6.21
13 53.42 22.06 23.63 14.79
14 57.02 24.91 29.44 15.49
15 55.11 25.39 36.94 12.83
16 51.87 31.5 39.7 17.02
17 93.27 19.03 30.69 17.32
18 61.96 22.37 27.54 17.25
19 172.07 39.43 99.49 11.79
20 331.46 52.37 113.71 23.52

sc
e
n

2
0
2
0
0
c

0 0.51 0.37 0.4 0.38
1 0.49 0.46 0.37 0.38
2 1.28 1.25 0.53 0.54
3 0.98 0.92 0.65 0.59
4 1.13 1.04 0.97 0.93
5 0.5 0.49 0.35 0.36
6 1.61 2.02 0.46 0.45
7 2.23 2.15 0.87 0.9
8 2.29 2.21 1.05 1.12
9 3.08 2.75 1.99 1.37

10 6.78 5.08 3.81 2.74
11 48.65 7.02 5.16 3.1
12 42.78 5.77 5.93 3.31
13 42.27 6.34 8.5 5.54
14 48.14 9.26 5.86 5.01
15 68.18 9.26 10.54 5.67
16 59.19 14.22 13.1 8.86
17 82.88 18.73 17.96 7.4
18 73.85 16.3 20.2 10.17
19 103.41 20.37 26.15 19
20 83.67 20.06 31.7 11.34
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Table A.2 Number of pricing rounds and number of added variables at the root node for
scen 20 200a–c and the different settings.

# pricing rounds # variables

Γ simple LB PP stab PP subopt simple LB PP stab PP subopt

sc
e
n

2
0
2
0
0
a

0 60 60 28 28 122 122 89 89
1 15 15 32 24 75 75 138 107
2 27 27 31 32 156 156 149 171
3 446 205 261 251 1672 1123 1239 1200
4 29160 211 281 211 31223 1147 1354 1094
5 7766 7813 7448 1191 9593 9641 9346 3198
6 20559 20189 1991 1431 23813 23431 4100 3657
7 7834 7824 2101 2387 10239 10229 4312 5085
8 8493 7705 6971 641 14262 13078 9868 2505
9 1848 1856 1888 2041 5218 5238 3795 4553

10 2307 2091 5301 401 6537 6141 8745 2192
11 1251 1251 1414 1711 4555 4555 3755 3668
12 444 228 261 281 2327 1680 1693 1657
13 385 241 331 281 2332 1896 1921 1852
14 398 293 271 411 2314 2018 1738 2226
15 454 299 301 371 2534 2005 1849 2101
16 381 203 251 321 2142 1565 1641 1846
17 429 253 301 341 2200 1857 1889 2023
18 346 265 281 301 2088 1864 1751 1781
19 358 204 281 411 2103 1557 1776 2148
20 499 310 281 341 2653 2101 1818 1956

sc
e
n

2
0
2
0
0
b

0 11 11 14 14 41 41 40 40
1 22 22 19 19 63 63 69 69
2 43 43 59 59 96 96 116 116
3 42 42 52 52 159 159 197 197
4 27 27 67 67 77 77 144 144
5 29 29 39 58 71 71 100 110
6 58 58 73 47 152 152 126 105
7 56 56 47 68 230 230 142 251
8 66 66 93 41 187 187 160 109
9 56 56 70 58 171 171 136 122

10 96 96 73 85 582 582 360 411
11 194 142 151 170 1103 908 829 838
12 183 120 111 148 977 849 670 817
13 262 159 181 191 1374 1151 1024 1064
14 194 151 171 206 1213 1097 1004 1003
15 179 120 161 175 962 868 815 856
16 192 153 161 197 1072 998 868 865
17 192 122 161 214 1036 904 908 903
18 194 130 151 203 1089 979 902 956
19 231 143 221 174 1087 979 940 809
20 290 192 221 272 1364 1228 943 967

sc
e
n

2
0
2
0
0
c

0 28 27 31 31 86 86 73 73
1 25 24 32 32 94 94 80 80
2 47 46 38 38 134 134 115 115
3 33 32 43 43 113 113 117 117
4 50 49 57 57 209 209 214 214
5 21 20 21 21 149 149 141 141
6 61 60 22 24 376 376 199 205
7 67 66 49 49 388 388 276 267
8 41 40 39 42 452 452 342 368
9 40 37 41 41 520 494 497 494

10 47 40 47 56 697 609 577 665
11 143 56 51 61 1369 830 661 785
12 121 47 51 61 1351 713 663 785
13 117 50 61 81 1288 708 785 1040
14 118 60 51 81 1398 875 664 1034
15 129 63 71 91 1439 865 911 1092
16 145 68 71 121 1675 1012 894 1345
17 155 78 81 111 1630 1123 991 1253
18 149 74 91 111 1598 1024 1117 1298
19 161 92 101 161 1658 1209 1180 1600
20 149 90 101 141 1677 1247 1194 1479
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Table A.3 Solving time (in sec.) at the root node for scen 30 300a–c and the different
settings.

Γ simple LB PP stab PP subopt

sc
e
n

3
0
3
0
0
a

0 5.79 5.87 6.25 4.2
1 4.94 5.08 4.35 2.47
2 20.81 19.3 12.12 6.78
3 53.79 41.67 39.43 23.18
4 404.89 122.77 92.51 62.93
5 370.62 98.94 89.76 77.56
6 812.97 167.54 127.23 99.21
7 994.85 142.77 132.83 154.27
8 7201.17 132.89 108.56 171.91
9 1098.13 150.61 210.7 272.11

10 1656.2 162.38 160.43 242.74
11 2219.32 200.67 164.84 259.85
12 3480.41 185.14 195.71 300.43
13 3844.43 183.21 361.51 170.88
14 7205.77 197.29 350.88 153.26
15 7213.72 226.69 400.07 194.14
16 7225.15 261.97 516.1 202.14
17 7239.68 424.97 415.46 288.56
18 7215.24 467.35 450.52 380.06
19 7207.25 839.58 953.47 293.37
20 7318.04 651.85 1233.53 343.69

sc
e
n

3
0
3
0
0
b

0 3.32 3.35 2.26 3.17
1 6.36 6.3 3.56 5.16
2 9.42 9.28 8.27 5.31
3 51.59 20.47 10.26 16.79
4 350.57 27.5 29.65 26.79
5 380.05 50.36 38.58 38.61
6 380.87 50.43 45.46 32.41
7 772.48 53.56 54.81 59.57
8 886.83 66.74 56.37 87.34
9 1387.7 70.82 69.64 74.29

10 3540.22 74.84 86.18 145.67
11 2951.13 112.77 102.55 143.8
12 7311.42 109.78 115.26 190.53
13 7279.55 111.16 118.13 203.26
14 7478 147.39 155.68 131.35
15 7298.85 136.22 164.33 211.09
16 7207.55 246.41 205.13 171.23
17 7379.37 176.84 177.65 241.09
18 7307.65 161.33 234.84 210.09
19 5186.8 159.06 222.86 218.42
20 7291.33 276.16 179.6 193.35

sc
e
n

3
0
3
0
0
c

0 37.06 36.15 18.2 19.16
1 445.56 145.56 1634.8 360.83
2 513.25 246.95 298.01 91.42
3 399.28 144.58 205.9 169.34
4 543.35 192.82 216.6 175.54
5 405.85 159.21 225.04 183.23
6 973.72 323.71 185.84 264.88
7 401.81 163.01 171.55 180.55
8 789.02 227.75 199.51 231.08
9 729.71 196.38 204.42 207.94

10 3141.04 243.26 208.2 239.47
11 768.33 307.41 272.26 418.99
12 2524.82 480.24 535.88 390.54
13 1281.99 725.34 1508.57 467.31
14 1432.04 476.46 609.89 415.74
15 7240.74 1580.5 537.01 422.71
16 3616.67 856.08 708.81 382.8
17 7301.61 742.45 1805.54 353.46
18 7278.9 2001.25 3181.37 432.88
19 6855.84 1825.28 2099.54 405.14
20 7278.73 5473.3 634.72 431.13
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Table A.4 Number of pricing rounds and number of added variables at the root node for
scen 30 300a–c and the different settings.

# pricing rounds # variables

Γ simple LB PP stab PP subopt simple LB PP stab PP subopt

sc
e
n

3
0
3
0
0
a

0 116 116 131 147 1387 1387 1079 1179
1 63 63 76 61 907 907 942 746
2 151 125 160 121 2113 2075 1899 1463
3 239 239 251 238 3475 3475 2959 2866
4 642 285 321 371 8734 4873 4172 4672
5 597 254 271 391 6994 4334 3766 4928
6 661 256 301 401 6323 4400 4060 5024
7 799 271 291 511 6931 4881 4014 6031
8 2700 228 221 491 8370 4079 3214 5542
9 513 236 321 651 5643 4090 4369 6147

10 547 228 251 541 5392 4002 3587 5380
11 548 243 241 541 5414 4110 3455 5606
12 513 223 251 577 5186 3841 3538 5429
13 513 225 281 391 5560 4259 3919 4901
14 491 224 281 351 5262 4029 3946 4757
15 496 244 301 421 5452 4264 4148 5231
16 487 249 321 431 5508 4362 4311 5257
17 518 306 311 551 6083 5191 4426 6221
18 648 327 321 701 6939 5667 4465 7031
19 739 375 371 611 7457 6149 4850 6837
20 770 354 391 670 7182 5822 5142 7110

sc
e
n

3
0
3
0
0
b

0 92 92 79 121 860 860 731 882
1 99 99 91 141 1097 1097 977 1069
2 157 157 151 119 1558 1558 1631 1329
3 283 124 111 191 2917 1819 1393 2178
4 692 133 151 221 5974 1988 2033 2852
5 513 146 151 221 4990 2169 2083 2913
6 460 145 151 191 4714 2219 2114 2578
7 441 144 151 251 4473 2254 2214 3309
8 428 147 141 271 4456 2298 2089 3628
9 478 155 151 281 4529 2455 2253 3776

10 449 147 161 341 4499 2362 2407 4570
11 433 157 171 341 4767 2579 2624 4501
12 484 166 171 351 4538 2669 2622 4655
13 395 165 171 431 4357 2676 2606 5216
14 394 189 191 281 4674 3033 2933 4018
15 368 173 191 421 4482 2863 2948 5219
16 419 185 191 341 4870 3155 2957 4658
17 366 193 201 401 4447 3165 3110 5169
18 455 183 211 371 4701 3030 3292 4951
19 403 180 221 381 4609 3040 3467 5088
20 425 206 191 371 4748 3441 3077 5046

sc
e
n

3
0
3
0
0
c

0 240 229 233 262 3333 3315 2112 2127
1 1104 540 2311 1641 10957 7475 12775 10616
2 834 509 901 781 9705 7296 6666 6200
3 867 456 661 951 8638 6482 5541 7159
4 675 375 581 901 8216 6215 5311 7365
5 638 350 531 801 7608 5751 4892 6568
6 713 399 411 961 7600 6053 4110 6976
7 561 338 411 641 7128 5604 4374 5839
8 559 304 381 691 6991 5362 4321 6085
9 595 323 381 631 6751 5268 4433 6280

10 749 351 351 591 6859 5281 4097 5656
11 520 368 361 801 6584 5675 4224 6277
12 662 389 441 761 7261 5931 5025 6634
13 508 415 541 698 7249 6756 6003 6741
14 552 367 401 603 7215 6248 5244 6301
15 506 416 351 514 6502 6222 4797 6026
16 509 360 391 511 6837 6304 5191 5622
17 517 402 411 506 7303 6553 5453 5911
18 436 362 431 535 6130 5881 4909 5655
19 569 424 441 491 6519 6158 5003 5432
20 431 417 311 521 5399 5337 4284 5338
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Table A.5 Number of instances for which each of the four settings simple, LB, PP stab and
PP subopt gives the best results per scenario and in total for scen 20 200a–c.

simple LB PP stab PP subopt

time 0 0 2 19
scen 20 200a rounds 4 12 4 6

vars 1 5 8 9

time 0 1 3 17
scen 20 200b rounds 6 15 4 3

vars 5 5 9 8

time 0 1 5 15
scen 20 200c rounds 0 15 6 2

vars 2 6 14 5

total

time 0 2 10 51
rounds 10 42 14 11
vars 8 16 31 22
total 18 60 55 84

Table A.6 Number of instances for which each of the four settings PP subopt, added cols

1, added cols 5 and added cols 10 gives the best results per scenario and in total for
scen 20 200a–c.

PP subopt
added cols added cols added cols

1 5 10

time 12 4 1 4
scen 20 200a rounds 12 3 2 6

vars 2 17 1 1

time 11 1 5 5
scen 20 200b rounds 10 1 5 6

vars 3 11 7 0

time 11 0 1 9
scen 20 200c rounds 11 0 3 11

vars 0 17 2 2

total

time 34 5 7 18
rounds 33 4 10 23
vars 5 45 10 3
total 72 54 27 44
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Table A.7 Solving time (in sec.), number of pricing rounds and number of added variables
at the root node for scen 20 200a–c and the setting added cols with different numbers of
added pricing variables (given in the second line).

time # pricing rounds # variables

Γ 1 5 10 1 5 10 1 5 10

sc
e
n

2
0
2
0
0
a

0 0.53 0.51 0.34 64 47 35 63 89 92
1 0.73 0.55 0.34 51 39 23 50 147 77
2 6.02 0.74 0.56 361 42 32 360 176 136
3 165.25 9.51 11.89 4091 271 331 4090 1230 1330
4 57.54 13.21 9.76 1461 291 261 1460 1353 1255
5 119.7 65.9 100.02 1511 661 871 1510 2281 2896
6 118.07 418.88 209.1 1841 3221 1521 1840 5716 4148
7 136.5 364.37 360.42 1271 2107 1779 1270 4483 4405
8 127.67 345.76 673.07 1331 2417 4041 1330 4784 6839
9 195.65 489.78 695.16 1681 2151 2871 1680 4540 5355

10 258.67 49.18 149.53 1981 431 871 1980 1985 3192
11 222.95 414.82 723.31 1551 1561 2441 1550 3697 4745
12 160.43 60.01 40.28 1061 358 221 1060 1581 1447
13 238.99 43.24 63.17 1561 281 361 1560 1379 1985
14 309.44 121.95 72.63 1811 511 361 1810 2216 2011
15 504.25 133.25 85.81 2081 541 391 2080 2439 2221
16 224.78 70.02 81.66 1321 381 381 1320 1774 2074
17 327.77 79.41 59.84 1661 431 321 1660 1977 1883
18 311.73 88.8 84.49 1601 361 381 1600 1629 2104
19 293.22 88.18 60.6 1601 411 321 1600 1898 1904
20 371.01 72.63 71.19 1911 411 381 1910 1930 2064

sc
e
n

2
0
2
0
0
b

0 0.38 0.12 0.13 49 13 13 48 25 32
1 0.71 0.29 0.39 85 28 34 84 68 110
2 0.79 0.48 0.76 53 34 61 52 92 124
3 1.04 0.61 0.9 65 51 73 64 149 244
4 1.02 0.35 0.45 92 34 42 91 81 94
5 0.45 0.55 0.69 39 43 57 38 95 105
6 1.14 0.68 0.6 83 52 48 82 101 100
7 2.62 1.24 1.19 165 95 79 163 219 249
8 1.57 0.93 0.88 77 71 69 76 145 129
9 1.86 0.99 1.02 149 73 80 148 169 148

10 9.74 2.84 2.75 321 72 117 319 347 495
11 25.72 7.37 4.46 561 171 131 560 679 646
12 30.35 6.96 5.54 581 167 141 580 723 772
13 68.09 12.49 10.34 851 225 203 850 1001 1097
14 83.2 14.01 15.18 941 207 192 940 890 963
15 91.33 18.42 23.24 971 225 269 970 854 1028
16 81.25 17.07 18.41 871 210 215 870 904 932
17 59.76 17.05 10.22 791 227 158 790 864 855
18 84.34 16.94 28.96 971 211 268 970 818 977
19 75.15 14.91 22.66 978 228 264 977 890 987
20 83.07 24.84 16.15 992 256 225 991 839 977

sc
e
n

2
0
2
0
0
c

0 0.7 0.24 0.3 70 25 28 68 66 73
1 1.03 0.76 0.21 69 61 22 67 125 61
2 1.79 0.43 0.4 101 36 33 99 103 82
3 1.1 0.66 0.74 90 49 48 88 131 119
4 2.69 1.21 0.8 129 76 51 127 220 186
5 2.31 0.54 0.38 99 21 21 97 94 141
6 3.57 0.85 0.46 145 41 23 143 185 195
7 3.12 1.2 1.3 138 43 48 136 180 272
8 6.76 1.52 1.32 198 51 38 196 245 305
9 13.03 3.03 1.96 301 81 41 300 395 390

10 18.84 3.55 2.22 371 91 51 370 450 494
11 18.12 4.17 3.47 421 101 71 420 500 695
12 21.66 5.24 4.3 461 111 61 460 550 599
13 23.01 6.9 4.75 481 111 71 480 550 700
14 37.81 7.69 4.45 611 131 71 610 650 700
15 36.7 12.76 5.52 671 171 101 670 850 999
16 53.26 13.27 10.84 791 201 131 790 1000 1271
17 58.39 17.47 13.92 881 201 151 880 1000 1426
18 54.15 16.79 11.37 791 221 141 790 1100 1324
19 57.75 21.05 14.62 871 261 171 870 1300 1535
20 89.26 16.56 11.13 1091 231 151 1090 1150 1382
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Table A.8 Solving time (in sec.), number of pricing rounds and number of added variables
at the root node for scen 30 300a–c and the setting added cols with different numbers of
added pricing variables (given in the second line).

time # pricing rounds # variables

Γ 1 5 10 1 5 10 1 5 10

sc
e
n

3
0
3
0
0
a

0 29.19 7.24 3.91 899 213 101 897 945 856
1 80.28 8.02 5.26 1903 211 116 1901 1045 1070
2 87.82 24.44 8.83 1693 350 162 1691 1740 1396
3 324.49 66.61 33.22 3749 633 328 3748 3057 2998
4 527.33 125.54 89.56 3581 811 481 3580 4050 4781
5 525.35 191.67 102.94 3201 921 471 3200 4600 4698
6 767.53 218.74 133.39 3461 841 501 3460 4200 4856
7 857.3 282.93 155.31 3471 1041 561 3470 5200 5412
8 1159.79 418.22 202.1 3651 1011 581 3650 5050 5396
9 1392.44 350.16 266.42 3861 1011 681 3860 5050 5858

10 1219.73 327.58 264.35 3441 881 611 3440 4400 5418
11 1120.33 241.57 196.58 3241 721 491 3240 3600 4729
12 1221.21 375.12 178.48 3221 881 461 3220 4400 4525
13 1350.25 335.18 247.58 3351 801 541 3350 4000 4976
14 1426.49 312.6 191.49 3581 811 471 3580 4050 4620
15 1471.76 304.04 229.8 3821 771 511 3820 3850 5004
16 1734.67 383.19 286.6 4241 921 601 4240 4600 5445
17 1914.71 358.33 320.47 4391 911 666 4390 4550 6304
18 2028.74 454.97 304.67 4881 1061 671 4880 5300 6353
19 2159.34 599.35 315.57 5111 1221 681 5110 6100 6361
20 2100.99 526.43 349.39 5241 1191 631 5240 5950 5909

sc
e
n

3
0
3
0
0
b

0 14.93 2.42 4.37 775 103 147 773 487 851
1 21.51 8.6 7.93 733 228 145 731 830 993
2 33.14 11.35 9.09 911 270 163 910 1253 1498
3 65.74 19.15 12.29 1161 261 171 1160 1292 1691
4 155.55 37.11 28.23 1601 351 221 1600 1750 2200
5 223.26 60.13 38.56 1841 431 261 1840 2150 2599
6 264.66 75.23 56.58 1731 451 281 1730 2250 2800
7 428.73 123.5 60.51 1991 471 281 1990 2350 2800
8 365.3 172.84 85.14 1841 541 351 1840 2700 3500
9 480.98 105.45 97.19 2071 501 351 2070 2500 3500

10 661.54 127.15 115.53 2701 511 401 2700 2550 4000
11 777.27 218.33 145.12 2641 641 391 2640 3200 3900
12 892.14 193.51 141.23 2581 601 331 2580 3000 3300
13 921.32 222.3 108.45 2851 611 301 2850 3050 3000
14 1086.49 247.04 177.85 2941 671 431 2940 3350 4295
15 1116.79 295.05 154.36 2991 741 361 2990 3700 3600
16 1311.19 251.54 201.82 3321 631 471 3320 3150 4700
17 1396.62 327.39 247.56 3261 751 491 3260 3750 4889
18 1354.28 288.03 162.42 3401 731 391 3400 3650 3900
19 1425.4 361.52 277.24 3401 781 551 3400 3900 5449
20 1463.95 389.24 219.91 3681 901 481 3680 4500 4796

sc
e
n

3
0
3
0
0
c

0 157.97 16.41 13.48 3234 385 270 3232 1823 2060
1 385.42 192.98 154.95 5631 1421 1051 5630 7097 7385
2 520.35 171.9 173.33 5801 1431 1131 5800 7135 8042
3 403.43 155.14 179.11 4401 1231 1041 4400 6150 7908
4 635.23 207.3 114.28 4791 1371 771 4790 6839 6063
5 831.48 221.63 192.91 5271 1171 871 5270 5848 6287
6 919.1 221.36 225.97 4471 1001 871 4470 5000 6531
7 993.66 223.76 179.33 4471 921 721 4470 4600 5815
8 1121.94 268.22 194.79 4221 931 621 4220 4650 5356
9 1691.43 356.77 314.61 4751 1111 771 4750 5550 6155

10 1829.49 438.27 243.56 5041 1108 641 5040 5515 5200
11 1884.03 653.36 328.81 4351 1311 721 4350 6400 5603
12 2465.74 554.99 315.46 5051 1111 611 5050 5539 5174
13 3654.6 673.38 558.54 5591 1108 831 5590 5453 6314
14 3686 804.66 575.29 5251 1183 786 5250 5767 6580
15 3884.02 954.59 551.64 5491 1226 615 5490 6073 5440
16 3681.85 859.42 431.29 5161 1166 531 5160 5637 5053
17 5307.87 885.91 480.5 7081 1231 667 7080 5909 5957
18 3782.95 743.88 461.48 5351 1027 593 5350 5075 4981
19 3362.97 773.78 367.05 4901 971 511 4900 4833 4602
20 3423.02 763.9 338.16 4924 1084 471 4923 4968 4390
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Table A.9 Solving time (in sec.) and optimality gap (in %) for scen 20 200a–c and the
different settings.

simple LB PP stab PP subopt heuristic

Γ time gap time gap time gap time gap time gap

sc
e
n

2
0
2
0
0
a

0 1.06 0 0.89 0 0.3 0 0.34 0 0.28 0
1 0.29 0 0.28 0 0.5 0 0.32 0 0.32 0
2 2.72 0 3.48 0 0.71 0 2.13 0 0.67 0
3 43.14 0 31.53 0 27.11 0 12.7 0 17.93 0
4 7200.01 – 102.51 0 157.81 0 40.36 0 45.08 0
5 7200.75 – 7200.86 4.33 7200 6.92 927.88 0 535.71 0
6 7200.25 – 7200.22 10.48 753.62 0 322.44 0 313.83 0
7 7200.15 – 7200.11 7.13 1404.79 0 665.02 0 675.78 0
8 4900.42 0 4469.07 0 3232.26 0 642.17 0 630.9 0
9 7200.96 – 7203.94 3.87 7203.11 4.61 1286.13 0 1430.88 0

10 2250.28 0 2170.6 0 6244.83 0 52.09 0 45.77 0
11 7205.89 – 7203.31 7.5 7200.08 45.25 3894.12 0 3016.96 0
12 429.43 0 58.24 0 94.71 0 48.56 0 3688.71 0
13 175.02 0 2754.55 0 117.57 0 871.46 0 263.46 0
14 1291.22 0 7200.15 2.66 7200.71 2.21 7222.74 5.22 7229.83 5.22
15 1209.96 0 7203.8 2.14 7200.28 2.23 7200.12 2.22 7223.91 0
16 1629.5 0 7222.1 3.44 7204.36 5.35 7200.22 2.6 7230.18 3.76
17 7203.27 3.27 7200 2.14 7275.58 8.79 7268.13 5.8 7241.81 5.25
18 7200.14 4.68 7200.32 3.18 7201.18 2.92 7200.15 2.8 7350.03 4.65
19 7201.9 2.63 7207.12 3.37 7200.34 2.92 7278.56 4.59 7207.45 4.51
20 7250.86 2.5 7202.24 3.5 7229.13 4.41 7237.87 4.13 7248.42 4.29

sc
e
n

2
0
2
0
0
b

0 0.18 0 0.2 0 0.19 0 0.21 0 0.14 0
1 0.4 0 0.37 0 0.25 0 0.32 0 0.24 0
2 0.76 0 0.74 0 0.63 0 0.6 0 0.52 0
3 0.85 0 0.98 0 0.68 0 0.68 0 0.6 0
4 0.67 0 0.66 0 0.77 0 0.89 0 0.68 0
5 0.67 0 0.71 0 0.62 0 0.98 0 0.65 0
6 1.48 0 1.38 0 1.83 0 0.6 0 0.58 0
7 1.6 0 1.56 0 1.5 0 1.46 0 1.66 0
8 1.65 0 1.6 0 2.66 0 0.87 0 0.61 0
9 1.45 0 1.37 0 1.99 0 0.9 0 0.74 0

10 5 0 4.69 0 8.22 0 2.57 0 2.6 0
11 71.13 0 7200.02 2.68 7200.12 2.04 7200.17 2.24 7209.22 2.55
12 41.84 0 517.12 0 535.65 0 87.92 0 11.15 0
13 99.66 0 83.65 0 83.07 0 540.75 0 14.01 0
14 115.88 0 7200.18 2.27 71.34 0 4691 0 7203.02 1.72
15 74.41 0 7203.78 1.82 60.88 0 39.47 0 1033.17 0
16 73.53 0 1457.9 0 219.18 0 5070.2 0 943.83 0
17 92 0 7200.51 1.82 2314.26 0 536.59 0 1207.59 0
18 84.12 0 736.64 0 151.04 0 889.48 0 1684.87 0
19 202.01 0 904.36 0 306.88 0 16.77 0 1394.85 0
20 322.31 0 509.17 0 1962.71 0 292.44 0 277.47 0

sc
e
n

2
0
2
0
0
c

0 1.09 0 0.85 0 1.26 0 1.32 0 1.25 0
1 1.47 0 1.2 0 0.91 0 0.91 0 1.31 0
2 2.07 0 3.04 0 1.74 0 1.77 0 2.03 0
3 5.27 0 5.81 0 2.74 0 3.25 0 9.18 0
4 2.67 0 2.66 0 2.04 0 2.89 0 2.5 0
5 14.04 0 2.7 0 2.77 0 2.54 0 3.53 0
6 9.19 0 11.11 0 7.91 0 4.34 0 7.9 0
7 15.34 0 114.88 0 49.2 0 6.71 0 25.11 0
8 8.61 0 13.44 0 25.06 0 7.11 0 7.39 0
9 107.74 0 68.68 0 36.05 0 13.51 0 13.65 0

10 146.48 0 463.44 0 452.97 0 194.17 0 50.71 0
11 168.38 0 186.09 0 206.92 0 51.3 0 140.37 0
12 210.04 0 170.8 0 1300.21 0 225.74 0 279.33 0
13 308.78 0 255.15 0 569 0 7200.19 2.13 146.21 0
14 312.72 0 346.15 0 952.33 0 2273.09 0 361.28 0
15 454.57 0 185.69 0 483.5 0 296.93 0 393.74 0
16 448.2 0 360.89 0 3552.45 0 1145.11 0 336.94 0
17 1526.29 0 1464.53 0 7200.44 2.13 7200.06 2.13 161 0
18 494.12 0 490.02 0 1138.08 0 657.93 0 429.91 0
19 925.4 0 1627.9 0 1099.78 0 137.81 0 236.92 0
20 530.59 0 619.15 0 643.97 0 634.29 0 1109.17 0
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Table A.10 Solving time (in sec.) and optimality gap (in %) for scen 30 300a–c and the
different settings.

simple LB PP stab PP subopt heuristic

Γ time gap time gap time gap time gap time gap

sc
e
n

3
0
3
0
0
a

0 346.37 0 87.87 0 1115 0 4052.8 0 1535.01 0
1 6.83 0 280.49 0 4.38 0 3.89 0 2.84 0
2 5158.81 0 1672.43 0 99.41 0 620.62 0 7206.88 2.33
3 7200 6.98 7200.01 2.33 7200 2.33 159.1 0 2809.22 0
4 2132.19 0 7200 2.74 7200.12 2.65 7200.27 2.59 7205.43 2.73
5 7201.98 2.55 7200.46 5.69 7200.23 2.33 7200.07 3.67 7205.79 2.83
6 3973.69 0 7200.01 5.79 2340.08 0 7200.1 2.22 7212.49 2.33
7 4576.34 0 7200 4.52 2916.79 0 6211.15 0 3225.44 0
8 7201.19 – 7200.02 2.22 7200.01 7.78 6828.41 0 5815.42 0
9 7211.43 19.23 7201.25 2.22 7200.01 2.22 7200.01 2.22 7220.36 2.4

10 7207.65 14.1 7200.01 4.44 7202.64 11.11 7200.26 4.44 7210.62 4.44
11 7256.62 13.56 7203.21 9.47 7202.66 9.48 7200.55 3.01 7206.59 2.29
12 7202.73 17.47 7200.4 11.23 7214.45 9.03 7200.51 3.87 7211.17 3.86
13 7202.19 14.82 7202.49 12.29 7205.86 10.3 7227.84 6.03 7222.79 6.02
14 7203.44 – 7204.61 12.74 7232.95 3.72 7200.01 8.52 7205.06 5.23
15 7244.56 – 7201.39 14.2 7203.13 3.94 7202.18 5.6 7245.93 3.61
16 7204.6 – 7230.44 8.08 7200.27 8.42 7200.01 6.03 7374.79 3.47
17 7273.9 – 7200.46 5.98 7200.13 9.44 7221.16 4.26 7212.34 5.99
18 7212.74 – 7202.35 23.05 7202.36 9.62 7200.57 6.21 7250.74 6.29
19 7203.03 – 7280.23 5.29 7208.74 7.39 7335.77 6.16 7363.95 4.92
20 7208.02 – 7200.85 4.77 7207.39 7.19 7200.46 7.71 7255.64 4.66

sc
e
n

3
0
3
0
0
b

0 131.94 0 1325.9 0 46.48 0 38.88 0 7.29 0
1 4.66 0 6.11 0 274.14 0 7200.01 8.33 7203.23 2.08
2 4066.69 0 839.2 0 2066.93 0 6855.59 0 4921.68 0
3 4868.11 0 7200.24 3.04 4873.64 0 7200 6.02 7203.21 3.04
4 5044.92 0 7200.01 2.35 656.52 0 7200.31 2.29 7214.02 2.44
5 5418.99 0 7200.01 4.7 7200 3.97 7200 3.24 7211.19 4.14
6 6827.73 0 1967.21 0 5241.67 0 2239.2 0 7211.57 2.52
7 4484.44 0 6066.87 0 7200.61 3.09 6548.03 0 5499.29 0
8 7200.21 6.23 7200.4 4.28 7201.06 11.26 2445.32 0 3979.5 0
9 7202.13 5.78 7200 3.42 7201.59 10.73 7200.74 2.36 7208.21 4.47

10 7220.27 506.96 7200.44 12.5 7203.13 6.28 7202.6 16.45 7205.96 4.87
11 7210.7 18.99 7204.37 13.86 7202.44 24.37 7200.01 5.12 7210.22 4.17
12 7321.57 – 7232.35 12.28 7241.66 24.34 7211.91 6.48 7204.4 5.06
13 7211.16 – 7201.81 8.49 7222.24 17.76 7224.44 3.17 7216.29 2.19
14 7489.56 – 7437.84 14.78 7218.72 17.36 7200.75 6.55 7207.85 4.54
15 7204.45 – 7210.36 10.23 7253.33 13.24 7216.01 4.72 7234.29 4.72
16 7225.89 – 7266.25 8.89 7212.3 12.74 7242.61 3.81 7208.92 4.18
17 7246.48 – 7229.52 18.92 7258.59 24.56 7204.66 5.4 7298.52 3.98
18 7387.59 – 7204.19 30.76 7207.11 26.42 7215.88 4.65 7263.26 5.71
19 7225.82 492.3 7212.85 7.31 7237.93 11.95 7200.01 7.8 7205.6 2.73
20 7322.56 491.21 7201.6 9.28 7208.83 22.32 7208.94 7.43 7280.75 4.61

sc
e
n

3
0
3
0
0
c

0 6770.51 0 7200.01 12.7 558.21 0 7200 10.08 7210.42 11.28
1 3091.06 0 3114.23 0 4920.99 0 7200 2.44 857.21 0
2 1616.77 0 7200.01 10.85 2130.94 0 6143.24 0 1781.93 0
3 2683.38 0 7200 4.76 1977.99 0 5179.89 0 1637.3 0
4 1020.54 0 5427.79 0 4698.29 0 7200 2.38 7017.68 0
5 7200.46 2.59 7201.36 4.2 7202.29 9.06 7200 9.24 7204.22 4.99
6 2661.13 0 7200.7 2.63 4965.02 0 7200.48 2.65 7213.04 3.08
7 4139 0 7200.09 3.37 7200.19 5.97 7200.12 11.56 7211.26 3.06
8 1675.23 0 7137.57 0 7200 4.55 1339.93 0 7210.93 4.36
9 7200.01 2.71 7200.89 4.66 7220.35 2.46 5118.94 0 5950.55 0

10 5398.76 0 7204.92 4.88 2440.07 0 7202.37 2.81 7223.46 3.79
11 1450.75 0 4227.63 0 7248.39 6.67 1971.96 0 4114.18 0
12 5312.07 0 7201.12 7.58 7222.57 3.29 7206.24 4.21 7229.78 4.14
13 7212.48 2.59 1996.6 0 7222.93 3.55 7200.63 2.51 2411.72 0
14 6233.14 0 7200.02 16.42 7201.15 31.64 7200.7 2.66 7200.89 3.75
15 7222.6 – 7203.77 2.23 7201.91 10.71 7200.28 4.6 7204.16 2.46
16 7200.93 3.47 7291.94 9.6 7205.9 11.68 7208.51 2.89 7237.53 4.13
17 7316.37 – 7200.67 12.7 7277.25 8.76 7133.3 0 5487.71 0
18 7203.63 – 7223.27 6.9 7206.5 15.46 4063.04 0 1088.21 0
19 7200.09 6.91 7258.07 8.84 7234.61 21.18 7200.84 3.58 7205.1 2.87
20 7233.51 – 7201.3 32.91 7223.33 8.11 7214.85 6.22 7220.78 5.79


