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ABSTRACT

We consider sensor nodes which make decisions about the
state of the observed environment and transmit them to a
fusion center for decision combining. We investigate how
to ensure pre-specified performance guarantees for the fused
decision most efficiently.

1. INTRODUCTION

One important task of wireless sensor networks is the de-
tection of physical phenomena in the observed environment.
Consider a set of sensor nodes which all observe the same
geographic area, make decisions about the state of the ob-
served environment (e.g., dangerous or safe), and transmit
their local decisions to a fusion center (Fig. 1).

Sensor nodes are cheap, so they can be deployed densely [1].
However, their local decisions are fairly unreliable due to
their low-cost design and random deployment. The fusion
center combines the unreliable local decisions into a reliable
fused decision which satisfies some predefined performance
measures. For example, the probability of a false alarm (de-
tecting a nonexistent event) at the fusion center is guaran-
teed to be below a specific value.

As sensors, as well as the communication medium, are un-
reliable, the fusion center should not have to wait for local
decisions of all sensors deployed in the area before making
the decision: Some sensors may have failed, or some mes-
sages may have got lost. Moreover, waiting for more local
decisions increases the time of the decision fusion operation.
On the other hand, if decision fusion is based on a too small
number of local decisions, the fused decision may be too
unprecise.

We investigate the relationship between the number of local
decisions the fusion center has to wait for, and the quality of
the fused decision. Given the individual error probabilities
of each sensor, we determine lower bounds on the number
of local decisions needed for pre-specified performance guar-
antees at the fusion center.

2. PRELIMINARIES

2.1 Problem Statement

We consider a binary hypothesis testing problem with hy-
potheses Ho, H1 describing the state of the observed envi-
ronment and their associated prior probabilities mp, 1. A
set of N sensors take measurements on the environment and
make local decisions about the underlying true hypothesis.
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Figure 1: Sensor nodes observe the environment and
make unreliable local decisions about its state. Fusion
center combines local decisions into a reliable fused de-
cision (e.g., fire/no fire).

Each local decision wu; is interpreted as the realization of a bi-
nary random variable U;, ¢ = 1, ..., N, which is characterized
by the associated probability of false alarm and probability
of miss:

py = PU; =1|Ho), ph,:=P{U;=0]|Hy).

The local decisions u1,...,unx form the input to the fusion
center which combines them to yield the global decision
v = f(ui,...,un). As in the case of local decisions, the
global decision w is interpreted as the realization of a bi-
nary random variable U which is characterized by the global
probability of false alarm and global probability of miss:

pr:=P({U =1|Hy), pm:=PU=0]H).

The overall probability of error pg at the fusion center is a
weighted sum of the false alarm and miss rate:

PE = ToPF + T1PM -

Performance guarantees at the fusion center are determined
by upper bounds on its respective error probabilities.

We assume that the error probabilities pﬁc, pt, of the sensor
nodes are known and that the local decisions U; are condi-
tionally independent. Our aim is to assess the error prob-
abilities pr,pam of the fusion center and give lower bounds
on the number of reporting sensors N in order to achieve
pre-specified performance guarantees at the fusion center.

2.2 Optimal Fusion Rules

We consider optimal fusion rules in a Bayesian framework
[2]. The objective is to determine the fusion rule f that
minimizes the overall probability of error pr. The problem
can be viewed as a binary hypothesis testing problem at the
fusion center with local decisions being the observations.



According to Chair and Varshney [3], the optimal fusion
rule in the case of conditionally independent decisions can
be performed by taking a weighted sum of the incoming local
decisions and comparing it with a threshold:
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For reasons of analytical tractability, we will consider equal
local error probabilities p} = ps, p; = pm. This yields a
simplified fusion rule taking the form

u=1
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where the threshold ¢ takes the form ¥ = « + BN with
constants a and (.

3. DECISION FUSION WITH
PERFORMANCE GUARANTEES

We investigate the error probabilities of the fusion center
and give a lower bound on the number NV of reporting sensors
needed to achieve a pre-specified performance level.

3.1 Exact Expressionsfor Error Probabilities

In order to compute the error probabilities at the fusion cen-
ter, we determine the distribution of the random variables

N
Vi=> Ui|H;, j=0,1,
i=1

i.e., the total number of “ones” sent by the N sensor nodes
under hypothesis H; true. It is easily shown that the random
variables Vp and Vi follow a binomial distribution according
to Vo ~ Bin(N, py) and Vi ~ Bin(N, 1 — pm).

By using the connection to the beta distribution of the first
kind [4], we obtain expressions for the error probabilities
pr = P(Vop > 9) and pmr = P(Vi < 99):
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3.2 Approximation by Normal Distribution
In typical wireless sensor network scenarios, the number of
sensors N reporting to the same fusion center is large enough
(e.g., N = 20), so that we may apply the Central Limit
Theorem [4] to obtain a reasonable approximation for the
corresponding error probabilities at the fusion center. Par-
ticularly, we obtain the expressions
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where @ is the cumulative distribution function (cdf) of the
standard normal distribution.
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Figure 2: A lower bound on the number of sensors N
needed to guarantee the performance level pp < 0.01 at
the fusion center of the symmetric system for various
local error probabilities. Circles depict exact values, the
line depicts the approximation.

3.3 Special Case: Symmetric System

We illustrate the validity of our approximation by the spe-
cial case of a symmetric system, ie., mp = m = % and
Pf = Pm = Pe-

In this case, we have pr = pypr = pr and thus we can im-
pose a unique lower bound on the number of sensors N to
guarantee the restriction pr < ep on both the false alarm
and the miss rate at the fusion center by the same value ¢g:

N (2@%—:,@) pe(1p5)>2

1—2pe

The relationship between the necessary number of sensors
N and the local error probability p. is depicted in Fig. 2 for
the specific performance guarantee pg < eg = 0.01.

4. FURTHER WORK

In the future, we aim to investigate the influence of cor-
relations between local decisions on the number of sensors
needed. Correlations will occur naturally due to dense de-
ployment. Furthermore, we want to consider the case of
m-~ary hypothesis testing for distributed classification appli-
cations involving heterogeneous sensor types. We want to
examine the possible advantages of multiple layers in the de-
cision hierarchy. By allocating sensor nodes to fusion cen-
ters across multiple layers, we aim to achieve energy and
time savings while maintaining performance guarantees on
the final decision.
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