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In this paper, we extend our former investigation on conceiving reliable fixed point-to-point wireless net-

works under outage probability constraints (Claßen et al. 2011a,b). We consider the problem of determining

the minimum cost bandwidth assignment of a network, while guaranteeing a reliability level of the solu-

tion. If the optimal bandwidth assignment and routing of traffic demands are accomplished, the reliability

criterion requires that network flows remain feasible with high probability, regarding that the performance

of microwave links is prone to variations due to external factors, e.g., weather. We introduce a chance-

constrained programming approach to tackle this problem and we present reformulations to standard Integer

Linear Programming (ILP) models, including a budget constrained formulation. To improve the solving

performance, we propose new valid inequalities and a primal heuristic. Computational results present a per-

formance analysis of the valid inequalities and the heuristic. Further, the outperformance of the novel model

compared to more traditional approaches is documented.

Key words : fixed wireless networks; capacitated network design; network reliability; chance-constrained

programming; integer programming

1. Introduction

Fixed point-to-point wireless communications is a particular sector of the communication

industry that holds great promise for delivering private high-speed data connections by

means of microwave radio transmission (Anderson 2003). Microwave, in the context of
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this work, refers to terrestrial fixed point-to-point digital radio communications, usually

employing highly directional antennas in clear line-of-sight and operating in licensed fre-

quency bands from 6GHz to 38GHz. This makes microwave communications typically

free of interference. The antennas used to transmit and receive the signal into/from free

space are usually located at the top of communication towers. Two radios are required to

establish a microwave link, whose capacity can attain 500Mbps nowadays, between two

locations that can be several kilometers apart, up to 50 km.

Historically, microwave was mainly used by incumbent network operators to carry trunk

telephony traffic, and by broadcasters to link remote broadcast transmitters to studios.

Today, demand is driven by the infrastructure requirements of mobile networks, where

microwave is used to provide interconnectivity between base stations, controllers, and

switches (Burns et al. 2001). In fact, thanks to the ability for microwave links to be rapidly

and cost-effectively deployed, fixed point-to-point wireless networks have become a com-

mon alternative to provide broadband communications, particularly in emerging countries

and remote locations where classical copper or fiber lines are too costly or simply unavail-

able to cope with the increasing demand for bandwidth-intensive services (Lehpamer 2010).

It is not a coincidence that over 50% of the world’s base transceiver stations are connected

using microwave technologies (Little 2009).

Despite recent advances in fixed point-to-point wireless communications, a variety of

questions remain unaddressed in this area. Particularly, capacity planning in wireless net-

works is quite different from wired network planning. In fact, the radio frequency spectrum

is a limited natural resource which has been regulated worldwide to promote its efficient

use. Moreover, environment conditions, such as weather, play an important role in wireless

communications since they can introduce instantaneous variations into the communication

channel, likely leading to outage events.

Although having limited bandwidth and suffering channel impairments, fixed point-to-

point wireless networks must degrade smoothly as environment conditions degrade. As a

common practice, operators highly overprovision bandwidth during network planning to

avoid traffic bottlenecks under adverse scenarios such as the performance of some dete-

riorated links. This approach, however, incurs additional investments that do not result

in resource- and cost-efficient networks, besides leading to an inefficient use of the radio

spectrum. Therefore, establishing better wireless networks is not just a matter of adding
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bandwidth but it also entails a complex design decision aiming at enhancing network’s

reliability to cope with channel fluctuations.

The most common idea of network reliability in the literature is a numerical parameter

which represents the probability that a subset of nodes in a probabilistic network is con-

nected. Computing the network reliability is known to be a computationally difficult prob-

lem (Ball 1980, 1986), even for the case in which the subset of nodes is restricted to a single

source-destination pair, viz. the two-terminal network reliability problem (Provan and Ball

1984, Brecht and J. 1988). To the best of our knowledge, (Dominiak et al. 2007) is the

only work to investigate the reliability of fixed broadband wireless networks under outage

probability events. The authors, however, do not consider traffic requirements and they

assume that the network is uncapacitated. In addition, the variation on the performance

of a microwave link is not taken into account, but only unqualified failures that cause the

complete disruption of the communication channel. Assuming that links fail independently,

the authors apply currently available algorithms for the two-terminal network reliability

problem and present results for a network with 5 nodes and 7 links. In Anderson (2003),

correlated rain fades are studied but could not be applied due to the lack of statistical

information on rain cells.

The state of the art performed in the industry is to consider individual links. Ideally,

the assignment of bandwidths in a network under outage probability constraints should be

modeled using dependent random variables. As a first step beyond the state of the art, we

consider a network without correlation between different links in this paper. Further, we

propose a framework in Section 3.5 to deal with dependent random variables in which the

results we derive in case of independent random variables serve as a building block.

First, we introduce a chance-constrained mathematical programming approach to con-

ceive reliable fixed point-to-point wireless networks under outage probability constraints.

Chance-constrained programming is a specific model of stochastic optimization for dealing

with random parameters in optimization problems (Prékopa 1995, Shapiro et al. 2009).

Actually, there exist situations in which constraint violation can hardly be avoided because

of unexpected extreme events. This approach thus aims at determining optimal decisions

that have to be made prior to the observation of random parameters and remain feasi-

ble for a given infeasibility probability tolerance. Chance-constrained programming is still
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considered as hard and widely intractable since the feasible region defined by a probabilis-

tic constraint is generally not convex. In addition, among the vast literature on chance-

constrained programming, few research work has been carried out to tackle combinatorial

problems (e.g. Klopfenstein 2010, Luedtke et al. 2010, Beraldi and Bruni 2010).

Given these difficulties, we derive equivalent ILP formulations for this problem. After

introducing a Big-M ILP formulation for the general case, which is computationally

intractable for practical instances of this problem, we concentrate on the case where the

outages of microwave links are independent. We prove the equivalence of the Big-M ILP

formulation and an ILP formulation in case of independent link outages. Our computational

study is performed for a budget constrained formulation. Furthermore, we introduce valid

inequalities and a primal heuristic to improve the solving performance for the presented

model. We use typical values for the radio parameters as frequency band, bandwidth, mod-

ulation schemes, etc., and employ a largely accepted fading model, viz., Vigants-Barnett

model (Barnett 1972, Vigants 1975), to generate realistic test instances. Our computational

results evaluate the performance of the valid inequalities as well as the primal heuristic.

Finally, we present a reliability analysis of fixed point-to-point wireless networks based on

different budgets.

The remainder of this paper is organized as follows. In Section 2, we discuss some rel-

evant considerations on spectrum pricing in licensed frequency bands and convey more

information with regard to the link characterization, focusing on channel capacity and

link availability. In Section 3, we introduce a chance-constrained formulation and its ILP

counterparts for the application considered here. Furthermore, a budget constrained for-

mulation is presented. Section 4 is devoted to cutset-based valid inequalities to improve the

dual bounds of the ILP formulation and a primal heuristic to improve the primal bounds. In

Section 5, we evaluate the performance of the proposed cutset inequalities and the heuristic

and present a reliability analysis for various budgets in different network topologies. Some

final remarks and comments on future work conclude the paper with Section 6.

2. Preliminaries
2.1. Spectrum Pricing

The radio frequency spectrum is a limited natural resource regulated worldwide by the

International Telecommunications Union (ITU) (ITU 2012). In conjunction with ITU reg-

ulations, national legislation instruments establish the availability of frequency bands for
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specific applications and the procedures for issuing licenses, as well as the rights and obli-

gations resulting from using the spectrum. A license (assignment) is the authorization

given by an administration for a radio station to use a radio frequency under specified

conditions. Obtaining a license requires a careful review and functional understanding of

the administrative rules that govern the use of the frequency spectrum, and it normally

incurs the payment of charges.

The value of the spectrum largely depends on its physical properties, notably the avail-

able bandwidth, geographic range, and reuse capability, that determine its ability to convey

information under a wide variety of scenarios (Burns et al. 2001). In contrast with terres-

trial broadcasting and wide area mobile communications which require lower frequency

bands to provide wide area non line-of-sight coverage and are normally awarded through

auctions, terrestrial fixed point-to-point links or satellite systems, which can take advan-

tage of the bandwidth available in higher frequency bands, are usually licensed through

registration in national database on a first-in-time is first-in-right basis. Besides, fixed

point-to-point services often require careful frequency assignment and coordination, which

makes auctions potentially unwieldy.

Nowadays, growing demand for microwave links for applications such as mobile net-

work infrastructure has led to increasing pressure on the available spectrum, prompting

the introduction of administrative pricing in an attempt to promote the economical and

efficient use of spectrum. In this context, charges can take the form of simply setting fees

sufficient to recover the costs of spectrum management or can be used to guide users in

making decisions to ensure the optimal use of scarce resources. In addition, administrative

pricing like fixing lower charges to frequency bands and/or locations that are not congested

may also be applied where there is no scarcity.

Because of specific differences from country to country, a comprehensive tabulation of

spectrum prices is beyond the scope of this paper. The interested reader is referred to an

extensive study on pricing of frequency spectrum in (Burns et al. 2001) for more details.

As it is typically done, we assume that the price of a frequency spectrum for a single

microwave link is a function of the amount of spectrum (bandwidth) in MHz with which

a license is associated.
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2.2. Link Characterization

Commonly, to support broadband applications, modern microwave systems use quadrature

amplitude modulation (QAM). An m-QAM scheme presents m combinations of ampli-

tude and phase, each one representing an n-bit pattern called a symbol, with n= log2m

and integer. Given the channel bandwidth W and the m-QAM scheme in use, we can

approximate the channel capacity C by

C[bps] = n ·W [Hz].

High-level QAM schemes, despite presenting better bandwidth efficiency, are more sus-

ceptible to errors due to channel impairments. As the modulation scheme changes to

accommodate higher data rates, the signal-to-noise ratio (SNR) requirement increases to

preserve the bit error rate (BER) (see Table 1). Rigorously, we can also use different

error correction codes. In any case, we can rebuild Table 1 for different combinations of

modulation and coding (and other radio parameters) based on equipment specifications.

Table 1 Bandwidth efficiency, SNR requirement, and capacity.

Modulation Bandwidth efficiency SNR requirem. Capacity f. 7MHz Capacity f. 14MHz Capacity f. 28MHz
scheme (bps/Hz) (dB) (Mbps) (Mbps) (Mbps)

QPSK 2 14.21 14 28 56
16-QAM 4 21.02 28 56 112
32-QAM 5 25.24 35 70 140
64-QAM 6 27.45 42 84 168
128-QAM 7 31.10 49 98 196
256-QAM 8 33.78 56 112 224

Since the transmitted signal suffers deep fades, microwave links are susceptible to out-

age events. Fading phenomena are described in statistical terms and the probability of

fades of a particular magnitude can be evaluated through analytical techniques (Barnett

1972, Vigants 1975, Crane 1996). To overcome outage events, modern microwave systems

employ adaptive modulation and coding which has been proven to considerably enhance

link performance (Goldsmith and Chua 1997, 1998). To keep the BER performance, this

technique entails the variability of the link’s capacity.

Note that, on the one hand, the assigned bandwidth for each microwave link is a network

engineer’s decision subject to obtaining licenses upon payment of renewal fees. On the

other hand, in response to channel fluctuations, the radio configuration is a random factor.
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Considering a finite set of efficient radio configurations (Coudert et al. 2010), for which no

configuration that presents better bandwidth efficiency for a lower SNR requirement exists,

we can associate a discrete probability distribution with these configurations. We obtain

the probability distribution either from statistical studies (in case of license renewal of a

network in operation) or from fading models and power budget calculations. We henceforth

assume that such a discrete probability distribution is known for each microwave link and

bandwidth.

3. Mathematical Formulations

In this section, we introduce a chance-constrained mathematical formulation and its ILP

counterparts for the optimization problem of deciding both the bandwidth assignment and

the network flows that minimize the total bandwidth cost while handling all the traffic

requirements simultaneously with a given reliability level. Furthermore, we reformulate

this model to maximize the network reliability while a budget constraint is fulfilled.

3.1. Chance-Constrained Formulation

The described problem can be formally stated as follows. The network’s topology is mod-

eled as a digraph G= (V,A), where each node v ∈ V denotes a radio base station (RBS)

and each arc uv ∈A represents a microwave link from u to v, with u, v ∈ V and u ̸= v. Let

δ+(v) (δ−(v)) denote the set of outneighbors (inneighbors) of v. Let Puv be the number of

bandwidth choices available for arc uv ∈A. Each bandwidth bpuv, p= 1, . . . , Puv, is associ-

ated with its cost cpuv and a random variable ηpuv that represents the bandwidth efficiency

of the current radio configuration which varies over time in response to channel fluctua-

tions. Let ε > 0 be the infeasibility tolerance (typically near zero) chosen by the network

engineer. The traffic requirements are modeled by a set K. For each k ∈K, sk denotes the

origin, tk the destination, and dk > 0 the expected demand.

We aim at determining the bandwidth assignment and the traffic flows that minimize

the total bandwidth cost. Let ypuv be the binary decision variable indicating whether band-

width bpuv, p= 1, . . . , Puv, is assigned or not to arc uv ∈A. The flow variables xk
uv denote the

amount of dk, k ∈K, routed on arc uv ∈A. The optimization problem can be formulated

as follows.

min
∑
uv∈A

Puv∑
p=1

cpuvy
p
uv (1a)
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s.t.
∑

u∈δ−(v)

xk
uv −

∑
u∈δ+(v)

xk
vu =


−dk, if v= sk,

dk, if v= tk,

0, otherwise

∀v ∈ V, ∀k ∈K (1b)

P

[∑
k∈K

xk
uv ≤

Puv∑
p=1

ηpuvb
p
uvy

p
uv ∀uv ∈A

]
≥ 1− ε (1c)

Puv∑
p=1

ypuv ≤ 1 ∀uv ∈A (1d)

xk
uv ≥ 0, ypuv ∈ {0,1} ∀uv ∈A,∀k ∈K, p= 1, . . . , Puv (1e)

The objective function (1a) represents the total bandwidth cost that is to minimize. The

flow conservation property is expressed by (1b). It provides the routes for each demand pair,

guaranteeing that the traffic requirements are entirely fulfilled. Constraint (1c) enforces

an infeasibility tolerance on the entire block of capacity constraints, guaranteeing that the

assigned bandwidth supports all the traffic to be routed through the network with (high)

probability 1− ε. Finally, the bandwidth assignment is determined by (1d). For each arc,

it allows a single selection among the available bandwidth choices.

3.2. Big-M ILP Formulation

A first way to reformulate the chance-constrained model (1) as an integer linear program

(cf. (Luedtke et al. 2010, Ruszczyński 2002)) requires the application of big-M type con-

straints, where M is a sufficiently large constant. For this purpose, we consider a finite

number of realizations η1, . . . , ηR of the random vector η consisting of the random vari-

ables ηpuv. The realizations occur with probability π1, . . . , πR (with
∑R

r=1 πr = 1). Let zr, r=

1, . . . ,R be binary variables, where zr = 0 guarantees that the capacity constraints are sat-

isfied taking into account realization ηr. We set M :=
∑

k∈K dk. Then (1) can be rewritten

as

min (1a) (2a)

s.t. (1b), (1d) (2b)∑
k∈K

xk
uv −Mzr ≤

Puv∑
p=1

(ηr)puvb
p
uvy

p
uv ∀uv ∈A, r= 1, . . . ,R (2c)

R∑
r=1

πrzr ≤ ε (2d)
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xk
uv ≥ 0, ypuv ∈ {0,1} ∀uv ∈A,∀k ∈K, p= 1, . . . , Puv (2e)

zr ∈ {0,1} ∀r= 1, . . . ,R. (2f)

The knapsack constraint (2d) is equivalent to the probabilistic constraint

R∑
r=1

πr(1− zr)≥ 1− ε.

The big-M constraints (2c) in association with the knapsack inequality (2d) guarantee

that the probability of scenarios which do not satisfy the capacity constraints is less than

or equal to the infeasibility tolerance ε, thus enforcing the probabilistic constraint (1c).

In general, the (merely unknown) correlation among outage events of different radio links

prohibits the computation of the probabilities πr. Under the assumption that microwave

links suffer fades independently (but ηpuv ∀p = 1, . . . , Puv on a single link uv ∈ A are not

assumed to be independent), we can define an artificial set of realizations. Due to (1d), at

most one bandwidth per link is selected. Therefore, the dependency between the bandwidth

efficiencies ηpuv, p= 1, . . . , Puv does not play a role in the probability calculation as shown

in the following.

By the independence between the links, we can limit the discussion to a single link uv ∈

A. Let Qp be the number of bandwidth efficiencies for the chosen link uv and bandwidth

choice p. Further, let Dp be the domain, i.e., the possible bandwidth efficiencies, of the

random variable ηpuv and define a bijection f p : Dp →{1, . . . ,Qp} with f p(ηpuv) = q mapping

bandwidth efficiency to radio configuration. For a fixed bandwidth choice p̃, the probability

that uv runs with radio configuration ∇∈ {1, . . . ,Qp̃} is P[f(ηp̃uv) =∇] =
∑R

r=1|f((ηr)p̃uv)=∇ πr.

Now, we define all possible bandwidth-independent realizations with probabilities π∗
r such

that the probability P[f(ηp̃uv) = ∇] can be determined in the same way as before. More

precisely, let R∗ =
∏Puv

p=1Q
p and π∗

r :=
∏Puv

p=1P[ηpuv = (ηr)puv] for r= 1, . . . ,R∗.

Lemma 1. Let p̃ ∈ {1, . . . , Puv} be a bandwidth choice and ∇∈ {1, . . . ,Qp̃} a radio con-

figuration. It holds that
R∗∑

r=1|f((ηr)p̃uv)=∇

π∗
r = P[f(ηp̃uv) =∇].
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Proof. By definition of π∗
r , we obtain

R∗∑
r=1|f((ηr)p̃uv)=∇

π∗
r =

R∗∑
r=1|f((ηr)p̃uv)=∇

(
Puv∏
p=1

P[ηpuv = (ηr)puv]

)

=P[f(ηp̃uv) =∇] ·
R∗∑

r=1|f((ηr)p̃uv)=∇

 Puv∏
p=1|p ̸=p̃

P[ηpuv = (ηr)puv]


︸ ︷︷ ︸

(⋆)

It remains to show that (⋆) = 1. For this purpose, we fix another bandwidth choice p̄ ∈
{1, . . . , Puv} \ {p̃} and separate all corresponding summands (regarding the radio configu-

ration) as follows.

(⋆) =

Qp̄∑
q=1

P[f(ηp̄uv) = q] ·
R∗∑

r=1|f((ηr)p̃uv)=∇

 Puv∏
p=1|p̸=p̃,p̄

P[ηpuv = (ηr)puv]


=

R∗∑
r=1|f((ηr)p̃uv)=∇

 Puv∏
p=1|p̸=p̃,p̄

P[ηpuv = (ηr)puv]

 ·
Qp̄∑
q=1

P[f(ηp̄uv) = q]︸ ︷︷ ︸
=1

Separating all bandwidth choices subsequently that way, it follows (⋆) = 1 and the proof

is complete. □
Nevertheless, this model is highly intractable due to the very large number of scenarios to

be considered. In addition, big-M models are often numerically unstable. In the sequel, we

propose a computationally more tractable ILP model in case of independent link outages.

3.3. ILP Formulation in Case of Independent Link Outages

If the link outages are independent, we can reformulate the left hand side of (1c) as the

product of probabilities. For this, we introduce the following notation. Let Qp
uv be the

number of configurations possible for arc uv with respect to the bandwidth choice p. Let ρpquv

be the probability that arc uv, assuming bandwidth choice p, is running at configuration q

or higher, i.e., the m in an m-QAM modulation scheme is higher. Remember that higher

configurations are more bandwidth-efficient (cf. Table 1), but less robust in the sense that

they are more susceptible to channel impairments. Now bpquv represents the capacity on

arc uv for a given bandwidth choice p and a specific configuration q. In addition, the

binary decision variables y obtain a new index q that incorporates the assumption on the
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configuration. The assumption on the network configuration actually encompasses as well

all the network configurations that are more bandwidth-efficient, i.e, a feasible routing of

traffic demands to an arc uv operating at bandwidth choice p and running at configuration q

is also feasible if the arc runs at configurations higher than q. Finally, to avoid a zero-

product while rewriting constraint (1c) as the product of probabilities, let us associate

slack variables y0uv, uv ∈ A, with constraints (1d), where y0uv = 1 indicates that arc uv is

not operated. In this case, the capacity of the arc is known to be 0 with probability of 1.

The problem can then be written as follows.

min
∑
uv∈A

Puv∑
p=1

Qp
uv∑

q=1

cpuvy
pq
uv (3a)

s.t.
∑

u∈δ−(v)

xk
uv −

∑
u∈δ+(v)

xk
vu =


−dk, if v= sk,

dk, if v= tk,

0, otherwise

∀v ∈ V, ∀k ∈K (3b)

∑
k∈K

xk
uv ≤

Puv∑
p=1

Qp
uv∑

q=1

bpquvy
pq
uv ∀uv ∈A (3c)

∏
uv∈A

y0uv +
Puv∑
p=1

Qp
uv∑

q=1

ρpquvy
pq
uv

≥ 1− ε (3d)

y0uv +
Puv∑
p=1

Qp
uv∑

q=1

ypquv = 1 ∀uv ∈A (3e)

xk
uv ≥ 0, ypquv ∈ {0,1}, y0uv ∈ {0,1} ∀uv ∈A,∀k ∈K, p= 1, . . . , Puv, q= 1, . . . ,Qp

uv (3f)

In the capacity constraints (3c), we assume explicitly a hypothesis on the radio con-

figuration. For a given arc and bandwidth, the lower the configuration is, the lower the

bandwidth efficiency assumed to this arc in time of design will be and also the higher the

probability that the effective capacity on this arc in time of operation supports all the

traffic to be routed through it will be. In other words, more conservative hypotheses on

the radio configuration lead to more reliable solutions. Constraint (3d) denotes formally

this relation. According to the bandwidth assignment and the hypotheses on the radio

configuration, it guarantees that the confidence of the solutions is at least 1− ε.

Theorem 1. Formulations (2) and (3) are equivalent in case of independent link out-

ages.
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Proof. As before, let Dp
uv be the domain of the random variable ηpuv and use the bijec-

tion f p
uv : Dp

uv → {1, . . . ,Qp
uv} with f p

uv(η
p
uv) = q from Section 3.2 which maps bandwidth

efficiency to radio configuration. For the sake of simplicity, we write f instead of f p
uv here.

Now, we prove that, for every feasible bandwidth assignment and routing of traffic

demands to formulation (2), there exists a corresponding feasible solution to formulation (3)

with same cost, and vice versa. Given a feasible solution (x̃, ỹ, z̃) to formulation (2), assume

without loss of generality that it includes all feasible realizations, i.e., for r= 1, . . . ,R,

z̃r = 0 ⇐⇒
∑
k∈K

x̃k
uv ≤

Puv∑
p=1

(ηr)puvb
p
uvỹ

p
uv ∀uv ∈A.

One can easily obtain a feasible solution (x̃, ȳ) to (3) with the same cost. Since the routing of

traffic demands is static for all realizations, for each arc uv, capacity constraints (2c) must

be satisfied for all feasible realizations. Let us define A1 =

{
uv ∈A

∣∣∣∣ Puv∑
p=1

ỹpuv = 1

}
and A0 =

A\A1 as the sets of installed and non-installed arcs, respectively, and let p̃uv, uv ∈A1, be

the bandwidth choice for arc uv, i.e., ỹp̃uv = 1. (For simplicity, whenever it is understood from

the context, we write p̃ instead of p̃uv.). We now define q̃uv := f

(
min

r=1,...,R

{
(ηr)p̃uv | z̃r = 0

})
,

∀uv ∈ A1 and write q̃ instead of q̃uv whenever it is unambiguous. Note, z̃r = 0 ∀r =

1, . . . ,R with (ηr)p̃uv ≥ f−1(q̃uv) at all arcs uv simultaneously. Then we set ȳp̃q̃uv := 1 for

all uv ∈ A1 and 0 otherwise. Besides, we set ȳ0uv := 1, ∀uv ∈ A0, and ȳ0uv := 0, ∀uv ∈ A1.

Note that, from (2a) and (3a), both solutions present the same bandwidth cost and con-

straints (3b), (3c), and (3e) are fulfilled with bpquv = f−1(q) · bpuv. For feasibility, we have to

prove that the reliability constraint (3d) is fulfilled. For this purpose, we introduce the

following notation. Taking into account the bandwidth assignment ỹ, we reduce the space

of the random vector η to consider only the variables ηp̃uv, ∀uv ∈A1. Let η̃ be this reduced

random vector. Again we have to deal with a finite number of realizations η̃1, . . . , η̃S̃ of

the random vector η̃. Consider the set S̃ =
{
η̃s
∣∣∣s= 1, . . . , S̃ and f((η̃s)p̃uv)≥ q̃uv ∀uv ∈A1

}
of feasible realizations of η̃ with respect to solution ỹ. Then we have

∏
uv∈A

ȳ0uv +
Puv∑
p=1

Qp
uv∑

q=1

ρpquvȳ
pq
uv

=
∏

uv∈A0

 ȳ0uv︸︷︷︸
=1

+
Puv∑
p=1

Qp
uv∑

q=1

ρpquv ȳpquv︸︷︷︸
=0

·∏
uv∈A1

 ȳ0uv︸︷︷︸
=0

+
Puv∑
p=1

Qp
uv∑

q=1

ρpquvȳ
pq
uv


=
∏

uv∈A1

Puv∑
p=1

Qp
uv∑

q=1

ρpquvȳ
pq
uv =

∏
uv∈A1

ρp̃q̃uv ȳp̃q̃uv︸︷︷︸
=1

=
∏

uv∈A1

P
[
f(ηp̃uv)≥ q̃uv

]
=

S̃∑
s=1 | η̃s∈S̃

∏
uv∈A1

P[ηp̃uv = (η̃s)p̃uv] (∗)
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(+)
=

R∑
r=1 | z̃r=0

∏
uv∈A

Puv∏
p=1

P[ηpuv = (ηr)puv] =
R∑

r=1 | z̃r=0

πr =
R∑

r=1

πr(1− zr)≥ 1− ε.

For (+), we use a similar argumentation as in the proof of Lemma 1. Hence, (x̃, ȳ) is a

feasible solution for (3).

Conversely, given a feasible solution (x̃, ȳ) to formulation (3), one can obtain a feasible

solution (x̃, ỹ, z̃) to (2) with the same cost. We set ỹpuv :=
∑Qp

uv

q=1 ȳ
pq
uv, uv ∈A, p= 1, . . . , Puv

and define p̄uv, q̄uv such that ȳp̄uv q̄uvuv = 1 for all uv ∈ A1, where A1 is defined as before.

Again we write p̄ and q̄ for simplicity. For r= 1, . . . ,R, we set

z̃r := 0 ⇐⇒ f((ηr)p̄uv)≥ q̄uv ∀uv ∈A1.

Again, from (2a) and (3a), both solutions present the same bandwidth cost and con-

straints (1b), (1d), and (2c) are fulfilled. To show that constraint (2d) is fulfilled, we follow

the same argumentation as before in (∗), just in the reverse direction and by replacing p̃

and q̃ by p̄ and q̄.

Therefore, formulations (2) and (3) are equivalent. □
Note that constraint (3d) is not linear, but it can easily be linearized as follows. By

employing monotonicity of logarithmic functions and because the logarithm of a product

is equal to the sum of the logarithms, (3d) is equivalent to

∑
uv∈A

log

1 · y0uv +
Puv∑
p=1

Qp
uv∑

q=1

ρpquvy
pq
uv

≥ log(1− ε).

By (3e), exactly one of the sum elements within the logarithmic function will be nonzero

and, hence, this constraint is equivalent to

∑
uv∈A

log(1)︸ ︷︷ ︸
=0

y0uv +
Puv∑
p=1

Qp
uv∑

q=1

log(ρpquv)y
pq
uv

≥ log(1− ε).

Note that we can now avoid the use of the slack variables. The problem can be formulated

as the following standard ILP model.

min
∑
uv∈A

Puv∑
p=1

Qp
uv∑

q=1

cpuvy
pq
uv (4a)
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s.t.
∑

u∈δ−(v)

xk
uv −

∑
u∈δ+(v)

xk
vu =


−dk, if v= sk,

dk, if v= tk,

0, otherwise

∀v ∈ V, ∀k ∈K (4b)

∑
k∈K

xk
uv ≤

Puv∑
p=1

Qp
uv∑

q=1

bpquvy
pq
uv ∀uv ∈A (4c)

∑
uv∈A

Puv∑
p=1

Qp
uv∑

q=1

log(ρpquv)y
pq
uv ≥ log(1− ε) (4d)

Puv∑
p=1

Qp
uv∑

q=1

ypquv ≤ 1 ∀uv ∈A (4e)

xk
uv ≥ 0, ypquv ∈ {0,1} ∀uv ∈A,∀k ∈K, p= 1, . . . , Puv, q= 1, . . . ,Qp

uv (4f)

The resulting formulation is still a large scale ILP, which is, in general, hard to solve.

3.4. Budget Constrained Formulation

The problem formulation (4) aims at minimizing the costs while a certain reliability is

guaranteed. Depending on the value of ε, the infeasibility tolerance, many problems may

be infeasible. Instead, we could ask, how reliable can the network be if a certain budget B

is not exceeded? Hence, an alternative formulation of the problem is the following.

max
∑
uv∈A

Puv∑
p=1

Qp
uv∑

q=1

log(ρpquv)y
pq
uv (5a)

s.t. (4b), (4c), (4e), (4f) (5b)∑
uv∈A

Puv∑
p=1

Qp
uv∑

q=1

cpuvy
pq
uv ≤B (5c)

Thus, formulation (5) maximizes the reliability of the network while the budget con-

straint (5c) is fulfilled. Note, the budget constraint is a knapsack constraint, which is why

the problem is NP-hard.

3.5. Dependent Random Variables

In real world applications, the random variables ηpuv are usually not independent as, e.g.,

bad weather conditions influence more than one link at the same time. Nevertheless, we

can embed the presented formulation (4) in a Branch-and-Bound framework on the basis
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of Fortz and Poss (2009) via a Benders like decomposition to model the case of dependent

random variables as described in the following.

First, we solve (4) where the probabilities ρpquv in constraint (4d) describe the marginal

probabilities on a single link. Every integer solution found during the Branch-and-Bound

process is then tested for feasibility regarding the actual dependent random variables.

This means, we fix the binary decision variables y regarding the computed solution (x̃, ỹ)

and determine a corresponding flow that maximizes the probability given in (1c). If the

computed probability is less than 1−ε, the configuration given by the current values of the

decision variables is not part of a feasible solution in case of dependent random variables

and hence, the considered solution has to be prohibited. In such a case, we redefine

A1 =

uv ∈A

∣∣∣∣∣∣
Puv∑
p=1

Qp
uv∑

q=1

ỹpquv = 1

 and A0 =A\A1

as the sets of installed and non-installed links, respectively. Based on these sets, we add the

following constraint as a so-called lazy constraint prohibiting the current solution (x̃, ỹ).

∑
uv∈A1

Puv∑
p=1

Qp
uv∑

q=1

ypquv +
∑

uv∈A0

1−
Puv∑
p=1

Qp
uv∑

q=1

ypquv

≤ |A|− 1 (6)

Including the new constraint, we continue the Branch-and-Bound routine solving (4). The

whole process is depicted in Figure 1 and continues as long as Branch-and-Bound provides

new integer solutions.

This framework models random variable dependencies. However, we would like to point

out that the computation of the maximum probability for fixed ỹ is typically intractable

due to the correlation between the random variables and hence, the framework is difficult

to be tested in a computational study. In addition, data with dependent random variables

does currently not exist for the considered problem and cannot be computed in a reasonable

way.

4. Performance Improvements

The models described in Section 3.3 and 3.4 are very hard to solve. To accelerate the

solving process, we present new valid inequalities, so-called cutset inequalities, to improve

the dual bound in the first part of this section. To separate these inequalities on the fly,

we propose exact separation ILPs. Finally, a primal heuristic to improve the primal bound

of the budget constrained model (5) is introduced.
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B&B for (4)

compute max.
probability for ỹ

P < 1− ε?

compute sets
A1, A0

add solution
to pool

integer solution

no

yes

add constraint (6)

continue

Figure 1 Flowchart of solution framework for dependent random variables.

4.1. Cutset Inequalities

Constraints (4b), (4c), and (4e) define a classical network design problem studied inten-

sively in the literature (Bienstock and Günlük 1996, Bienstock et al. 1998, Magnanti et al.

1993, 1995, Raack et al. 2011). To enhance the performance of ILP solvers, several valid

inequalities have been introduced, in particular so-called cutset-based inequalities, exploit-

ing knowledge about the required capacity on a cut in the network.

Let S ⊂ V be a proper and nonempty subset of the node set V and S = V \ S its

complement. The set A(S,S) := {uv ∈ A : u ∈ S, v ∈ S}, i.e., the set of arcs that connect

a node in S to a node in S, defines a cutset. Similarly, let K(S,S) := {k ∈K : sk ∈ S, tk ∈
S} be the set of demands originating in S and terminating in S. Finally, let d(S,S) :=∑

k∈K(S,S) d
k. An appropriate aggregation of constraints (4b), (4c), and nonnegativity of

the variables results in the following base cutset inequalities.

∑
uv∈A(S,S)

Puv∑
p=1

Qp
uv∑

q=1

bpquvy
pq
uv ≥ d(S,S) ∀S ⊂ V (7)

These inequalities denote that there should be enough capacity on the arcs of any cutset

in order to satisfy the demands that must be routed through it. Base cutset inequalities

are necessary for a capacity vector to be feasible, but it is well-known that they are not



Claßen et al.: Chance-Constrained Optimization
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 17

sufficient in general (Costa et al. 2009). By applying Chvátal-Gomory (CG) rounding to

base cutset inequalities (cf. (Wolsey 1998)), we obtain the well-known cutset inequalities

∑
uv∈A(S,S)

Puv∑
p=1

Qp
uv∑

q=1

⌈
bpquv
a

⌉
ypquv ≥

⌈
d(S,S)

a

⌉
∀S ⊂ V, (8)

where a ∈ {bpquv : uv ∈ A(S,S), p= 1, . . . , Puv, q = 1, . . . ,Qp
uv}. In general, the LP relaxation

of (4) does not satisfy (8) although all integer solutions have to satisfy it (cf. (Raack et al.

2011)).

A novel class of valid inequalities are shifted cutset inequalities which we can obtain from

the base cutset inequalities by shifting the coefficients first before applying CG-rounding.

Given a cutset A(S,S) and for uv ∈ A(S,S), let auv := minp∈{1,...,Puv}minq∈{1,...,Qp
uv} b

pq
uv

and a′ ∈ {bpquv − auv : uv ∈A(S,S), p= 1, . . . , Puv, q = 1, . . . ,Qp
uv}\{0}. Note that the param-

eter auv is strictly greater than 0 since we do not consider the slack variable y0uv in this

context. Multiplying constraints (4e) by −auv results in

Puv∑
p=1

Qp
uv∑

q=1

(−auv)y
pq
uv ≥−auv ∀uv ∈A. (9)

Now, we again take the sum over all arcs uv in constraints (4c), apply constraints (9)

and CG-rounding using the notation a(S,S) :=
∑

uv∈A(S,S) auv. Thus, we obtain the shifted

cutset inequalities

∑
uv∈A(S,S)

Puv∑
p=1

Qp
uv∑

q=1

⌈
bpquv − auv

a′

⌉
ypquv ≥

⌈
d(S,S)− a(S,S)

a′

⌉
∀S ⊂ V. (10)

Note, the presented cutset inequalities are valid for both formulations (4) and (5).

4.2. Separation of Cutset Inequalities

As there exist exponentially many subsets S ⊂ V , it is not efficient to add all possible

cutset inequalities and shifted cutset inequalities. Hence, we rather generate only violated

inequalities on the fly. For that purpose we propose ILPs to separate the most violated

(shifted) cutset inequalities for the current LP solution exactly, see, e.g., Fischetti et al.

(2010) or Koster et al. (2013) for cutset separation in the robust network design problem.

A cutset inequality is violated if

∑
uv∈A(S,S)

Puv∑
p=1

Qp
uv∑

q=1

⌈
bpquv
a

⌉
ỹpquv −

⌈
d(S,S)

a

⌉
< 0,
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where ỹpquv is the current LP solution and a∈Z≥0.

For the exact separation of cutset inequalities, we introduce variables αv indicating

whether node v ∈ V lies in the subset S, and variables βuv deciding whether uv ∈A(S,S).

For simplicity we further define

D :=

∑
k∈K

dkβsktk

a
.

The exact separation of violated cutset inequalities can be formulated as the following ILP

(the minimum in (11c) can be linearized in a standard way).

min
∑
uv∈A

Puv∑
p=1

Qp
uv∑

q=1

⌈
bpquv
a

⌉
ỹpquv

βuv − z (11a)

s.t. D≤ z ≤D+
a− 1

a
(11b)

αu −αv ≤ βuv ≤min{1−αv, αu} ∀u, v ∈ V (11c)

αv, βuv ∈ {0,1} ∀u, v ∈ V (11d)

z ∈N. (11e)

If the optimal objective value is negative, then a violated cutset inequality is found. The

variable z together with constraint (11b) determines the rounding of the right hand side

of the cutset inequality, where a−1
a

depicts a small number. Constraints (11c) determine

the link between variables βuv and αv and αu, i.e., βuv = 1⇔ αu = 1∧αv = 0.

For the exact separation of shifted cutset inequalities, we just restate the objective (11a)

as

min
∑
uv∈A

Puv∑
p=1

Qp
uv∑

q=1

⌈
bpquv − auv

a′

⌉
ỹpquv

βuv − z,

set

D :=

∑
k∈K

dkβsktk −
∑

uv∈A
auvβuv

a′

and replace a in constraint (11b) by a′.

4.3. A Primal Heuristic

To find a good solution fast, we introduce the following heuristic to compute values for

the decision variables y based on the current LP solution without modifying the flow

variables x, see Algorithm 1.
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Based on the current flow values, we compute the best bandwidth-configuration pair for

each arc, i.e., the pair for which the flow is satisfied, the cost is as low as possible while

the reliability is maximal. If the sum over all costs is lower than or equal to the budget,

we have found a feasible solution. However, this cannot be guaranteed.

We experienced that the budget B is not always used completely by the constructed

solution. Hence, if there is some budget left, we attempt to improve the new solution

by replacing bandwidth-configuration pairs with pairs having a higher reliability and still

fulfilling the requirements. Note, we assume a non-decreasing ordering of the bandwidths

and consider only larger bandwidths in the improvement step.

5. Computational Results

We have focused our computational study on the case of independent random variables

since, for practical instances, the number of scenarios to be considered while using the

big-M formulation is unbearable. For the smallest instance studied here, we would have to

consider #configurations#arcs×#bandwidths = 636×3 scenarios.

Computations were carried out on a Linux machine with a 3.40GHz Intel i7-3770 CPU

and 32GB RAM, using IBM ILOG cplex 12.4 (IBM ILOG 2012) as underlying solver. A

time limit of 2 hours of computation was set for solving each instance, and all other solver

settings were preserved at their defaults. Note that cplex restricts the number of usable

threads to one as soon as a separator is applied.

In this section, we first describe the network topologies and the configurations we used

for the considered problem instances. Afterwards, we present on the one hand results on

the achievable reliability of the networks with the chance-constrained model compared

to models without chance-constraints and on the other hand results on the performance

improvements discussed in Section 4.

5.1. Problem Instances

Given the absence of benchmark instances available in the literature for this problem,

we have generated test instances. Network topologies and traffic demands were based on

instances from a data library for fixed telecommunication network design, e.g., WDM, SDH,

and ATM networks, the Survivable Network Design Library (SNDlib) (Orlowski et al.

2010). The selected network topologies studied are shown in Figure 2. These instances were

selected to show the potential and limits of our work.
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Algorithm 1 Primal Heuristic

Input: current LP solution (x̃, ỹ)

Output: new solution (x̃, ȳ) or abort

for uv ∈A do

Compute left hand side of constraint (4c): lhsuv :=
∑
k∈K

x̃k
uv

Find best bandwidth-configuration pair fulfilling the demands with lowest cost

and highest reliability:

(p̂, q̂)uv := argmin
(p,q)

{
cpuv

∣∣∣ bpquv ≥ lhsuv and log(ρpquv) =max
(p̃,q̃)

{
log(ρp̃q̃uv) | cpuv = cp̃uv))

}}
Define minimum cost and maximum reliability: ĉuv := cp̂uv, ρ̂uv := log(ρp̂q̂uv)

Set new solution: ȳp̂q̂uv = 1, ȳpquv = 0 ∀(p, q) ̸= (p̂, q̂)uv

end for

if B−
∑

uv∈A
ĉuv < 0 then no solution found return abort

else if B−
∑

uv∈A
ĉuv = 0 then new solution found return (x̃, ȳ)

else Try to improve the solution successively for every arc:

for uv ∈A do

for p > p̂ do

if bpquv ≥ lhsuv, log(ρ
pq
uv) > ρ̂uv and

∑
ũṽ∈A

ĉũṽ − ĉuv + cpuv ≤ B for at least one q

then

Change new solution: ȳp̂q̂uv = 0, ȳpquv = 1, set ĉuv := cpuv, ρ̂uv := log(ρpquv)

break for loop over p

end if

end for

end for

return (x̃, ȳ)

end if

To fit our application scenario, since microwave links present limited capacity compared

to optical fiber, the volumes of traffic demands were rescaled according to a factor γ, as

shown in Table 2, obtained from (12). For each SNDlib instance, observing proportionality

of original demands and setting the network reliability at 99% (i.e., ε= 0.01), the factor γ
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(a) Polska (b) Atlanta (c) France

Figure 2 SNDlib network topologies.

represents the maximum value for which there exists a feasible flow over the network under

the stated probability.

max γ (12a)

s.t.
∑

u∈δ−(v)

xk
uv −

∑
u∈δ+(v)

xk
vu =


−dkγ, if v= sk,

dkγ, if v= tk,

0, otherwise

∀v ∈ V, ∀k ∈K (12b)

(4c), (4d), (4e), (4f) (12c)

γ ≥ 0 (12d)

Table 2 Summary of SNDlib problem
instances

Network |V| |A| |K| γ

Polska 12 36 66 0.2252
Atlanta 15 44 210 0.0170
France 25 90 300 0.0372

To estimate the probability ρpquv and the capacity bpquv for each arc uv, bandwidth choice p,

and configuration q, we have assumed the following radio scenario. We randomly gener-

ated the received signal level (RSL) value for each microwave link, assuming a contin-
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uous uniform distribution U(−40,−35) (values given in dBm). Under this assumption,

microwave links typically present very high availability. Based on SNDlib data, path length

of microwave links were normalized to a maximum value of 50 km. We have considered

3 frequency bands, 26GHz, 28GHz, and 32GHz, each of them supporting operation at

a bandwidth of 7MHz, 14MHz, and 28MHz. Note that frequency values are required to

estimate the availability of links. But, in this paper, we are not interested in the problem

of frequency allocation. (See (Aardal et al. 2007) and the references therein for a study

of this problem.) For this reason, we have randomly chosen a frequency band among the

available choices for each microwave link. Then, supposing Gaussian thermal noise, SNR

values for each microwave link and bandwidth were computed.

Furthermore, we have considered six different combinations of modulation and coding,

as described in Table 3. The values presented in this table are based on specifications for

the WLS500 product by 3Roam (3Roam 2012). Then, the capacity bpquv was computed as

the product of the bandwidth and the bandwidth efficiency according to the different radio

settings. Finally, the probability ρpquv was given by the availability obtained from Vigants-

Barnett fading model (Barnett 1972, Vigants 1975). We omit the details for simplicity

here.

Table 3 Radio configuration, bandwidth efficiency, and capacity.

Radio Bandwidth efficiency capacity f. 7MHz capacity f. 14MHz capacity f. 28MHz

configuration (bps/Hz) (Mbps) (Mbps) (Mbps)

16-QAM coded 3.6 25.2 50.4 100.8
16-QAM uncoded 4.0 28 56 112
64-QAM coded 5.4 37.8 75.6 151.2
64-QAM uncoded 6.0 42 84 168
256-QAM coded 7.2 50.4 100.8 201.6
256-QAM uncoded 8.0 56 112 224

To normalize our computational results, since prices vary on a country-by-country basis,

we have adopted a monetary cost of 1 $ per 1MHz of bandwidth and, therefore, observing

that spectrum price is usually a linear function of the amount of spectrum with which a

license is associated. Note that, under this premise, bandwidth utilization and costs can

be used interchangeably.

For each network, we detect a range of reasonable values for the budget B. We set the

budget interval for Polska to [644,840], where 644 is the lowest possible value. For a budget
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less than 644, the problem is infeasible since we cannot install enough capacity on the arcs.

Beyond the budget of 840, the behaviour changes only very marginally, see Section 5.2. For

Atlanta and France, similar arguments lead to the intervals [749,1057] and [1414,2002],

respectively. Due to the possible bandwidth values of 7,14 or 28MHz, we consider budgets

by a step of 7.

5.2. Reliability Analysis

In this subsection, based on the reliability of the network topologies, we compare the budget

constraint formulation (5) to two formulations without outage probability constraints of

the form (1c).

First, we consider (5) with only one radio configuration available, which is the most natu-

ral way to simplify the chance-constraint, i.e., no adaptive modulation and coding (AMC).

For all three instances and bandwidth choices, the chosen radio configuration must be the

highest one, 256-QAM uncoded, since the problems become infeasible for configurations

with lower modulation on all arcs. Thus, the model is limited to the bandwidth selection

at all links such that the total traffic requirement is fulfilled. Note that by selecting a single

radio configuration, the solution value is a lower bound on the actual network reliability

when AMC is employed. In a postprocessing step, for every link uv and the bandwidth p

chosen in the solution, we compute the lowest configuration q for which the capacity is

sufficient. The actual network reliability now is the product of the corresponding link

probabilities ρpquv.

For Polska and a budget interval of [644,840], Figure 3 displays the reliabilities realized

by the budget constraint formulation (5), by the described restricted model (lower bound),

and by the postprocessing. The lower bound of the restricted model is between 98.77%

and 98.92% and remains constant for budgets greater than or equal to 658. By adaptive

modulation and coding, the reliability increases to 98.83% and 99.03%, respectively. In

contrast, we can realize a reliability of at least 98.86% by considering several radio configu-

rations with outage probabilities in formulation (5) and for an increasing budget value, also

the reliability of the network is increased until the highest possible reliability of 99.41%

for B = 840. Note, also budgets greater than 840 are possible but the reliability cannot be

increased any further.

Figure 4 presents the results for Atlanta with a budget interval [749,1057] and Figure 5

for France with a budget interval [1414,2002]. In these figures, we additionally display the
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Figure 3 Network reliability for Polska considering only one configuration with/without postprocessing or (5) for

different budgets.

dual bounds since some/all problems could not be solved to optimality within the time

limit. The results for Atlanta are comparable to the results for Polska. The lower bound

on the reliability lies between 97.67% and 97.86% and the reliability lies between 98.28%

and 98.47% after postprocessing. The fluctuations in the postprocessed solution values are

due to different routings, even in case of equal bandwidth choices. Again, these results

are outperformed by the novel chance-constrained model (5) with achievable reliabilities

between 98.45% and 99.06%.

For France, the use of adaptive modulation and coding with the restricted model seems

to be less effective. The lower bound lies between 97.8% and 97.91% for the restriction

to one configuration, where AMC adds at most 0.23%. The highest reliability possible for

France with formulation (5) is 99.25%; about 1.18% higher than with the restricted model

after postprocessing.

For networks of the size of France, the budget constraint formulation (5) is harder to

solve, in particular, for more restrictive budgets. The first feasible solution we could find

within the time limit is 98.78% for a budget of 1470. The next solution could then be

computed for a budget 1498, which is why the corresponding curve starts at 1498 where

all others start at 1414. Furthermore, many problems could not be solved to optimality

leading to fluctuating curves in Figure 5. In general, for higher budgets the solutions are

very close to optimal.
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Figure 5 Network reliability for France considering only one configuration or (5) for different budgets.

The presented results illustrate the significant advantage of the chance-constrained model

over the restricted model: we gain higher network reliabilities with reasonable computa-

tional effort.

Since the achievable reliabilities for only one possible configuration might be too low

in practice, engineers might prefer a different strategy to configure the network. Instead

of selecting a single radio configuration for the whole network, one might select a config-

uration for every arc/bandwidth combination. A reliability of at least, e.g., 99% can be

achieved by requiring an uniform minimum probability for all links: (0.99)
1

|A| . Since the

lowest modulation typically has a very high cumulative probability, this minimum proba-
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bility is achievable for every arc and bandwidth choice. We select the highest configuration

satisfying the minimum probability. This approach basically boils down to the model with

individual chance constraints for all arcs, see Claßen et al. (2011a). However, a disadvan-

tage is that if we now solve the restricted model (5), the problem becomes infeasible for

any budget choice. Thus, not all traffic can be routed in such a configuration. Similar

to the choice of γ, all traffic might be scaled down. If we reduce the traffic requirements

from 100% by steps of 10%, the first percentage resulting in feasible instances for all bud-

gets is 70% for Polska, and 60% for Atlanta and France. The highest reliability for Polska

with a network load of 70% is 99.64%, for Atlanta with 60% network load it is 99.70%

and for France 99.69%. Consequently, we exceed the required reliability of 99% clearly but

for the price of routing less traffic (only 70% or 60%, respectively) through the networks.

In contrast, the clear benefit of formulation (5) is that 100% of the traffic can be routed

with a higher reliability than the required 99%.

5.3. Analysis of Valid Inequalities and Primal Heuristic

A part of the results in the previous subsection could only be achieved by applying the

cutting planes and primal heuristic of Section 4. To show their importance, we study their

performance for the three network topologies in this subsection.

We consider four different settings for the solving of the different problems: cplex only,

cplex and the primal heuristic, cplex and the valid inequalities, and cplex, the primal

heuristic and the valid inequalities. Note, cutset inequalities are separated only in the

root node of the branch-and-bound tree via the auxiliary ILP presented in Section 4.1.

Additionally, the primal heuristic is applied with a frequency of 20, i.e., the heuristic is

called in every 20th node of the branch-and-bound tree.

For Polska, Figure 6 presents the time reduction for the different settings per budget as

well as the CPU times by cplex (second axis). For the precise solving times, see Table 6

in the appendix. We compute the time reduction as follows:

cplex time − advanced time

cplex time
,

i.e., a value of 20% means that we can reduce the solving time by 20% due to the applica-

tion of the cuts/the primal heuristic compared to the time needed when using cplex only,

while a value of −20% says that we are 20% slower than cplex. Note, if cplex exceeds
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Figure 6 Reduction of computation times for Polska considering different settings and budget values (first y-axis)

and absolute times used by CPLEX (second y-axis).

the time limit, the computed time reduction is just a lower bound. Hence, the cuts and

the primal heuristic can give a time reduction of at least the computed values if cplex

reaches the time limit. For readability we set the lowest y-axis value to −100% (+100%

is the highest time reduction possible).

In Figure 6, we display the time reduction for Polska. For a budget B between 644

and 700 excluding 651, the problems are harder to solve and could not be solved within

the time limit by cplex only, whereas these problems could be solved applying either the

primal heuristic or the cutset inequalities. Hence, the time reduction for these problems

is high, up to 96.30%. The time reduction achieved by the cutset inequalities is usually

higher than by the primal heuristic. For most budget values B ≥ 707 cplex consumes

significantly less time. This is why the inequalities and the primal heuristic in most cases

cannot reduce the time for these problems.

For Atlanta, the medium-sized network topology, the time reductions and the cplex time

consumption are displayed in Figure 7. Details can be found in Table 7 in the appendix.

The first thirteen problems are the most difficult problems and could not be solved within

the time limit in most settings. The most promising setting is the combination of cutset

inequalities and the heuristic. Compared to Polska, significantly more problems could be

improved by means of cutset inequalities and the application of the primal heuristic.

For a more detailed analysis in the case when all settings exceeded the time limit, we

compare the times and the optimality gap for B = 812 in Figure 8 exemplarily. When using
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Figure 7 Reduction of computation times for Atlanta considering different settings and budget values (first

y-axis) and absolute times used by CPLEX (second y-axis).

only cplex, we could not compute a primal bound within the time limit and hence, also no

optimality gap. In contrast, the first gaps computed when separating cuts and/or applying

the primal heuristic are below 12% and are found between 18 (heuristic) and 270 sec (cuts).

Due to the separation of cutset inequalities, more time is needed to compute a first primal

bound which is why applying just the heuristic is the first setting computing an optimality

gap. When applying cutset inequalities and the primal heuristic, we are noticeably earlier

below 5%, 2% and 1% optimality gap than with the other two settings, see also Table 4,

and the best gap (0.44%) is also computed by the combination of cutset inequalities and

the heuristic. Hence, also for an instance which cannot be solved to optimality within the

time limit, this setting gives the best result.

Table 4 Times (in sec) when optimality gap is less than a certain percentage for
Atlanta considering the different settings and budget B = 812.

gap cplex + heuristic cplex + cuts cplex + heuristic + cuts

5% 356.46 686.33 317.69
2% 4056.85 1951.13 1386.84
1% −− 4927.09 3921.74

Finally, we evaluate the results for France where we fix the budget to the inter-

val [1414,2002]. As no problem could be solved to optimality for neither setting, we con-
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Figure 8 Integrality gap per time for Atlanta considering different settings and budget value B = 812.

sider the optimality gaps reached after two hours instead of the times, see Table 8 in the

appendix for the complete results. Hence, we compute the gap reduction as

cplex gap − advanced gap

cplex gap
,

i.e., a value of 20% means that we can reduce the gap by 20% due to the application of

the cuts/the primal heuristic compared to the gap found when using cplex only, while a

value of −20% says that we increased the gap by 20% compared to cplex. If no primal

bound could be found, we set the gap to 100%. Hence, the given values are again the lower

bounds. For readability, we once more scale from −100% to 100% although the gap can

be increased by more than 100%.

For better readability, we split the figure for the gap reduction into two figures, Figure 9

for budgets in [1414,1736] and Figure 10 for budgets in [1743,2002]. Since not a single

solution could be found for B ∈ [1414,1463], we start with B = 1470 in Figure 9. For

almost all problems, the optimality gap could be reduced significantly when separating the

cutset inequalities and applying the primal heuristic. Just for the easier problems with a

budget greater than 1848 cplex has already quite low gaps, which we could not decrease.

Since the cutset inequalities just improve the dual bound, a primal bound is usually found

later. This is the reason why the gaps can be higher when only the valid inequalities are

separated.
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Figure 9 Reduction of optimality gaps for France considering different settings and budget values in [1414,1736]

(first y-axis) and original gaps computed by CPLEX (second y-axis).
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Figure 10 Reduction of optimality gaps for France considering different settings and budget values in [1743,2002]

(first y-axis) and original gaps computed by CPLEX (second y-axis).

The gap reduction by the heuristic (with or without cutting planes) is dramatic, showing

the importance of this relative simple idea. To understand its effectiveness, we revisit the

primal heuristic once again briefly but from different perspectives, e.g., by regarding the

impact on the actual solutions found. Table 5 displays all considered aspects and the used

budget intervals for the three network topologies. Based on the intervals, the number of test

instances differs per network. For Polska, the first solution that could be found is computed

by the primal heuristic in 23 of 29 cases, which corresponds to 79.3% of all instances. For
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Table 5 Effectiveness of primal heuristic with respect to different aspects.

Polska Atlanta France

[644,840] [749,1057] [1414,2002]

# instances 29 45 85
# inst. first sol. by heur. (in %) 23 (79.3%) 42 (93.3%) 75 (88.2%)
# inst. no sol. found without heur. − 11 26
# inst. no sol. found with heur. (in %) − 2 (18.18%) 10 (38.5%)
absolute increase in primal bound 0.2% 0.6% 2.8%
% of time used to find first sol. with heur. 45.0% 13.6% 23.7%
best solution found by heuristic 1 24 1

Atlanta and France, this is the case for 42 out of 45 (93.3%) instances and 75 out of 85

(88.2%), respectively. Note, for the remaining instances of Atlanta and France, no primal

solution could be found at all within the time limit. The number of such instances can

be reduced from 11 to 2 for Atlanta and from 26 to 10 for France by the application of

the presented primal heuristic. Hence, even for the more complex network topologies, the

proposed heuristic is absolutely effective in finding a feasible solution.

Moreover, comparing the values of the first primal solutions found with and without

the heuristic – only for those cases where a primal solution could be computed with both

settings–, the absolute values found by the heuristic (given as a percentage) are usually

larger than the values found without the heuristic. On average, the probability is increased

by 0.2% for Polska, 0.6% for Atlanta and 2.8% for France. Thus, the larger the network

topology, the more the first primal bound found can be improved by the primal heuristic.

For the medium-sized network Atlanta, in more than half of the instances (24) the

optimal solution is found by the heuristic, whereas this is only once the case for Polska.

Also for France, the best known solution is found once by the heuristic. But remember that

in this case, the heuristic works as an accelerator, allowing cplex to find better primal

solutions (at all).

Finally, regarding the computation times until the first solution is found, the primal

heuristic uses on average only 45.0%, 13.6% and 23.7% of the time spent without the

heuristic for Polska, Atlanta and France, respectively. The speed-up is implicitly also

included in Figures 6 and 7 but not as considerably as in the numbers of Table 5 since

the speed-up until the first solution is found is not necessarily conveyed to the end of the

solution process.
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In summary, the results of this section demonstrate the gains of both the valid inequal-

ities and the primal heuristic, and especially of their combination. For larger instances,

these add-ons are indispensable for close-to-optimal solutions in a reasonable time.

6. Conclusion

In this paper, we have presented a chance-constrained programming approach to tackle

the problem of assigning bandwidths for reliable fixed point-to-point wireless networks

under uncertain radio configurations. We have introduced ILP formulations for this prob-

lem including a budget constrained model. To improve the performance, we introduced

valid inequalities, exact separation by ILP and a primal heuristic. The computational study

revealed the gains of the valid inequalities as well as the effectiveness of the primal heuris-

tic. Furthermore, we investigated the reliability of various network topologies for different

budget values and compared the budget constrained model to two alternative formula-

tions which do not incorporate the joint outage probability constraint. The results show a

significant gain in reliability by the joint probability model, though solving times increase.

As future work, we intend to model this problem as a tri-level two-player

game (Chen et al. 2011), where the network operator decides the bandwidth assignment,

then external random factors cause the deterioration of the performance of some links, and

finally, the network operator attempts to find a feasible flow over the residual capacity of

the network. In fact, bandwidth assignment and network flow decisions take place in dif-

ferent time and, therefore, we can hopefully save bandwidth utilization allowing dynamic

routing. In addition, to improve the reliability of the network, we envisage a study on the

impact of traffic fluctuations.
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Appendix. (To be moved to an Online Supplement after review process.)

Table 6 Solving times (in sec) for Polska considering the
different settings and budgets.

budget cplex heuristic cuts heuristic+cuts

644 7200.6 3088.06 320.21 271.2
651 2937.38 587 143.59 198.69
658 7200.63 2923.25 457.17 579.6
665 7200.62 3152.94 767.95 548.74
672 7200.6 2444.55 411.33 654.14
679 7200.65 3554.27 1488.02 1309.79
686 7200.59 4144.47 1378.53 1627.94
693 7200.6 875.07 373.07 892.78
700 7200.6 1320.53 425.01 266.15
707 500.13 478.79 269.79 366.9
714 82.18 113.67 63.77 83.48
721 111.46 196.94 177.62 153.41
728 145.81 216.23 1180.26 409.27
735 153.01 532.43 369.98 352.58
742 134.98 62.97 153.48 148.62
749 90.85 132.25 93.01 215.63
756 145.92 132 208.6 266
763 181.1 233.8 171.97 327.76
770 205.29 340.27 204.9 280.44
777 220.61 454.66 168.18 298.81
784 152.88 422.98 342.22 293.97
791 106.38 165.05 216.11 160.87
798 69 105.58 91.42 111.4
805 48.97 81.53 101.03 90.09
812 48.86 65.16 71.96 74.54
819 20.26 27.25 51.03 65.28
826 14.76 14.96 48.71 48.61
833 10.94 9.22 44.49 36.08
840 7.29 4.22 34.68 27.56



Claßen et al.: Chance-Constrained Optimization
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 37

Table 7 Solving times (in sec) for Atlanta considering the
different settings and budgets.

budget cplex heuristic cuts heuristic + cuts

749 7200.68 7200.81 909.3 557.46
756 7200.79 7200.91 1660.72 2187.26
763 7200.78 7200.83 7200.68 7062.82
770 7200.78 7200.81 5018.13 7200.7
777 7200.77 7200.79 7200.81 7200.9
784 7200.77 7200.78 3485.12 3095.44
791 7200.78 7200.81 5157.85 6126.28
798 7200.79 4407.24 3873.42 2369.67
805 7200.8 7200.8 7200.77 3839.47
812 7200.77 7200.8 7200.8 7200.78
819 7200.79 7200.82 7200.78 6428.32
826 7200.78 7201.29 4376.63 2711.42
833 7200.78 7201.87 7200.86 3752.65
840 3421.65 7201.11 5299.32 6469.68
847 1828.66 2051.27 3478.62 1244.75
854 7200.77 441.48 644.83 396.64
861 7200.78 3777.88 1189.83 570.58
868 770.73 501.01 263.53 268.99
875 635.25 596.47 471.58 376.55
882 969.03 469.36 773.11 313.24
889 412.7 339.43 373.95 424.37
896 434.47 201.33 231.77 285.85
903 1602.09 914.55 330.4 185.9
910 647.13 357.17 355.49 221.71
917 2381.48 1319.14 812.67 253.67
924 418.91 172.87 380.54 161.44
931 1716.32 821.11 259.95 338.16
938 780.61 614.82 175.53 158.79
945 350.06 1760.38 316.26 253.82
952 197.59 654.26 180.9 186.37
959 194.91 81.98 169.76 125.6
966 278.45 101.47 211.62 181
973 223.35 428.5 249.58 156.17
980 445.67 444.98 165.95 229.54
987 144.22 512.62 150.19 160.4
994 669.31 305.9 145.09 123.01
1001 217.04 40.27 124.82 153.15
1008 102.39 118.99 105.28 116.03
1015 111.77 115.13 127.56 91.31
1022 59.39 21.11 118.92 62.48
1029 106.72 63.87 102.75 90.32
1036 144.52 54.67 73.53 66.22
1043 45.58 49.17 68.95 52.92
1050 55.07 49.15 59.17 55.72
1057 24.19 8.24 59.96 52.19
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Table 8 Optimality gaps (in %) for France considering the different settings and budgets.

budget cplex heuristic cuts heuristic + cuts budget cplex heuristic cuts heuristic + cuts

1414 100 100 100 100 1715 30.75 3.41 3.98 2.85
1421 100 100 100 100 1722 36.31 5.28 2.98 3.46
1428 100 100 100 100 1729 27.12 3.44 2.46 5.01
1435 100 100 100 100 1736 12.94 2.67 3.14 2.06
1442 100 100 100 100 1743 32.61 3.23 5.2 2.98
1449 100 100 100 100 1750 2.9 1.95 2.11 2.49
1456 100 100 100 100 1757 6.05 2.96 1.56 2.46
1463 100 100 100 100 1764 100 3.54 1.2 1.67
1470 100 33.6 100 21.48 1771 3.67 3.06 1.56 1.68
1477 100 100 100 100 1778 7.36 2.81 1.59 2.2
1484 100 27.06 100 100 1785 2.06 3.78 2.24 2.34
1491 100 14.86 100 100 1792 3.23 2.92 1.68 1.36
1498 100 100 14.25 26.57 1799 1.9 2.86 1.61 2.26
1505 100 19.69 100 21.43 1806 34.05 1.99 1.78 2.09
1512 100 22.47 100 11.18 1813 1.27 2.22 1.26 1.64
1519 100 17.77 100 12.2 1820 2.8 1.96 1.85 1.71
1526 100 20.99 100 9.62 1827 1.44 1.89 0.55 1.54
1533 100 19.42 100 11.91 1834 1.85 1.01 0.51 1.47
1540 100 15.22 100 11.4 1841 0.49 1.88 0.59 0.54
1547 100 21.01 100 7.32 1848 1.88 0.96 0.28 0.88
1554 100 13.28 100 11.48 1855 0.27 1.12 0.17 0.47
1561 100 15.68 100 13.34 1862 0.29 0.93 0.37 0.64
1568 37.35 12.09 100 8 1869 0.27 0.55 0.35 0.94
1575 35.2 9.93 100 10.33 1876 0.22 0.47 0.25 0.26
1582 100 7.38 100 12.03 1883 0.77 0.81 0.34 0.51
1589 100 5.72 100 4.8 1890 0.57 0.48 0.09 0.72
1596 29.46 9.95 100 14.12 1897 0.52 0.35 0.01 0.17
1603 35.19 8.72 100 5.35 1904 0.83 0.27 0.01 0.24
1610 31.62 12.94 100 5.5 1911 0.01 0.51 0.01 0.34
1617 100 7.14 100 5.33 1918 0.05 0.57 0.01 0.2
1624 32.81 10.58 100 6.52 1925 0.2 0.42 0.04 0.27
1631 48.19 8.39 100 5.76 1932 0.1 0.87 0.09 0.2
1638 30.99 7.65 100 8.07 1939 0.19 0.36 0.09 0.16
1645 29.08 6.9 100 5.51 1946 0.06 0.39 0.03 0.16
1652 27.99 5.98 9.47 3.24 1953 0.01 0.17 0.07 0.15
1659 35.32 7.87 100 6.39 1960 0.04 0.26 0.02 0.23
1666 27.11 7.51 100 5.83 1967 0.01 0.11 0.01 0.25
1673 32.55 5.13 5.26 4.09 1974 0.01 0.13 0.01 0.17
1680 40.16 7.53 7.4 4.56 1981 0.01 0.03 0.01 0.04
1687 24.22 4.7 100 4.55 1988 0.01 0.1 0.01 0.04
1694 36.01 5.62 3.96 4.81 1995 0.01 0.01 0.01 0.01
1701 30.77 4.37 3.91 5.55 2002 0.01 0.01 0.01 0.01
1708 34.47 3.89 100 4.73


