
1

Perturbation Analysis of Learning Algorithms:
Generation of Adversarial Examples from

Classification to Regression
Emilio Rafael Balda, Arash Behboodi, Member, IEEE, and Rudolf Mathar, Member, IEEE

Abstract—Despite the tremendous success of deep neural
networks in various learning problems, it has been observed that
adding intentionally designed adversarial perturbations to inputs
of these architectures leads to erroneous classification with high
confidence in the prediction. In this work, we show that adversar-
ial examples can be generated using a generic approach that relies
on the perturbation analysis of learning algorithms. Formulated
as a convex program, the proposed approach retrieves many
current adversarial attacks as special cases. It is used to propose
novel attacks against learning algorithms for classification and
regression tasks under various new constraints with closed-form
solutions in many instances. In particular, we derive new attacks
against classification algorithms which are shown to be top-
performing on various architectures. Although classification tasks
have been the main focus of adversarial attacks, we use the
proposed approach to generate adversarial perturbations for
various regression tasks. Designed for single pixel and single
subset attacks, these attacks are applied to autoencoding, image
colorization and real-time object detection tasks, showing that
adversarial perturbations can degrade equally gravely the output
of regression tasks1.

I. INTRODUCTION

Deep Neural Networks (DNNs) excelled in recent years in
many learning tasks and demonstrated outstanding achieve-
ments in speech analysis [1] and visual tasks [2]–[5]. Despite
their success, they have been shown to suffer from instability
in their classification under adversarial perturbations [6].
Adversarial perturbations are intentionally worst-case designed
noises that aim at changing the output of a DNN to an incorrect
one. The explosion of research during past years makes it
almost impossible to refer to all important works in this area
and do justice to all excellent works. However, we refer to
several important results from the literature, that are highly
connected to this paper.

Although DNNs might achieve robustness to random noise
[7], it was shown that there is a clear distinction between the
robustness of a classifier to random noise and its robustness
to adversarial perturbations. The existence of adversarial
perturbations was known for machine learning algorithms [8],
however, they were first noticed in deep learning research in
[6]. The peculiarity of adversarial perturbations lied in the fact

Institute for Theoretical Information Technology (TI), RWTH Aachen
University.

1In the spirit of encouraging reproducible research, the implementations
used in this paper have been made available at:

github.com/ebalda/adversarialconvex

that they managed to fool state-of-the-art networks into making
confident and wrong decisions in classification tasks, and they,
nevertheless, appeared unperceived to the naked eye. These
discoveries gave rise to extensive research on understanding
the instability of DNNs, exploring various attacks and devising
multiple defenses (for instance refer to [9]–[11] and references
therein). Most adversarial attacks fall generally into two
classes, white-box and black-box attacks. White-box attacks
use complete or partial knowledge of the machine learning
architecture, see for instance [12]. In constrast, black-box
attacks do not require any information about the target neural
network, see for instance [13]. In this work, we focus only
on white-box attacks with full knowledge of the function
implemented by the learning algorithm. The attacks, as in
[12], [14], [15], act on the system inputs and add perturbations
that are not perceived by the system’s administrator such that
the performance of the system is severely degraded.

Adversarial perturbations were obtained in [6] to max-
imize the prediction error at the output and were ap-
proximated using box-constrained Limited memory Broy-
den–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm. The Fast
Gradient Sign Method (FGSM) in [12] was based on finding
the scaled sign of the gradient of the cost function. Note that the
FGSM aims at minimizing `∞-norm of the perturbation while
the former algorithm minimizes `2-norm of the perturbation
under box constraint on the perturbed example.

More effective attacks utilize either iterative procedures or
randomization of the perturbations and instances as in [14], [16].
The algorithm DeepFool [14] conducts an iterative linearization
of the DNN to generate perturbations that are minimal in the `p-
norm for p > 1. In [17] the authors propose an iterative version
of FGSM, called Basic Iterative Method (BIM). This method
was later extended in [16], where randomness was introduced
in the computation of adversarial perturbations. This attack
is called the Projected Gradient Descent (PGD) method and
was employed in [16] to devise a defense against adversarial
examples. An iterative algorithm based on PGD combined with
randomization was introduced in [18] and has been used to
dismantle many defenses so far [19]. Another popular way
of generating adversarial examples is by constraining the `0-
norm of the perturbation. These types of attacks are known
as single pixel attacks [20] and multiple pixel attacks [21].
Despite their differences, many of the above attacks share a
similar underlying principle. At some moment, they rely on a
simple characterization of input perturbations on the output of
the algorithm. In this paper, we build on this idea to design

github.com/ebalda/adversarialconvex

2

new attacks for classification and regression tasks.
An interesting feature of these perturbations is their gen-

eralization over other datasets and DNNs [12], [15]. These
perturbations are called universal adversarial perturbations. This
is partly explained by the fact that certain underlying properties
of the perturbation, such as orientation in case of image
perturbation, matters the most and is therefore generalized
through different datasets. For example, the attack from [22]
shows that adversarial examples transfer from one random
instance of a neural network to another. In that work, the
authors showed the effectiveness of these types of attacks for
enhancing the robustness of neural networks, since they provide
diverse perturbations during adversarial training. Moreover, [23]
showed the existence of universal adversarial perturbations that
are independent from the system and the target input. We will
not go into more details about universal perturbations in this
paper.

Since the rise of adversarial examples for image classification,
novel algorithms have been developed for attacking other types
of systems. In the field of computer vision, [24] constructed
an attack on image segmentation, while [25] designed attacks
for object detection. The Houdini attack [26] aims at distorting
speech recognition systems. Moreover, [27] taylored an attack
for recurrent neural networks, and [28] for reinforcement
learning. Adversarial examples exist for probabilistic methods
as well. For instance, [29] showed the existence of adversarial
examples for generative models. For regression problems,
[30] designed an attack that specifically targets variational
autoencoders. It seems, however, to be a gap in literature when
it comes to adversarial attacks on regression problems. One of
the goals of this paper is to fill this gap by proposing attacks
on various regression problems.

Before going further, we shortly overview some theoretical
explanations of adversarial examples as well as common
defenses. There are various theories regarding the nature of
adversarial examples and the subject is heavily investigated.
Initially, the authors in [12] proposed the linearity hypothesis
where the existence of adversarial images is attributed to the
approximate linearity of classifiers, although this hypothesis has
been challenged in [31]. Some other theories focus mostly on
decision boundaries of classifiers and their analytic properties
[7], [32]. The work from [33] provides a framework for
determining the robustness of a classifier against adversarial
examples with some performance guarantees. For a more recent
theoretical approach to this problem refer to [34]. There exist
several types of defenses against adversarial examples, as
well as subsequent methods for bypassing them. Defensive
distillation was proposed in [35] as a defense method. It extracts
knowledge about the training points and feeds it back as part
of the training to improve the robustness of the network. The
method directly controls the amplitude of network gradients as
a defense technique. The authors in [36], however, proposed
three attacks to bypass defensive distillation. Similarly, the
attacks from [18], bypassed 7 out of 9 non-certified defenses
presented at ICLR 2018 that claimed to be white-box secure.
The term non-certified refers to defenses that do not provide any
certificate that guarantees robustness against particular attacks.
The most common defense is adding adversarial examples

to the training set, also known as adversarial training. For
that purpose different adversarial attacks may be employed.
Recently, training with the PGD attack is used in [16] to provide
the state-of-the-art defense against adversarial examples for
various image classification datasets.

A. Our Contribution

In this work, we provide various new adversarial attacks for
classification and regression tasks. We consider only white-
box attacks where the full knowledge of the machine learning
model is assumed to be available. The common thread of these
new attacks is the perturbation analysis of learning algorithms
that yields a tractable optimization problem for generating new
attacks. This idea, as it will be shown, underlies many existing
attacks. We build upon our previous work [37] to introduce a
connection between perturbation analysis of learning algorithms
and adversarial examples. For classification tasks, we start
with a fairly general formulation of the adversarial generation
problem, namely (AGP), and show how perturbation analysis
can be used to obtain a convex optimization problem for
generating adversarial examples. This problem, (AGP.II), is
the basis for generating adversarial examples. We address
feasibility issues of the preceding problem and propose multiple
techniques to get around this issue in general, some of which
are introduced for the first time. Besides, closed form solutions
are provided for a few cases. We propose novel adversarial
attacks for classification, given in Algorithm 1, which are
benchmarked with state-of-the-art attacks. Our proposed attack
is an iterative method that constraints the norm of adversarial
perturbations and apply it after randomization of the training
instance.

Another contribution of this paper is to use a similar tech-
nique in context of adversarial perturbations for regression prob-
lems, a topic that has not been yet widely explored. Regression
loss functions differ from classification loss functions in that it
is sufficient to maximize the output perturbation measured by an
application-dependent function, for instance the `2-norm of the
output error. In classification tasks, such maximization might
not necessarily change the output label particularly because
these perturbations might push the instances far away from
classification margins. There is, however, no natural margin in
regression tasks. We use perturbation analysis to formulate the
loss maximization problem in a tractable fashion. Similar to
classification problems, adversarial examples can be generated
using convex optimization with closed-form solutions for a
few special cases. The proposed optimization problems for
regression are, to the best of our knowledge, novel. We discuss
single pixel and single subset attacks for regression tasks. It
is shown that this problem is related to the MaxCut problem
and hence difficult to solve. We propose a greedy algorithm to
solve this problem.

Finally, the proposed algorithms are experimentally evalu-
ated using state-of-the-art benchmarks for classification and
regression tasks. In classification tasks, the performance of
our proposed attack is consistently among the top attacks and
sometimes the best one. In regression tasks, we demonstrate
several attacks for regression tasks such as image colorization,

3

autoencoding and object detection. Although autoencoders show
better robustness in general, the other algorithms are severely
degraded under adversarial perturbations.

B. Notation

Throughout this work, the letters a, b, . . . are used for scalars,
a,b, . . . for vectors, A,B, . . . for matrices and A,B, . . . for
sets. To denote the set {1, . . . , n}, we make use of the shorthand
notation [n] for n ∈ N. The operator ‖·‖p denotes `p-norm of
a vector with p ≥ 1, while (·)> the matrix transposition.

II. FOOLING CLASSIFIERS WITH FIRST-ORDER
PERTURBATION ANALYSIS

The perturbation analysis, also called sensitivity analysis,
is used in signal processing for analytically quantifying the
error at the output of a system that occurs as consequence
of a known perturbation at the system’s input. Adversarial
images can also be considered as a slightly perturbed version
of original images that manage to change the output of the
classifier. Indeed, the generation of adversarial examples in [12],
[14] is implicitly based on maximizing the effect of an input
perturbation on a relevant function which is either the classifier
function or the cost function used for training. In the FGSM,
given in [12], the perturbation at the output of the training
cost function is first analyzed using first-order perturbation
analysis of the cost function and then maximized to fool the
algorithm. The DeepFool method, given in [14], maximizes
the output perturbation for the linearized approximation of the
underlying classifier which is indeed its first order-perturbation
analysis. In this section, we develop further the connection
between perturbation analysis and adversarial examples. To
generate adversarial examples, we provide a generic approach
that starts from a fairly abstract formulation and transforms
it into a tractable problem by sequentially using perturbation
analysis.

A. Adversarial Perturbation Design Problem

We start with formulating the problem of adversarial pertur-
bation design. As it was mentioned above, adversarial examples
can be considered as a perturbed version of training examples
changed by an adversarial perturbation η. As we will see
later, the perturbation analysis is straightforward when the
underlying system behaves smoothly and can be modeled
by differentiable functions. The classifier function, however,
maps inputs to discrete set of labels and therefore it is not
differentiable. Instead, the classification problem is slightly
modified as follows to facilitate the perturbation analysis.

Definition 1 (Classification). A classifier is defined by the
mapping k : RM → [K] that maps an input x ∈ RM to its
estimated class k (x) ∈ [K]. The mapping k(·) is itself defined
by

k(x) = argmax
l∈[K]

{fl (x)} , (1)

where fl(x) : RM → R’s are called score functions represent-
ing the probability of class belonging.

The function f(x) given by the vector (f1(x), . . . , fm(x))
can be assumed to be differentiable almost everywhere for
many classifiers.

The problem of adversarial generation consists of finding
a perturbation that changes the classifier’s output. However,
it is desirable for adversarial perturbations to modify training
instances only in an insignificant and unnoticeable way. This is
controlled by adding a constraint on the adversarial perturbation.
For instance, the perturbation generated by the FGSM is
bounded in the `∞-norm and the DeepFool method directly
minimizes the norm of the perturbation that changes the classi-
fier’s output. While DeepFool might generate perturbations that
are perceptible, the FGSM might not change the classifier’s
output. It is indeed an intriguing property of adversarial
examples that the perturbation does not distort the image
significantly so that the naked eye can not detect any notable
change in the images. One way of imposing this property in
adversarial design is to constrain the input perturbation to keep
the output of the ground truth classifier, also called oracle
classifier [10], intact. The oracle classifier represents the naked
eye in case of image classification. The score functions of
the oracle classifier are denoted by gl(·). The undetectability
constraint for an adversarial perturbation η is formulated as

Lg(x,η) = gk(x)(x+ η)− max
l 6=k(x)

gl(x+ η) > 0 . (2)

This inequality means that even after applying the perturbation
η to an instance x with the correct label k(x), the score function
of the correct class gk(x)(x+ η) is superior to the other score
functions. A fundamental trait of the oracle classifier, therefore,
is its robustness to the adversarial perturbation η. Therefore the
problem of adversarial design can be formulated as follows.

Problem 1 (Adversarial Generation Problem). For a given
x ∈ RM , find a perturbation η ∈ RM to fool the classifier k(·)
by the adversarial sample x̂ = x+ η such that k(x) 6= k(x̂)
and the oracle classifier is not changed, i.e.,

Find : η

s.t. Lf (x,η) = fk(x)(x+ η)− max
l 6=k(x)

fl(x+ η) < 0

Lg(x,η) = gk(x)(x+ η)− max
l 6=k(x)

gl(x+ η) > 0

(AGP)

We pose the problem (AGP) as a general starting point
for the adversarial design. This problem consists on finding
a perturbation that changes the classifier’s output while the
class of input remains the same to the oracle. As it is, the
problem (AGP) does not have that much utility in practice
but serves as the starting point. Next we explore different
methods for making this problem tractable, all of them based
on perturbation analysis of constraints. Since x and f are
fixed for the attacker, we simplify the notation by dropping the
subscript f and assuming that gradients are always with respect
to η, that is L(x, ·) = Lf (x, ·) and ∇L(x, ·) = ∇ηLf (x, ·).
We keep these shorthand notations throughout the paper.

B. Perturbation Analysis
The problem (AGP) constitutes the starting point for adversar-

ial design. Two issues prevent us from directly applying it. We

4

use perturbation analysis to propose a solution to these issues.
First, the oracle function is not known in general. However,
since the oracle function is assumed to be robust to adversarial
perturbations, the constraint can be replaced with constraints on
the perturbation itself, for instance by imposing upper bounds
on the `p-norm of the perturbation. Indeed, if the perturbation
analysis is applied to the oracle function, its robustness implies
that the output perturbation is O(‖η‖p). Therefore, adding
constraints on the `p-norm translates into constraints on the
oracle function as in (2). The constraint on the oracle function
can be therefore approximated by ‖η‖p ≤ ε for sufficiently
small ε ∈ R+. This means that the noise is sufficiently small in
`p-norm sense so that the observer does not notice it. Different
classes of attacks can be obtained for different choices of p and
are well known in the literature such as `∞-attacks, `2-attacks
and `1-attacks (see the survey in [9] for details).

The second problem with (AGP) is that the function L(x, ·)
can be non-convex or difficult to optimize directly. Here again,
perturbation analysis can be employed to approximate L(x, ·)
with a tractable function like linear functions. The first order
perturbation analysis of L yields

L(x,η) = L(x,0) + η>∇L(x,0) +O(‖η‖22),

where O(‖η‖22) contains higher order terms. Following the
above approximations using perturbation analysis, we propose
the following relaxed optimization problem.

Problem 2 (Relaxed Adversarial Generation Problem). For a
given x ∈ RM , a perturbation η ∈ RM is found to fool the
classifier k(·) using

Find: η

s.t. L(x,0) + η>∇L(x,0) < 0, ‖η‖p ≤ ε. (AGP.II)

The above problem is the result of applying perturbation anal-
ysis to the problem (AGP). It is a convex optimization problem
that can be efficiently solved. One significant advantage of the
problem (AGP.II) is that it can incorporate additional constraints
to the optimization problem such as sparsity constraint that
leads to single-pixel attacks. Furthermore, as we will see later,
this formulation of the problem yields some of the well known
existing adversarial methods. Unfortunately, the above problem
is not always feasible as stated in the following proposition.

Theorem 1. The optimization problem (AGP.II) is not feasible
if for q = p

p−1

ε‖∇L(x,0)‖q < L(x,0). (3)

Proof. The proof follows a simple duality argument and is
an elementary optimization theory result. A similar result can
be inferred from [38]. We repeat the proof for completeness.
Note that the dual norm of `p is defined by

‖x‖∗p = sup{a>x : ‖a‖p ≤ 1}.

Furthermore ‖x‖∗p = ‖x‖q for q = p
p−1 . Since the `p-norm of

η is bounded by ε, the value of η>∇L(x,0) is always bigger

than −ε‖∇L(x,0)‖∗p. However if the condition (3) holds, then
we have

L(x,0) + η>∇L(x,0) ≥ L(x,0)− ε‖∇L(x,0)‖∗p > 0.

Therefore, the problem is not feasible.

Theorem 1 shows that given a vector x, the adversarial
perturbation should have at least `p-norm equal to L(x,0)

‖∇L(x,0)‖q .

In other words if the ratio L(x,0)
‖∇L(x,0)‖q is small, then it is easier

to fool the network by the `p-attacks. In that sense, Theorem
1 provides an insight into the stability of classifiers. In [14],
the authors suggest that the robustness of the classifiers can
be measured as

ρ̂1(f) =
1

|D|
∑
x∈D

‖r̂(x)‖p
‖x‖p

,

where D denotes the test set and r̂(x) is the minimum
perturbation required to change the classifier’s output. The
above theorem suggests that one can also use the following as
the measure of robustness, which was also derived in [38]

ρ̂2(f) =
1

|D|
∑
x∈D

L(x,0)

‖∇L(x,0)‖q
.

The lower ρ̂2(f), the easier it gets to fool the classifier and
therefore it becomes less robust to adversarial examples. One
can also look at other statistics related to L(x,0)

‖∇L(x,0)‖q in order
to evaluate the robustness of classifiers.

To get around the feasibility problem, a first approach
is to start with a small enough ε and iteratively solve the
problem (AGP.II). Other methods consist of relaxing one of
the constraints while keeping the other constraint intact. We
will explicate these methods in the next section.

C. Feasible Adversarial Perturbation Designs

Theorem 1 shows that the optimization problem (AGP.II)
might not be feasible. We propose to get around this issue
by solving an optimization problem which keeps only one
of the constraints, depending on the scenario, and selects an
appropriate objective function to preserve the other constraint
as much as possible. The objective function in this sense
models the deviation from the constraint and is minimized
in the optimization problem. We consider two optimization
problems for this purpose.

First, the norm-constraint on the perturbation is pre-
served. The following optimization problem, called gradient-
based norm-constrained method (GNM), aims at minimizing
L(x,0) + η>∇L(x,0) by solving the following problem:

min
η

{
L(x,0) + η>∇L(x,0)

}
s.t. ‖η‖p ≤ ε . (4)

This method finds the best perturbation under the norm-
constraint and is a novel formulation to the best of our
knowledge. The constraint aims at guaranteeing that the
adversarial images are still imperceptible by an ordinary
observer. Note that (4) is fundamentally different from [14],
[38], where the norm of the noise does not appear as a
constraint. Using a similar duality argument, the problem (4)
has a closed form solution given below.

5

Theorem 2. If ∇L(x,η) = (∂L(x,η)∂η1
, . . . , ∂L(x,η)∂ηM

), the closed
form solution to the minimizer of the problem (4) is given by

η = −ε 1

‖∇L(x,0)‖q−1q

sign(∇L(x,0))� |∇L(x,0)|q−1

(5)

for q = p
p−1 , where sign(·) and | · |q−1 are applied element-

wise, and � denotes the element-wise (Hadamard) product.
Particularly for p = ∞, we have q = 1 and the solution is
given by the following

η = −ε sign(∇L(x,0)) . (6)

Proof. Based on the duality argument from convex analysis,
it is known that

sup
‖η‖p≤1

η>∇L(x,0) = ‖∇L(x,0)‖∗p,

where ‖ · ‖∗ is the dual norm. This implies that the objective
function is lower bounded by L(x,0) − ε‖∇L(x,0)‖∗p. It is
easy to verify that the minimum is attained by (5).

The advantage of these convex relaxations, apart from
enjoying computationally efficient solutions, is that one can
incorporate other convex constraints into the optimization
problem to guarantee additional required properties of the
perturbation. Note that the introduced method in (4) can also
be used for other target functions or learning problems. If the
training cost function is maximized under a norm constraint,
as in [12], the solution of (4) with p = ∞ recovers the
adversarial perturbations obtained via the FGSM. The problem
(4) guarantees that the perturbation is small, however, it might
not change the classifier’s output.

The second optimization problem (AGP.II), on the other hand,
preserves the constraint for changing the classifier’s output
and minimizes the perturbation norm instead. The feasibility
problem of (AGP.II) can therefore be simplified to

min
η
‖η‖p s.t. L(x,0) + η>∇L(x,0) ≤ 0 , (7)

which recovers the result in [38] and in [14] although without
the iterative procedure. This problem has a similar closed form
solution.

Proposition 1. If ∇L(x,η) = (∂L(x,η)∂η1
, . . . , ∂L(x,η)∂ηM

), the
closed form solution to the problem (7) is given by

η = − L(x,0)

‖∇L(x,0)‖q−1q

sign(∇L(x,0))� |∇L(x,0)|q−1 (8)

for q = p
p−1 .

Note that the perturbation found in Proposition 1, like the
solution to GNM, aligns with the gradient of the classifier
function and they only differ in their norm. Although the
perturbation in (8), unlike the solution to GNM, is able to fool
the classifier, the perturbation in (8) might be perceptible by
the oracle classifier.

The formulations (4) and (7) do not exhaust all possibilities
for solving the feasibility problem above. There are other
variants of adversarial generation methods that rely on an

implicit perturbation analysis of a relevant function. These
methods can be easily obtained by small modification of the
methods above.

Iterative procedures can be easily adapted to the current
formulation by repeating the optimization problem until the
classifier output changes while keeping the perturbation small
enough at each step such that the problem (AGP.II) remains
feasible. Later we provide an iterative version of the GNM
and compare it with DeepFool [14], as well as other methods.

Another class of methods relies on introducing randomness
in the generation process. We call this technique dithering. A
notable example is the PGD attack introduced in [16] which is
one of the state-of-the-art attacks. The first-order approximation
is then taken around another point η̃ with ε̃ , ‖η̃‖p ≤ ε. In
other words we approximate L(x, ·) by a linear function around
the point η̃ within an ε̃-radius from η = 0. This new point η̃
can be computed at random using arbitrary distributions with
`p-norm bounded by ε. Changing the center of the first order
approximation from 0 to η̃ does not change the nature of the
problem since L(x,η) ≈ L(x, η̃) + (η − η̃)>∇L(x, η̃) leads
to the following problem

min
η
L(x, η̃) + (η − η̃)>∇L(x, η̃) s.t. ‖η‖p ≤ ε,

which is equivalent to:

min
η

η>∇L(x, η̃) s.t. ‖η‖p ≤ ε . (9)

From this result one can add randomness to the computation
of adversarial examples by selecting η̃ in a random fashion.
This is desirable when training models with adversarial
examples since it increases the diversity of the adversarial
perturbations during training (See [22] where the authors in-
troduce the Randomized Fast Gradient Sign Method (R-FGSM)
attack).

The summary of our proposed approach is as follows. We
start with the problem (AGP) by determining an appropriate
loss function L(x, ·). Next the problem is simplified to a
tractable problem like (AGP.II) using perturbation analysis.
Additional constraints on the perturbation are added at will.
If the problem is feasible, the final solution yields the
adversarial perturbation. Otherwise, one can use iterative and
randomization techniques explained above or solve problems
(4) or (7). We follow similar steps to generate adversarial
examples for regression problems in the next section.

III. FROM CLASSIFICATION TO REGRESSION

In classical statistical learning theory, regression problems
are defined in the following manner. Given N ∈ N samples
{(xi,yi)}Ni=1 drawn according to some unknown distribution
PX,Y , a regression model computes a function f : RM → RK
that aims to minimize the expected loss EP (L(f(x),y)), where
L : RM × RK → R is a function that measures the difference
between f(x) and y. While logarithmic losses are popular
in classification problems, the squared loss L(f(x),y) =
‖f(x)− y‖22 is mostly used for the general regression setting.
There is, however, no general natural loss function for the
regression problems, although each problem disposes of specific
appropriate choices. Squared loss is certainly suitable for

6

function approximation tasks and in particular autoencoders.
Peak Signal to Noise Ratio (PSNR) is suitable for measuring
the quality of image outputs. Throughout this paper, it is
assumed that the loss function is properly chosen for the
adversarial attack on the underlying regression problem. For
the sake of notation, given y and f , let us redefine L(x,η) as
L(x,η) = L(f(x+ η),y).

For a given f , x and y, an adversarial attacker finds an
additive perturbation vector η that is imperceptible to the
administrator of the target system, while maximizing the loss
of the perturbed input L(x,η) as

max
η

L(x,η) s.t. η is imperceptible .

In contrast with classification problems where maximum
perturbations at the output might not change the class, adver-
sarial instances maximize the output perturbation in regression
problems.

As in (4), a constraint on the `p-norm of η models
imperceptibility leading to the following formulation of the
problem

max
η
‖y − f(x+ η)‖22 s.t. ‖η‖p ≤ ε . (10)

Consider the image colorization problem where the goal is to
add proper coloring on top of gray scale images. In this problem,
f(·) is the regression algorithm and assumed to be known
however the ground truth colorization y is generally unknown.
Without knowing y, the optimization problem (10) is ill posed
and cannot be solved in general. There are some cases where
the output y is known by the nature of the problem, for instance,
when f(·) is an encoder-decoder pair as in autoencoders for
which y = x.

Since the goal is to perturb the acting regression algorithm,
we can assume that y ≈ f(x) which means that the algorithm
provides a good although not perfect approximation of the
ground truth function. We use the formulation in (10) and
discuss the implications of applying the approximation y ≈
f(x) in later sections.

A. A Quadratic Programming Problem
In general f(x) is a non-linear and non-convex function, so

we have that L(x, ·) is non-convex. Here again the perturbation
analysis of f(·) can be used to relax (10) and to obtain a
convex formulation of the adversarial problem. The first order
perturbation analysis of f(x) yields the approximation f(x+
η) ≈ f(x) + Jf (x)η, where Jf (·) is the Jacobian matrix
of f(·). This approximation leads to the following convex
approximation of L(x, ·):

L(x,η)

≈ ‖y‖22 − 2y>(f(x) + Jf (x)η) + ‖f(x) + Jf (x)η‖22
= ‖y‖22 − 2y>f(x) + ‖f(x)‖22
+ 2 (f(x)− y)

T
Jf (x)η + ‖Jf (x)η‖22 .

Since the first three terms of this expression do not depend
on η, the optimization problem from (10) is reduced to

max
η

2 (f(x)− y)
T
Jf (x)η + ‖Jf (x)η‖22 s.t. ‖η‖p ≤ ε .

(11)

The above convex maximization problem is, in general,
challenging and NP-hard. Nevertheless, since y is usually
not known, we may use the assumption that y ≈ f(x), which
simplifies the problem to

max
η
‖Jf (x)η‖22 s.t. ‖η‖p ≤ ε . (12)

Although this problem is a convex quadratic maximization
under an `p-norm constraint and in general challenging, it can
be solved efficiently in some cases. For general p, the maximum
value is indeed related to the operator norm of Jf (x) [39]. This
norm is central in stability analysis of many signal processing
algorithms (for instance see [40]). The operator norm of a
matrix A ∈ Cm×n between `p and `q is defined as

‖A‖p→q , sup
‖x‖p≤1

‖Ax‖q.

Using this notion, we can see that ‖ηε ‖p ≤ 1 leads to
‖Jf (x)η‖2 = ε‖Jf (x)ηε ‖2 ≤ ε‖Jf (x)‖p→2. Therefore, the
problem of finding a solution to (12) amounts to finding the
operator norm ‖Jf (x)‖p→2. First observe that the maximum
value is achieved on the border namely for ‖η‖p = ε. In the
case where p = 2, this problem has a closed-form solution.
If vmax is the unit `2-norm eigenvector corresponding to the
maximum eigenvalue of Jf (x)>Jf (x), then

η∗ = ±εvmax (13)

solves the optimization problem. The maximum eigenvalue of
Jf (x)

>Jf (x) corresponds to the square of the spectral norm
‖Jf (x)‖2→2.

Another interesting case is when p = 1. In general, the `1-
norm is usually used as a regularization technique to promote
sparsity. When the solution of a problem should satisfy a
sparsity constraint, the direct introduction of this constraint into
the optimization leads to NP-hardness of the problem. Instead
the constraint is relaxed by adding `1-norm regularization. The
adversarial perturbation designed in this way tends to have
only a few non-zero entries. This corresponds to scenarios like
single pixel attacks where only a few pixels are supposed to
change. For this choice, we have

‖A‖1→2 = max
k∈[n]

‖ak‖2,

where ak’s are the columns of A. Therefore, if the columns of
the Jacobian matrix are given by Jf (x) = [J1 . . .JM], then

‖Jf (x)η‖2 ≤ ε max
k∈[M]

‖Jk‖2,

and the maximum is attained with

η∗ = ±εek∗ for k∗ = argmax
k∈[M]

‖Jk‖2, (14)

where the vector ei is the i-th canonical vector. For the case
of gray-scale images, where each pixel is represented by a
single entry of x, this constitutes a single pixel attack. Some
additional constraints must be added in the case of RGB images,
where each pixel is represented by a set of three values.

Finally, the case where the adversarial perturbation is
bounded with the `∞-norm is also of particular interest. This
bound guarantees that the noise entries have bounded values.

7

The problem of designing adversarial noise corresponds to
finding ‖Jf (x)‖∞→2. Unfortunately, this problem turns out to
be NP-hard [41]. However, it is possible to approximate this
norm using semi-definite programming as proposed in [42].
Semi-definite programming scales badly with input dimension
in terms of computational complexity, namely O(n6) with n
the underlying dimension, and therefore might not be suitable
for fast generation of adversarial examples when the input
dimension is very high. We address these problems later in
Section IV, where we obtain fast approximate solutions for
‖Jf (x)‖∞→2 and single pixel attacks.

B. A Linear Programming Problem

The methods derived in Section III-A suffer from one main
drawback, they require storing Jf (x) ∈ RK×M into memory.
While this may be doable for some applications, it is not
feasible for others. For example, if the target system is an
autoencoder for RGB images with size 680 × 480, that is
M = K = 680 ·480 ·3 ≈ 9 ·105, storing Jf (x) ∈ R9·105×9·105

requires loading around 8 · 1011 values into memory, which
is in most cases not tractable. Note that, in order to solve
(12) for p = 2, we would require computing the eigenvalue
decomposition of Jf (x)>Jf (x) as well. This motivates us to
relax the problem into a linear programming problem as in
Section II, where Jf (x) is computed implicitly and we do
not require to store it. To that end, we relax (10) by directly
applying a first order approximation of L, that is L(x,η) ≈
L(x,0)+η>∇L(x,0) . Using this approximation the problem
from (10) is now simplified to

max
η
∇L(x,0)>η s.t. ‖η‖p ≤ ε , (15)

where ∇L(x,0) = −2Jf (x)T (y − f(x)). Note that the
attacks discussed in Section II for classification follow the
same formulation with another choice of L(x, ·). Therefore,
the closed-form solution of (15) can be obtained from (5).

Unfortunately using y ≈ f(x) yields zero gradient in
(15), thus leaving this approximation useless for obtaining
adversarial perturbations. This problem is tackled by taking the
approximation around another random point η̃ within and ε̃-ball
radius from η = 0 as in (9), with ε̃ ≤ ε. As it was mentioned
above, this dithering mechanism is also used in classification
problems for instance in [16]. Since the problem obtained by
applying this dithering technique on (15) is equivalent to (9),
regardless of the function L, the results derived for classification
(see Section II-C) can be reused to solve (15).

IV. SINGLE SUBSET ATTACKS

Another popular way of modeling undetectability, in the field
of image recognition, is by constraining the number of pixels
that can be modified by the attacker. This gave birth to single
and multiple pixel attacks. Note that, for the case of gray-scale
images, the solutions obtained in (14) and (5) provide already
single pixels attacks. This is not true for RGB images where
each pixel is represented by a subset of three values. Since
our analysis is not limited to image based systems, we refer
to these type of attacks which target only a subset of entries
as single subset attacks.

Since perturbations belong to RM , let us partition [M] =
{1, . . . ,M} into S possible subsets S1, . . . ,SS . The sets can
in general have different cardinalities. However, we assume
here that all of them have the same cardinality of Z =M/S,
where Ss = {i1s, . . . , iZs } ⊆ [M]. We define the mixed zero-S
norm ‖·‖0,S of a vector, for the partition S = {S1, . . . ,SS}, as
the number of subsets containing at least one index associated
to a non-zero entry of x2:

‖x‖0,S =

S∑
i=1

1(‖xSi‖0 6= 0),

where xSi denotes the vector formed by the entries of x with
index belonging to Si. Therefore, ‖η‖0,S counts the number
of subsets modified by an attacker. To guarantee that only one
subset is active, an additional constraint can be added to the
optimization problem. This leads to the following formulation
of the single subset attack for the regression problem:

max
η
‖y − f(x+ η)‖22 s.t. ‖η‖∞ ≤ ε , ‖η‖0,S = 1 . (16)

A similar formulation holds as well for classification problems.
The mixed norm ‖.‖0,S in widely used in signal processing
and compressed sensing to promoting group sparsity [15].

A. Single Subset Attack for the Quadratic Problem

As in Section III-A, the approximations f(x+ η) ≈ f(x) +
Jf (x)η and y ≈ f(x) simplify the problem (16) to

max
η
‖Jf (x)η‖22 s.t. ‖η‖∞ ≤ ε , ‖η‖0,S = 1 . (17)

As it was mentioned above, the problem is NP-hard without the
mixed-norm constraint. We try to find an approximate solution
to a simpler problem where only the set Ss = {i1s, . . . , iZs } is to
be modified by the attacker for s ∈ [S]. Finding the perturbation
on this set amounts to solving the following problem:

ηs = argmax
η

‖Jf (x)η‖22 s.t. ‖η‖∞ ≤ ε , (η)i = 0 ∀i /∈ Ss ,

(18)
where (η)i denotes the i-th entry of η. As discussed in Section
III-A, this problem is NP-hard. Since the maximization of a
quadratic bowl over a box constraint lies in the corner points
of the feasible set, we have

ηs = ε

Z∑
z=1

ρ∗izseizs

with ρ∗s , (ρ∗i1s
, . . . , ρ∗iZs

)> ∈ {−1,+1}Z . The optimization
problem can be equivalently formulated as follows:

ρ∗s = argmax
ρs∈{−1,+1}Z

∥∥∥∥∥Jf (x)(ε
Z∑
z=1

ρizseizs)

∥∥∥∥∥
2

2

= argmax
ρs∈{−1,+1}Z

Z∑
z=1

Z∑
w=1

ρizsρiws J
>
izs
Jiws ,

for ρs , (ρi1s , . . . , ρiZs)
> ∈ {−1,+1}Z and Jk the k-th

column of Jf (x). This problem is indeed related to the well

2Similar to the so-called `0-norm, this is not a proper norm.

8

known MaxCut problem introduced by [43]. The literature
is abound with works on the MaxCut problem, the efficient
solutions and their recovery guarantees. A common solution to
this problem is a relaxation by a semi-definite programming
problem. However, as we discussed semi-definite programming
solvers scales badly with the input dimension. Therefore, in the
spirit of obtaining fast and scalable approximate solutions, that
can later be used to design adversarial perturbations through
iterative approximations, we propose to obtain approximate
solutions using a greedy approach. To that end, and without
loss of generality, let us assume that for a given Ss, the indices
i1s, . . . , i

Z
s ∈ Ss are sorted such that ‖Ji1s‖2 ≥ · · · ≥ ‖JiZs ‖2.

An approximate solution for ρ∗izs is calculated in a greedy
manner by setting ρ∗i1s = 1 and recursively calculating

ρ∗izs = sign

z−1∑
j=1

ρ∗
ijs
Jijs

> Jizs

 ∀ z = 2, . . . , Z . (19)

As for greedy algorithms, this solution is fast, however, there
is no optimality guarantee for it. For the case where S = 1
and S = M , the expression (19) is an approximate solution
for (12) under the `∞-norm constraint on the perturbation (i.e.,
p =∞).

This method provides an approximate solution to the problem
for a given choice of Ss. The solution to (17) can then be
obtained by solving the following problem:

η∗ = ηs∗ , (20)

with s∗ = argmax
s
‖Jf (x)ηs‖22 and ηs = ε

Z∑
z=1

ρ∗izseizs

This is based on naive exhaustive research over the subsets
which is tractable only when the number of subsets is small
enough.

B. Single Subset Attack for the Linear Problem
Following the steps from Section III-B, we make use of

the approximation L(x,η) ≈ L(x, η̃) + (η − η̃)>∇L(x, η̃)
which leads to the formulation of (16) as a linear programming
problem

max
η

η>∇L(x, η̃) s.t. ‖η‖∞ ≤ ε , ‖η‖0,S = 1 . (21)

In the same manner as Section IV-A, for a given subset Ss we
define ηs as in (18). For this linear problem that results in

ηs = argmax
η

∇L(x, η̃)>η s.t. ‖η‖∞ ≤ ε , (η)izs = 0 ∀izs /∈ Ss .

In contrast to the definition of ηs from (18), in this case we
have a closed form solution for ηs as

ηs = ε

Z∑
z=1

sign((∇L(x, η̃))izs)eizs ,

which implies that ∇L(x, η̃)>ηs =
∑Z
z=1

∣∣(∇L(x, η̃))izs ∣∣.
Therefore, the linear problem for the single subset attack (21)
has the closed form solution

η∗ = ηs∗ , with s∗ = argmax
s

Z∑
z=1

∣∣(∇L(x, η̃))izs ∣∣ (22)

and ηs = ε
∑Z
z=1 sign((∇L(x, η̃))izs)eizs . This results are

valid for classification as well when replacing L with L(x,η) =
−(fk(x)(x+ η)−maxl 6=k(x) fl(x+ η)).

V. ITERATIVE VERSIONS OF THE LINEAR PROBLEM

In the previous sections we have formulated several variations
of the problem of generating adversarial perturbations. In the
same spirit as DeepFool, we make use of the obtained closed
form solutions to design adversarial perturbations using iterative
approximations. In Algorithm 1 an iterative method based on
the linear problem (15) is introduced. This corresponds to a
gradient ascent method for maximizing L(x,η) with a fixed
number of iterations (denoted by T) and steps of equal `p-norm.
Since at every iteration we have that ‖η‖p ≤ ε/T , increasing
T mitigates the error incurred by our linear approximations at
expense of increasing computations.

Algorithm 1 Iterative extension for `p constrained methods.
input: x, f , T , ε, ε̃1, . . . , εT .
output: η∗.
Initialize η1 ← 0.
for t = 1, . . . , T do
η̃t ← ηt + random(ε̃t)
η∗t ← argmaxη η>∇L(x, η̃t) s.t. ‖η‖p ≤ ε/T (Table I)

ηt+1 ← ηt + η∗t
end for
return: η∗ ← ηT

While generalizing the results for (15) into a gradient ascent
method is trivial, the same is not true for the quadratic problem
(12). The main reason for this is that, using the approximation
y ≈ f(x), we were able to simplify (11) into (12) since
y−f(x) ≈ 0. For an iterative version of this solution we must
successively approximate f(·) around different points x̃, which
leads to y− f(x̃) 6= 0 even if y = f(x). We leave the task of
investigating alternatives for designing iterative methods with
the results for (12) for future works, and in Section VI show
that the non-iterative solutions for this method are still top
performing.

Finally, replacing line 5 of Algorithm 1 with

η∗t ← argmax
η

η>∇L(x, η̃t) s.t. ‖η‖p ≤ ε , ‖η‖0,S = 1

leads to a multiple subset attack, since we modify the values
of one subset at every iteration. At every iteration, we may
exclude the previously modified subsets from S in order to
ensure that a new subset is modified.

VI. EXPERIMENTS

In this section, the proposed methods are used to fool neural
networks in classification and regression problems. But first,
we summarize the presented algorithms and the relation with
other existing attacks. The proposed attacks are summarized in
Table I. These attacks rely on perturbation analysis of learning
algorithms and can be used for classification and regression
tasks. The approach we chose to derive these algorithms is

9

TABLE I
SUMMARY OF THE OBTAINED CLOSED-FORM SOLUTIONS FOR ADVERSARIAL PERTURBATIONS

Type of Attack Problem Adversarial Perturbation Exact Solution Application
`2-constrained attack (15) (13) Yes Regression
`2-constrained attack (12) (5) Yes Classification/Regression
`∞-constrained attack (15) (20) No Regression
`∞-constrained attack (12) (6) Yes Classification/Regression
Single-subset attacks (17) (20) No Regression
Single-subset attacks (21) (22) Yes Classification/Regression

0.00 0.02 0.04 0.06 0.08 0.10

ε

0

20

40

60

80

100

F
o

ol
in

g
R

at
io

(i
n

%
)

DeepFool

Alg1-10

Alg1-5

Alg1

Alg2

FGSM

PGD

random

(a) FCNN

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

ε

0

20

40

60

80

100

F
o

ol
in

g
R

at
io

(i
n

%
)

(b) LeNet-5

0.000 0.005 0.010 0.015 0.020 0.025 0.030

ε

0

20

40

60

80

100

F
o

ol
in

g
R

at
io

(i
n

%
)

(c) NIN

0.002 0.004 0.006 0.008 0.010

ε

0

20

40

60

80

100

F
o

ol
in

g
R

at
io

(i
n

%
)

(d) DenseNet

Fig. 1. (a) and (b): Fooling ratio of the adversarial samples for different values of ε on the MNIST test dataset. (c) and (d): Fooling ratio of the adversarial
samples for different values of ε on the CIFAR-10 test datasets.

TABLE II
SUMMARY OF EXISTING ATTACKS IN CLASSIFICATION OBTAINED FROM

PRESENTED ALGORITHMS AGP.II

Attack Design Algorithm Iterative Dithering
FGSM [12] (4) with cross-entropy loss × ×

R-FGSM [22] (4) with cross-entropy loss × X
BIM [17] (4) with cross-entropy loss X ×
PGD [16] (4) with cross-entropy loss X X

DeepFool [14] (7) with p = 2 X ×
Ensemble [22] (4) with combined cross-entropies × X

Targeted (4) with (23) loss X X
Algorithm 1 (4) X X

capable of rendering other existing methods by adjusting the
choice of L(x, ·) and other design parameters. This point has
been discussed in Table II. In that table we also include the

black-box ensemble attack from [22] and targeted attacks [13],
[21], [26], [36], [44]. Consider first the ensemble attack of
[22]. A black-box attack in nature, this attack does not have
access to the target neural network function and uses another,
potentially similar to the neural network function f , hoping
that the obtained adversarial example transfers to the unknown
network. After choosing multiple similar neural networks, the
attack adopts the loss function as the averaged sum of cross
entropies of these networks. Once the loss function is fixed,
the algorithm, similar to above methods, uses a combination of
perturbation analysis with an optimization problem of type (4)
or (7) to solve the problem. Targeted attacks are used when the
goal is to generate adversarial examples that are classified by
target system as belonging to some given target class l ∈ [K].

10

original adv original adv

nine zero airplane ship

eight three truck car

two three cat dog
(a) MNIST (b) CIFAR-10

Fig. 2. Examples of correctly classified images that are misclassified when
adversarial noise is added using Algorithm 1 with T = 5.

That corresponds to fixing the loss function to

L(x,η) = fk(x)(x+ η)− fl(x+ η). (23)

After that, the process of finding adversarial examples leverages
the same techniques, i.e., perturbation analysis and convex
optimization, discussed in this paper. This is, however, only a
side feature of our approach. Our proposed attacks are still of
independent interest.

The goal of this section is twofold. First, we would like to
examine the performance of the newly proposed attack in clas-
sification tasks, thereby showing the strength of our proposed
method. Secondly we generate adversarial perturbations for
various regression tasks which only received small attention
in the literature. For this purpose we use the MNIST [45],
CIFAR-10 [46], STL-10 and PASCAL VOC 2012 datasets.

A. Classification

As discussed in Section II, the appropriate loss function
L(x,η) for image classification tasks that should be used in (4)
is given by (AGP). For this problem, ‖η‖∞ ≤ ε is a common
constraint that models the undetectability, for sufficiently small
ε, of adversarial noise by an observer. However solving (4)
involves finding the function L(x,0) which is defined as the
minimum of K − 1 functions with K being the number of
different classes. In large problems, this may significantly
increase the computations required to fool one image. Therefore,
we include a simplified version of this algorithm in our
simulations. The non-iterative methods might not guarantee
the fooling of the underlying network but on the other hand,
the iterative methods might suffer from convergence problems.

To benchmark the proposed adversarial algorithms, we
consider following methods tested on the aforementioned
datasets:
• Algorithm 1: This algorithm solves (4) with L(x, ·) given

by (AGP). Note that, for evaluating L at a given x one
must search over all l 6= k(x). This can be computationally
expensive when the number of possible classes (i.e., the
number of possible values for l) is large. The `∞-norm
is chosen for the constraint. Moreover, an example of

input output

o
ri
g
in
a
l

a
d
v
e
rs
a
ri
a
l

n
o
is
y

(r
a
n
d
o
m
)

input output

(a) Autoencoder (96% compression)
input output

o
ri
g
in
a
l

a
d
v
e
rs
a
ri
a
l

n
o
is
y

(r
a
n
d
o
m
)

input output

(b) Autoencoder (50% compression)
input output

o
ri
g
in
a
l

a
d
v
e
rs
a
ri
a
l

n
o
is
y

(r
a
n
d
o
m
)

input output

(c) Image Colorization

Fig. 3. Adversarial examples for (a): MNIST autoencoder obtained using
quadratic-`∞ with input PSNR = 17dB, (b): CIFAR-10 autoencoder obtained
using linear-pixel-100 and ε = 1, (c): STL-10 colorization network obtained
using linear-`∞-20 with input PSNR = 25dB.

adversarial images obtained using this algorithm is shown
in Figure 3.

• Algorithm 1-T : This is the iterative version of Algorithm
1 with T iterations. The adversarial perturbation is the sum
of T perturbation vectors with `∞-norm of ε/T computed
through T successive approximations.

• Algorithm 2: This algorithm approximates (AGP) with
L(x,η) ≈ fk(x)(x+ η), thus reducing the computation
of L(x) when the number of classes is large. Note that we
cannot use L(x,η) < 0 to guarantee that we have fooled
the network. Nevertheless, the lower the value of L(x,η)
the most likely it is that the network has been fooled. The
same reasoning is valid for the FGSM algorithm.

11

TABLE III
ROBUSTNESS MEASURES FOR DIFFERENT CLASSIFIERS

Test ρ̂1(f) ρ̂2(f) fooled
error [14] (ours) >99%

FCNN (MNIST) 1.7% 0.036 0.034 ε =0.076
LeNet-5 (MNIST) 0.9% 0.077 0.061 ε =0.164
NIN (CIFAR-10) 13.8% 0.012 0.004 ε =0.018
DenseNet (CIFAR-10) 5.2% 0.006 0.002 ε =0.010

• FGSM: This well-known method was proposed by [12]
where L(x,η) is replaced by the negative of the training
loss for the input x+η. Usually the cross-entropy loss is
used for this purpose. With the newly replaced function,
(4) is solved for p =∞.

• PGD: This method, given in [16], is the iterative version
of FGSM (T > 1) with ε̃1 = ε and ε̃t = 0 for all t > 1.
It constitutes one of the state-of-the-art attacks in the
literature.

• DeepFool: This method was proposed in [14] and makes
use of iterative approximations. Every iteration of Deep-
Fool can be written within our approach by replacing L
by

L(x,η) = fk(x)(x+ η)− fl̂(x+ η) , where

l̂ = argmin
l 6=k(x)

{ |fk(x)(x)− fl(x)|
‖∇fk(x)(x)−∇fl(x)‖q

}
.

The adversarial perturbations are computed using p =∞,
thus q = 1, with a maximum of 50 iterations. These
parameters were taken from [14]. Note that l̂ is chosen
to minimize the robustness ρ̂1(f) for D = {x}.

• Random: For benchmarking purposes, we also consider
random perturbations with independent Bernoulli dis-
tributed entries with P(ε) = P(−ε) = 1

2 . This helps
to demarcate the essential difference of adversarial and
random perturbations.

The above methods are tested on the following deep neural
network architectures:
• MNIST : A fully connected network (FCNN) with two

hidden layers of size 150 and 100 respectively, as well as
the LeNet-5 architecture [47].

• CIFAR-10 : The Network In Network (NIN) architecture
[48], and a 40 layer DenseNet [49].

As a performance measure, we use the fooling ratio defined
in [14] as the percentage of correctly classified images that are
missclassified when adversarial perturbations are applied. Of
course, the fooling ratio depends on the constraint on the norm
of adversarial examples. Therefore, in Figure 1 we observe the
fooling ratio for different values of ε on the aforementioned
neural networks. As expected, the increased computational
complexity of iterative methods such as DeepFool and Algo-
rithm 1-T translates into increased performance with respect to
non-iterative methods. Nevertheless, as shown in Figures 1(a)
and (c), the performance gap between iterative and non-iterative
algorithms is not always significant. Such phenomenon is
present when classifiers are highly linear in the vicinity around
the inputs, since non-iterative would already yield accurate
approximations, thus leaving not much left to gain by refining

these approximations using iterative procedures. For the case of
iterative algorithms, the proposed Algorithm 1-T outperforms
DeepFool and PGD. The same holds true for Algorithm 1 with
respect to other non-iterative methods such as FGSM, while
Algorithm 2 obtains top performance with respect to FGSM.
However, note that adversarial training using PGD is the state-
of-the-art defense against adversarial examples, thus PGD may
still be a better choice than Algorithm 1-T for adversarial
training. Some adversarial examples obtained using Algorithm
1-T are shown in Figure 2. Finally, we measure the robustness
of different networks using ρ̂1(f) and ρ̂2(f), with p = ∞.
We also include the minimum ε, such that DeepFool obtains
a fooling ratio greater than 99%, as a performance measure
as well. These results are summarized in Table III, where we
obtain coherent results between the 3 measures.

B. Regression

For the sake of clarity we use the following notation to
distinguish between the different regression methods used in
this section:
• quadratic-`p: This algorithm computes adversarial per-

turbations by solving the quadratic problem (12) under
the `p-norm constraint.

• linear-`p-T : Similarly, this attack refers to Algorithm 1
with T iterations and the `p-norm constraint.

• linear-pixel-T : Since the experiments carried out in this
section are exclusively image based, we use this notation
to refer to the multiple subset attack with ‖η‖0,S = T .

• random-`p: Similarly to [14], we show the validity
of our attacks by comparing their performance against
appropriate types of random noise. For p = 2, the random
perturbation is computed as η = εw/‖w‖2, where the
entries of w are independently drawn from a Gaussian
distribution. For p = ∞ the random perturbation η has
independent Bernoulli distributed entries with parameter
1/2.

• random-pixel-T : Random attacks are considered as well
for multiple subset attacks with p = ∞. The random
perturbations are added to only T randomly chosen pixels,
while the other pixels are untouched.

The random attacks are used for benchmarking purposes.
The algorithms behind our proposed attacks, i.e., the first
three attacks, are summarized in Table I. Since the aim
of the proposed attacks is to maximize the MSE of the
target system, we use the Peak Signal to Noise Ratio, which
is a common measure for image quality and is defined as
PSNR = (maximum pixel value)2/MSE, as the performance
metric. As an example, assume ‖x‖∞ ≤ 1 and ‖η‖∞ ≤ ε,
then this performance metric simplifies to PSNR = 1/nε2.

For our experiments we use the MNIST, CIFAR-10 and STL-
10 and PASCAL VOC 2012 datasets. A different neural network
is trained for each of these datasets. As in [30], we also consider
autoencoders. For MNIST and CIFAR-10 we have trained fully
connected autoencoders with 96% and 50% compression rates
respectively. Next, we train the image colorization architecture
from [50] for the STL-10 dataset. Finally, we use the YOLO
architecture for object detection from [51]. The convolutional

12

10 15 20 25 30 35 40

input PSNR (dB)

12

14

16

18

20

22

ou
tp

ut
P

S
N

R
(d

B
)

rand-`2

linear-`2-1

linear-`2-10

linear-`2-20

quadratic-`2-1

(a) MNIST: `2 constrained

10 15 20 25 30 35 40

input PSNR (dB)

12

14

16

18

20

22

ou
tp

ut
P

S
N

R
(d

B
)

rand-`∞
linear-`∞-1

linear-`∞-10

linear-`∞-20

quadratic-`∞-1

(b) MNIST: `∞ constrained

0.1 0.2 0.3 0.4 0.5 0.6 0.7

input PSNR (dB)

14

16

18

20

22

24

ou
tp

ut
P

S
N

R
(d

B
)

linear-pixel-1

linear-pixel-10

rand-pixel-1

rand-pixel-10

(c) CIFAR-10: Multiple pixel attack

10 15 20 25 30 35 40

input PSNR (dB)

15

20

25

30

35

40

ou
tp

ut
P

S
N

R
(d

B
)

rand-`∞
linear-`∞-1

linear-`∞-10

linear-`∞-20

(d) STL-10 (colorization): `∞ constrained

Fig. 4. Output PSNR for (a): MNIST autoencoder under `2-norm constraint, (b): MNIST autoencoder under `∞-norm constraint, (c): CIFAR-10 autoencoder
under multiple pixel attacks, (d): STL-10 colorization network under `∞-norm constraint.

layers of the proposed network are trained on the ImageNet
dataset with 1000 classes. The experiments are run on the
PASCAL VOC 2012 dataset [52], which is a common dataset
for object detection tasks.

Different example images obtained from applying the pro-
posed methods on these networks are shown in Figure 3. For
instance, in Figure 3(a) we observe that the autoencoder trained
on MNIST is able to denoise random perturbation correctly but
fails to do so with adversarial perturbations obtained using the
quadratic-`∞ method. Similarly, in Figure 3(b), the random-
pixel-100 algorithm distorts the output significantly more than
its random counterpart. These two experiments align with
the observation of [30] that autoencoders tend to be more
robust to adversarial attacks than deep neural networks used for
classification. The deep neural network trained for colorization
is highly sensitive to adversarial perturbations as illustrated
in Figure 3(c), where the original and adversarial images are
nearly identical.

While the results shown in Figure 3 are for some particular
images, in Figure 4 we measure the performance of different
adversarial attacks using the average output PSNR over 20
randomly selected images from the corresponding datasets. In
Figures 4(a) and 4(b) we observe how computing adversarial
perturbations through successive linearizations improves the
performance. This behavior is more pronounced in Figure 4(d),

where iterative linearizations are responsible for more than
10 dB of output PSNR reduction. Note that, in Figures 4(a)
and 4(b) the non-iterative quadratic-`p algorithm performs
competitively, even when compared to iterative methods. In
Figure 4(c) we observe that the autoencoder trained on CIFAR-
10 is robust to single pixel attacks. However, an important
degradation of the systems performance, with respect to random
noise, can be obtained through adversarial perturbations in the
100 pixels attack (≈ 9.7% of the total number of pixels).
Moreover, in Figure 4(d), we can clearly observe the instability
of the image colorization network to adversarial attacks. These
experiments show that, even though some regression problems
can tolerate adversarial noise like in Figures 4(a) and 4(b),
others (such as the ones from Figures 4(c) and (d)) are highly
unstable.

Finally, object detection tasks can be treated as regression
problems, since the predicted location and size of the detected
object can be approximated as continous variables. Therefore,
we can observe in Figure 5(a) how the performance of YOLO at
detecting objects is serverly degraded when adding adversarial
perturbations. The loss function used in this experiment is the
same used in [51], which accounts for the correct labeling of
the detected objects as well as the correct placement of the
boxes surrounding them. Some concrete example images from
the PASCAL VOC 2012 dataset are shown in Figure 5(b).

13

These experiments show that, even though autoencoders are
somehow robust to adversarial noise, this may not be true for
deep neural networks in other regression problems.

VII. CONCLUSION

The perturbation analysis of different learning algorithms
underlies many attacks. In this work, the generation of adver-
sarial examples is pursued by applying perturbation analysis to
a fairly general problem and is formulated as a convex program.
The other techniques like iterative methods and randomization
of instances can be additionally considered. We used this
generic approach to propose new attacks for classification and
regression problems under various desirable constraints. This
includes in particular single-pixel and single-subset attacks.
Through multiple examples, regression problems are shown
to be equally vulnerable to adversarial perturbations. Our new
attacks on classification functions are benchmarked through
empirical simulations of the fooling ratio against the well-
known FGSM, DeepFool, and PGD methods. For regression
tasks, three use cases are considered, namely, autoencoders,
images colorization and object detection algorithms.

For classification tasks, the adversarial vulnerability is
directly related to the properties of classification margin. Re-
gression algorithms, however, do not dispose such a notion. It is
an interesting research question to investigate the vulnerabilities
of these algorithms.

REFERENCES

[1] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury,
“Deep Neural Networks for Acoustic Modeling in Speech Recognition:
The Shared Views of Four Research Groups,” IEEE Signal Processing
Magazine, pp. 82–97, 2012.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Neural Information
Processing Systems (NIPS), 2012, pp. 1097–1105.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016, pp. 770–778.

[4] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015, pp. 1–9.

[5] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-CNN: Towards
Real-Time Object Detection with Region Proposal Networks,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, pp. 1137–
1149, 2017.

[6] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I.
Goodfellow, and R. Fergus, “Intriguing properties of neural networks,”
2014.

[7] A. Fawzi, S.-M. Moosavi-Dezfooli, and P. Frossard, “Robustness of
classifiers: From adversarial to random noise,” in Neural Information
Processing Systems (NIPS), 2016, pp. 1632–1640.

[8] M. Barreno, B. Nelson, A. D. Joseph, and J. D. Tygar, “The security
of machine learning,” Machine Learning, pp. 121–148, 2010.

[9] N. Akhtar and A. Mian, “Threat of Adversarial Attacks on Deep
Learning in Computer Vision: A Survey,” IEEE Access, pp. 14 410–
14 430, 2018.

[10] B. Wang, J. Gao, and Y. Qi, “A Theoretical Framework for Robustness
of (Deep) Classifiers against Adversarial Examples,” in International
Conference on Learning Representations (ICLR), 2017.

[11] A. Fawzi, O. Fawzi, and P. Frossard, “Fundamental limits on
adversarial robustness,” in ICML Workshop on Deep Learning, 2015.

[12] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and
Harnessing Adversarial Examples,” in International Conference on
Learning Representations (ICLR), 2015.

[13] S. Sarkar, A. Bansal, U. Mahbub, and R. Chellappa, “Upset and
angri: Breaking high performance image classifiers,” arXiv preprint
arXiv:1707.01159, 2017.

[14] S. M. Moosavi Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: A
simple and accurate method to fool deep neural networks,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

[15] N. Rao, B. Recht, and R. Nowak, “Universal measurement bounds
for structured sparse signal recovery,” in International Conference on
Artificial Intelligence and Statistics (AISTATS), 2012, pp. 942–950.

[16] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu,
“Towards Deep Learning Models Resistant to Adversarial Attacks,” in
International Conference on Learning Representations (ICLR), 2018.

[17] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in
the physical world,” arXiv preprint arXiv:1607.02533, 2016.

[18] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated Gradients Give
a False Sense of Security: Circumventing Defenses to Adversarial
Examples,” in International Conference on Machine Learning (ICML),
2018, pp. 274–283.

[19] A. Athalye and N. Carlini, “On the robustness of the CVPR 2018 white-
box adversarial example defenses,” arXiv preprint arXiv:1804.03286,
2018.

[20] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling deep
neural networks,” IEEE Transactions on Evolutionary Computation,
2019.

[21] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,”
in IEEE European Symposium on Security and Privacy (EuroS&P),
2016, pp. 372–387.

[22] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and
P. McDaniel, “Ensemble Adversarial Training: Attacks and Defenses,”
in International Conference on Learning Representations (ICLR), 2018.

[23] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard,
“Universal adversarial perturbations,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017, pp. 86–94.

[24] J. H. Metzen, M. C. Kumar, T. Brox, and V. Fischer, “Univer-
sal adversarial perturbations against semantic image segmentation,”
pp. 2774–2783, 2017.

[25] C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, and A. Yuille, “Adversarial
examples for semantic segmentation and object detection,” in IEEE
International Conference on Computer Vision (CVPR), 2017.

[26] M. Cisse, Y. Adi, N. Neverova, and J. Keshet, “Houdini: Fooling deep
structured prediction models,” arXiv preprint arXiv:1707.05373, 2017.

[27] N. Papernot, P. McDaniel, A. Swami, and R. Harang, “Crafting adver-
sarial input sequences for recurrent neural networks,” in IEEE Military
Communications Conference (MILCOM), IEEE, 2016, pp. 49–54.

[28] Y.-C. Lin, Z.-W. Hong, Y.-H. Liao, M.-L. Shih, M.-Y. Liu, and M. Sun,
“Tactics of adversarial attack on deep reinforcement learning agents,”
in International Joint Conference on Artificial Intelligence (IJCAI),
AAAI Press, 2017, pp. 3756–3762.

[29] J. Kos, I. Fischer, and D. Song, “Adversarial Examples for Generative
Models,” in IEEE Security and Privacy Workshops (SPW), 2018,
pp. 36–42.

[30] P. Tabacof, J. Tavares, and E. Valle, “Adversarial images for variational
autoencoders,” arXiv preprint arXiv:1612.00155, 2016.

[31] T. Tanay and L. Griffin, “A boundary tilting persepective on the phe-
nomenon of adversarial examples,” arXiv preprint arXiv:1608.07690,
2016.

[32] A. Fawzi, S. M. Moosavi-Dezfooli, and P. Frossard, “The Robustness of
Deep Networks: A Geometrical Perspective,” IEEE Signal Processing
Magazine, pp. 50–62, 2017.

[33] A. Raghunathan, J. Steinhardt, and P. Liang, “Certified Defenses
against Adversarial Examples,” in International Conference on Learn-
ing Representations (ICLR), 2018.

[34] D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and A. Madry,
“Robustness may be at odds with accuracy,” in International Conference
on Learning Representations (ICLR), 2019.

[35] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation as
a defense to adversarial perturbations against deep neural networks,” in
IEEE Symposium on Security and Privacy (SP), IEEE, 2016, pp. 582–
597.

[36] N. Carlini and D. Wagner, “Towards evaluating the robustness of
neural networks,” in IEEE Symposium on Security and Privacy (SP),
IEEE, 2017, pp. 39–57.

[37] E. R. Balda, A. Behboodi, and R. Mathar, “On generation of adversarial
examples using convex programming,” in 52-th Asilomar Conference

14

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

ε

10

15

20

25

30

av
er

ag
e

lo
ss

original
rand-`∞
linear-`∞-5

linear-`∞-10

Original Random Adversarial

(a) (b)

Fig. 5. The YOLO architecture under `∞-norm constraint in the PASCAL VOC 2012 dataset. (a) Output loss, defined as in [51]. (b) Adversarial examples
obtained using linear-`∞-10.

on Signals, Systems, and Computers, Pacific Grove, California, USA,
2018, pp. 1–6.

[38] M. Hein and M. Andriushchenko, “Formal guarantees on the robustness
of a classifier against adversarial manipulation,” in Neural Information
Processing Systems (NIPS), 2017.

[39] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge Univ.
Press, 2013.

[40] S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive
Sensing. New York, NY: Springer New York, 2013.

[41] J. Rohn, “Computing the norm ‖A‖∞,1 is NP-hard,” Linear and
Multilinear Algebra, pp. 195–204, 2000.

[42] D. Hartman and M. Hladík, “Tight Bounds on the Radius of
Nonsingularity,” in Scientific Computing, Computer Arithmetic, and
Validated Numerics, Springer, 2015, pp. 109–115.

[43] M. X. Goemans and D. P. Williamson, “Improved approximation algo-
rithms for maximum cut and satisfiability problems using semidefinite
programming,” Journal of the ACM (JACM), pp. 1115–1145, 1995.

[44] S. Baluja and I. Fischer, “Adversarial transformation networks: Learn-
ing to generate adversarial examples,” arXiv preprint arXiv:1703.09387,
2017.

[45] Y. LeCun, C. Cortes, and C. Burges, “Mnist handwritten digit database,”
AT&T Labs [Online]. Available: http://yann. lecun. com/exdb/mnist,
2010.

[46] A. Krizhevsky and G. Hinton, “Learning multiple layers of features
from tiny images,” 2009.

[47] Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio, “Object recognition
with gradient-based learning,” in Shape, contour and grouping in
computer vision, Springer, 1999, pp. 319–345.

[48] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint
arXiv:1312.4400, 2013.

[49] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, “Densely
connected convolutional networks,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017, p. 3.

[50] F. Baldassarre, D. G. Morín, and L. Rodés-Guirao, “Deep koalarization:
Image colorization using cnns and inception-resnet-v2,” arXiv preprint
arXiv:1712.03400, 2017.

[51] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 779–788.

[52] M. Everingham and J. Winn, The pascal visual object classes challenge
2012 (voc2012) development kit, 2011.

Emilio Balda received the M.Sc. degree in com-
munications and signal processing from the Ilmenau
University of Technology, Ilmenau, Germany, in 2017.
Since 2017, he has been a Research Assistant with
the Institute for Theoretical Information Technology,
RWTH Aachen University. His research interests are
machine learning, optimization and signal processing.

Arash Behboodi received his B.Sc. and M.Sc. de-
grees in electrical engineering from Sharif University
of Technology, Tehran, Iran in 2005 and 2007 and
Ph.D. degree from École Supérieure délectricité (now
CentraleSupélec), Gif-sur-Yvette, France in 2012. He
is currently a deep learning researcher in Qualcomm
AI research. His research interests are information
theory, compressed sensing and machine learning.

Rudolf Mathar received the Ph.D. degree from
RWTH Aachen University in 1981. Previous po-
sitions include lecturer positions with Augsburg
University and the European Business School. In
1989, he joined the Faculty of Natural Sciences,
RWTH Aachen University. He has held the In-
ternational IBM Chair in Computer Science with
Brussels Free University in 1999. In 2004, he was
appointed as the Head of the Institute for Theoretical
Information Technology with the Faculty of Electrical
Engineering and Information Technology, RWTH

Aachen University. Since 1994, he has held numerous visiting professor
positions with The University of Melbourne, the University of Canterbury,
Christchurch, New Zealand, Johns Hopkins University, Baltimore, MD, USA,
and others. From 2011 to 2014, he served as the Dean of the Faculty of
Electrical and Engineering and Information Technology. Since 2014, he has
been serving as a Prorector for research and structure with RWTH Aachen
University. In 2002, he was a recipient of the prestigious Vodafone Innovation
Award, and in 2010, he was an elected member of the NRW Academy of
Sciences and Arts. He is a co-founder of three spin-off enterprises. In 2012, he
was an elected speaker of the Board of Deans with RWTH Aachen University.
His research interests include information theory, mobile communication
systems, particularly optimization, resource allocation, and access control.

	Introduction
	Our Contribution
	Notation

	Fooling Classifiers with First-Order Perturbation Analysis
	Adversarial Perturbation Design Problem
	Perturbation Analysis
	Feasible Adversarial Perturbation Designs

	From Classification to Regression
	A Quadratic Programming Problem
	A Linear Programming Problem

	Single Subset Attacks
	Single Subset Attack for the Quadratic Problem
	Single Subset Attack for the Linear Problem

	Iterative Versions of the Linear Problem
	Experiments
	Classification
	Regression

	Conclusion
	Biographies
	Emilio Balda
	Arash Behboodi
	Rudolf Mathar

