
Fast Edge-Diffraction-Based Radio Wave

Propagation Model for Graphics Hardware

Tobias Rick, Rudolf Mathar

Institute of Theoretical Information Technology

RWTH Aachen University

D-52056 Aachen, Germany

Email: {rick,mathar}@ti.rwth-aachen.de

Abstract—Fast radio wave propagation predictions are of
tremendous interest, e.g., for planning and optimization of
cellular radio networks. We propose the use of ordinary graphics
cards and specialized algorithms to achieve extremely fast pre-
dictions. We present a ray-optical approach for wave diffraction
at building edges into street canyons, exploiting the programming
model of graphics cards. More than twenty predictions per
second are achieved in a 7 km2 urban area with a mean squared
error of less than 7 dB when compared with measurements.

I. INTRODUCTION

Radio wave propagation models play an essential role in

planning, analysis and optimization of radio networks. For

instance, coverage and interference estimates of network con-

figurations are based on field strength predictions. For network

planning, a vast amount of different configurations has to be

evaluated to achieve optimal utilization of radio resources, de-

manding for extremely fast radio wave propagation algorithms.

An overview of radio wave propagation models is given

in [1] and [2]. Approaches for field strength prediction can

basically be divided into (semi-)empirical and ray-optical

models. The semi-empirical COST-Walfisch-Ikegami model

[1] estimates the received power predominantly on the basis

of frequency and distance to the transmitter. Ray-optical ap-

proaches identify ray paths through the scene, based on wave

guiding effects like reflection and diffraction. Semi-empirical

algorithms usually offer fast computation times but suffer from

inherent low prediction quality. Ray-optical algorithms feature

a higher prediction quality at the cost of higher computation

times. For comparison with our new algorithms we use a fast

and well tested ray-optical algorithm (CORLA) [3], [4], in this

paper. Current work on ray-optical prediction algorithms may

be found in [5], [6] and [7].

Modern graphics cards offer tremendous computing power

due to their highly parallel architecture. Additionally, the

performance of graphics cards doubles every half year [8],

compared to the performance of standard CPU’s which in-

creases with the factor
√

2 every year, according to Moore’s
Law. Thus, graphics cards form an attractive platform for

computation-intensive tasks. The computational power offered

by graphics cards is already exploited for problems that

go beyond graphical applications, like sorting or physical

simulations. Implementations on the Graphics Processing Unit

(GPU) often accelerate algorithms by over an order of mag-

nitude compared to the standard CPU implementation. An

overview on some ideas of General-Purpose Computations on

GPUs (GPGPU) is presented in [8]. Recent work includes the

mapping of classical ray tracing programs to the GPU, [9] and

[10], which is of particular interest with regard to ray-optical

wave propagation algorithms.

In this paper, we further develop the approach [11] to use

graphics hardware for accelerating field strength predictions.

The algorithm developed in Section IV combines the advan-

tage of ray tracing and empirical models in considering build-

ing data while still maintaining extremely short running times.

Our new algorithm adapts extremely fast shadow algorithms to

compute ray paths subject to edge diffraction and the number

of obstacles in the direct path.

This paper is organized as follows. In Section II we briefly

introduce the underlying programming paradigm of today’s

graphics cards. Section III presents a path loss model for

urban scenarios that derives the received power based on dis-

tance, building penetration and diffraction intro street canyons.

Section IV describes an algorithm that calculates the corre-

sponding diffraction ray paths. This algorithm is explicitly

designed to benefit from graphics hardware. In Section V, a

strategy is introduced to optimally calibrate parameters by field

measurements. Section VI discusses the introduced algorithm

with respect to prediction quality and computation time. We

conclude this work with a short summary in Section VII.

II. GRAPHICS HARDWARE

The underlying architecture of graphics cards is called

Single Instruction Multiple Data (SIMD), i.e., many parallel

processors simultaneously execute the same instructions at

a time on different parts of data. In addition to the high

computing power, modern graphics cards are programmable

at certain stages of their Rendering Pipeline (Figure 1).

The pipeline consists of an input, a processing and an

output unit. The input consists of planar geometric objects,

e.g., triangles or quadrangles, described by three dimensional

coordinates (vertices) with connectivity information and arbi-

trary numerical information (textures). In the first pipeline step

multiple vertex processors execute in parallel the instructions

������ �� ��� �

	
��

 � �� ���
���� �� ��� �

� �
� �
�� ��� �

� � ����
� ������� ��

� �
�� �� �
� ������� ���
� �� ���� �

Fig. 1. The Graphics Rendering Pipeline.

from a user-written program (kernel) on the vertices. Usually,

geometric transformations like translations and rotations are

applied.

In the next step, the processed geometric objects are ras-

terized into discrete points (fragments). Each fragment has a

screen position (pixel position), a depth value and additional

numerical information.

Analogous to the vertex processors, multiple fragment pro-

cessors execute user-written programs on each fragment in

parallel, producing the final result of the computation. Usually,

the output consists of a vector v ∈ R
3 which is commonly

interpreted as color information.

In a final non-programmable stage all fragments are col-

lected and recorded in the framebuffer. If multiple fragments

are mapped to the same pixel position, the depth test decides

which one is written into the framebuffer, by comparing the

fragments’ depth values.

Both, vertex and fragment processors can be programmed

in a slightly restricted C-like language. The major drawback of

the GPU programming model is that each vertex or fragment

is processed independently, without access to others. Only the

non-programmable depth test at the very end of the pipeline

may compare information of several fragments on the same

position.

For a more detailed introduction into the programming

paradigm of today’s graphics cards see [8].

III. PATH LOSS MODEL

In this section we introduce a path loss model for urban

environments. We assume that rays propagate in a straight

line from the transmitter and may be diffracted at building

edges. The path loss from a transmitter to a receiver point r
is modeled by

P dB (r) = cf +











P dB

LOS
(r) , r in line-of-sight

P dB

LOS
(r) + P dB

ED
(r) , r in edge diffraction

P dB

NLOS
(r) , otherwise

(1)

Fig. 2. Building data of Munich, Germany with underlying satellite image.

with

P dB

LOS
(r) = γLOS · 10 · log10(dr) (2)

P dB

ED
(r) =

Kr
∑

i=1

g
(

α(i)
r

)

(3)

P dB

NLOS
(r) = γNLOS · 10 · log10(dr) + Wr · Lw (4)

and the well-known frequency f dependent term

cf = 20 lg

(

4πf

c

)

,

with speed of light c. dr denotes the path length between

receiver and transmitter, and γLOS, γNLOS the corresponding path

loss exponents. Kr is the number of edge diffractions and α
(i)
r

the i-th diffraction angle. The function

g (α) = b0 + b1α + b2α
2, α ∈ [0, π] ,

with parameters b0, b1, b2 ∈ R models the attenuation due to

a diffraction angle α. Wr is the number of walls in the direct

path from the transmitter to the receiver and Lw the loss per

obstructing wall.

Adequate values for the parameters are usually obtained

from a calibration with measurement data, see Section V.

IV. EDGE DIFFRACTION ON THE GPU

In the work [11] the benefit of using GPUs for radio

wave propagation predictions has been demonstrated by the

implementation of the COST-Walfisch-Ikegami (COST-WI)

model [1]. In this section we will extend these ideas by

including edge diffraction, particularly diffraction into street

canyons, enabling us to evaluate the path loss formula (1).

We briefly explain the principles of our algorithm. First the

line-of-sight region from the transmitter is determined, see

Algorithm 1. For all receiver points in non-line-of-sight the

number of obstructing walls is stored. The edge diffraction

paths are then calculated by repeated line-of-sight calculation

for each diffraction source.

 0

 200

 400

 600

 800

 1000

 1200

 2 3 4 5 6 7 8 9 10

C
a
lc

u
la

ti
o
n
s
 p

e
r

s
e
c
o
n
d

Gridsize [m]

Line-of-sight Evaluation Time

GPU 6600 GT
GPU 7800 GT

GPU 8800 GTX

Fig. 3. Line-of-sight calculation time on different generations of graphics
cards (Munich scenario 7km2).

The line-of-sight calculation from [11] is based on shadow

algorithms [12] from computer graphics. The basic idea of

this technique is to construct a polygonal representation of

the shadow cone. The intersection of the shadow cone and the

receiver plane is called the shadow polygon. Regions are in

line-of-sight if they are not inside of any shadow polygon and

vice versa. The shadow cones are constructed by identifying

the silhouette edges of the shadow caster and by moving them

away from the light source (here, the transmitter).

This method can be implemented efficiently on graphics

hardware. The building data, which is usually given as a

polygonal ground plot plus one height, see Figure 2, is

decomposed into single walls. The vertex processors are

responsible for shifting the silhouette points away from the

transmitter, resulting in the outline of the shadow polygon.

The rasterizer discretizes the supplying area into fragments,

and fills fragments inside the shadow polygon with non-line-

of-sight information. This is exactly what procedure getShad-

owPolygon in Algorithm 1 does, which is discussed in detail

in [11].

Furthermore, the number of blocking walls at each receiver

point can be easily found by slightly modifying these shadow

calculations. Instead of a solid drawing (replacement of frag-

ments) of the shadow polygon for each wall, an additive

blending (interpolation of fragments) is applied to count the

number of shadow fragments at each receiver point.

The construction of edge diffraction paths is described

in Algorithm 2. Procedure getDiffractionSources(NLOSregion)

provides all possible diffraction sources for a given region,

i.e., all building edges that are on the border between line-of-

sight and non-line-of-sight. The combined line-of-sight regions

from each visible building edge results in the region that can be

reached by the first level of edge diffraction. When combining

overlapping line-of-sight regions only the source point with the

lower diffraction angle is stored, because a lower path loss is

expected. This can easily be achieved by means of the depth

buffer. Applying this algorithm recursively and recording the

Algorithm 1 GETNLOSREGION(WallSet W , Transmitter T)
CLEARBUFFER(colorbuffer,RGB(LOS))

for all wall ∈ W do

{In the vertex processor}
poly ← GETSHADOWPOLYGON(wall,T)

{In the rasterizer}
fragments ← RASTERIZEPOLYGON(poly)

{In the fragment processor}
for all frag ∈ fragments do
frag.color ← RGB(NLOS)

end for

end for

return colorbuffer

Algorithm 2 CALCEDGEDIFFRACTION(WallSet W , Trans-
mitter T)

NLOSregion ← GETNLOSREGION(W ,T)
{NLOS region of transmitter}
Ds ← GETDIFFRACTIONSOURCES(NLOSregion)

{Get all possible diffraction sources}
CLEARBUFFER(Framebuffer,RGB(noDiffraction))

CLEARBUFFER(Depthbuffer,π)
for all d ∈ Ds do

NLOSfromSource ← GETNLOSREGION(W ,d)
{Get LOS region for each diffraction source}
for all frag /∈ NLOSfromSource do
frag.color ← RGB(d) {Diffraction source}
frag.depth ← α {Diffraction angle}
{Execute depth test}
if Depthbuffer[frag.pos] > frag.depth then
Depthbuffer[frag.pos] ← frag.depth
Framebuffer[frag.pos] ← frag.color

end if

end for

end for

return Framebuffer

corresponding source points (i.e. building edges) for the line-

of-sight regions leads to the construction of edge diffraction

paths of arbitrary depth.

The main building block of the presented algorithm is

Algorithm 1 getNLOSRegion. This is the most frequently used

component and hence the term which influences computation

time most of all. The implementation of this procedure is

therefore adapted from [11], leading to more than 500 line-

of-sight calculations per second at a resolution of five meters

on a graphics cards like the NVIDIA GeForce 8800 GTX,

see Figure 3. The reason for this tremendous amount of

line-of-sight computations per second is the well embedded

implementation on graphics processing units. Additionally, the

implementation of algorithms on graphics hardware benefits

from the enormous speedup between subsequent generations

of graphics cards.

Prediction model mean error MSE std. dev. Runtime

Ericsson (Raytrac-
ing + COST-WI),
[1]

2.3 dB - 7.1 dB -

Uni.-Karlsruhe
(Raytracing), [1]

2.4 dB - 9.1 dB -

CORLA [13] 0.1 dB 4.2 dB 4.2 dB 8 s

COST-WI (GPU)
[11]

10.7 dB 12.6 dB 6.6 dB 0.0045 s

RDM (GPU) [11] −0.2 dB 4.7 dB 4.7 dB 3.05 s

Model from Sec-

tion III (GPU)

0.1 dB 4.5 dB 4.5 dB 0.05 s

TABLE I

ACCURACY OF PROPAGATION MODELS IN THE COST-MUNICH SCENARIO

ALONG ROUTE METRO201.

V. PARAMETER CALIBRATION

Influencing factors that are usually not included in the urban

model like building material, roof style, texture, vegetation,

etc. are covered by an adjustable parameter vector, see also

[13]. A city with modern skyscrapers, mainly with glass fronts

and flat roofs, and a small town, mainly with pitched roofs and

stone fronts, will certainly be subject to different attenuation

patterns.

In introduction to multivariate analysis and least squares

estimation used for calibration is given in [14]. All parameters

introduced in Section III are merged into a vector z =
(γLOS , γNLOS , b0, b1, b2). Z denotes the set of all feasible
parameter vectors. Further, attenuation measurements M dB(r)
are given for receiver points r ∈ R, with N = |R|. The
dependency of the path loss formula (1) on the vector z is

indicated by writing P dB (r, z). A common performance index
is the mean squared error (MSE)

√

√

√

√

(

1

N

∑

r∈R

(M dB(r)− P dB (r, z))
2

)

(5)

which is minimized by

z
∗ := arg min

z∈Z

∑

r∈R

(M dB(r)− P dB (r, z))
2
. (6)

By solving (6), path loss predictions are easily adjusted to

different types of environment.

VI. RESULTS

For benchmarking purposes we used the building and mea-

surement data released in the COST 231 action for the city

of Munich, Germany [15]. In the following, all path loss

calculations are based on the parameter vector obtained by the

calibration on the measurement points along route METRO202

in the COST 231 Munich scenario. All predictions were

performed for the whole supplied area of approximately 7 km2

with a resolution of 5 m. Figure 4 visualizes a field strength

prediction with the above introduced wave propagation al-

gorithm. We observe, that in the particular Munich scenario

Fig. 4. Field strength prediction in Munich.

Measurement
Route

mean error MSE std. dev.

METRO200 2.1 dB 6.2 dB 5.9 dB
METRO201 0.1 dB 4.5 dB 4.5 dB
METRO202 -0.1 dB 5.7 dB 5.7 dB

TABLE II

ACCURACY OF THE PRESENTED MODEL IN THE COST-MUNICH

SCENARIO ALONG DIFFERENT MEASUREMENT ROUTES.

the first level of edge diffraction already provides sufficient

prediction accuracy when used in combination with (4). This

is mainly because (4) approximates roof diffraction effects in

the non-line-of-sight region further away from the transmitter.

Table I compares the accuracy and runtime of the presented

field strength prediction algorithm and previously published

results in [1], [11] and [13]. It can be seen that our algorithm

reaches the prediction quality of highly tuned ray launching

tools like CORLA [13] with an extraordinary fast computa-

tion time of under 0.05 s. Hence, with our implementation

more than 20 field strength predictions are possible in less

than one second. This allows real-time computation of wave

propagation, greatly improving the overall runtime of network

optimization algorithms. Furthermore, such a reduction of

runtime completely eliminates the need for pre-computations

of field strength predictions.

VII. CONCLUSIONS

The parallel architecture of today’s graphics cards is ex-

ploited to achieve extremely fast computation times. With

the first level of edge diffraction, computation times are as

fast as 0.05 seconds on a recent graphics card (NVIDIA

8800 GTX) and high quality predictions with a mean squared

error between 4.5 dB and 6.2 dB are achieved in the COST-

Munich scenario (7 km2), see Table II and Figure 5.

Future work will include mapping of other wave guid-

ing effects like reflection or diffuse scattering onto graphics

hardware. The final aim is a three dimensional radio wave

propagation algorithm solely implemented on the GPU.

REFERENCES

[1] E. Damosso, Ed., COST Action 231: Digital mobile radio towards future
generation systems, Final Report. Luxembourg: Office for Official
Publications of the European Communities, 1999.

[2] N. Geng and W. Wiesbeck, Planungsmethoden für die Mobilkommu-
nikation. Berlin: Springer, 1998.

[3] Telecommunication Network Consulting GmbH, Aachen. [Online].
Available: http://www.telnetcon.com

[4] M. Schmeink, “Optimierungsalgorithmen zur automatisierten Funknetz-
planung.” Ph.D. Thesis, RWTH Aachen University, 2005.

[5] P. Wertz, R. Wahl, G. Wölfle, P. Wildbolz, and F. Landstorfer., “Domi-
nant path prediction model for indoor scenarios,” in German Microwave
Conference (GeMiC), Ulm, April 2005, pp. 176–179.

[6] R. Wahl, G. Wölfle, P. Wertz, P. Wildbolz, and F. Landstorfer., “Domi-
nant path prediction model for urban scenarios,” in 14th IST Mobile and
Wireless Communications Summit, Dresden, June 2005.

[7] L. M. Correia, Ed., COST Action 273: Mobile Broadband Multimedia
Networks, Final Report. Academic Press, 2006.

[8] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E.
Lefohn, and T. J. Purcell, “A survey of general-purpose computation
on graphics hardware,” in Eurographics 2005, State of the Art Reports,
Aug. 2005, pp. 21–51.

[9] N. A. Carr, J. Hoberock, K. Crane, and J. C. Hart, “Fast GPU ray tracing
of dynamic meshes using geometry images,” in Proceedings of Graphics
Interface, Quebec, June 2006, pp. 203–209.

[10] D. Weiskopf, T. Schafhitzel, and T. Ertl, “GPU-based nonlinear ray
tracing,” in Computer graphics forum, vol. 23, September 2004, pp.
625–633.

[11] D. Catrein, M. Reyer, and T. Rick, “Accelerating radio wave propagation
predictions by implementation on graphics hardware,” in To appear in:
Proceedings: IEEE VTC Spring, 2007.

[12] M. McGuire, GPU Gems. Addison Welsey, 2004, ch. Effective Shadow
Volume Rendering, pp. 137–166.

[13] R. Mathar, M. Reyer, and M. Schmeink, “3d ray launching algorithm
for urban field strength prediction,” Theoretische Informationstechnik,
RWTH Aachen, Tech. Rep., 2006.

[14] K. V. Mardia, J. T. Kent, and J. M. Bibby, Multivariate Analysis.
London: Academic Press, 1979.

[15] G. Mannesmann Mobilfunk GmbH, “Cost 231 - urban micro
cell measurements and building data.” [Online]. Available:
”http://www.ihe.uni-karlsruhe.de/forschung/cost231/cost231.en.html”

 80

 100

 120

 140

 160

 180
 0 100 200 300 400 500 600 700 800 900

p
a
th

 l
o
s
s
 [
d
B

]

measurement location number

mean error [dB]: 2.11695 mean squared error [dB]: 6.24579 std. dev. [dB]: 5.87609

Prediction
Measurement

(a) Route METRO200

 80

 100

 120

 140

 160

 180
 0 50 100 150 200 250 300 350

p
a
th

 l
o
s
s
 [
d
B

]

measurement location number

mean error [dB]: 0.064891 mean squared error [dB]: 4.50492 std. dev. [dB]: 4.50445

Prediction
Measurement

(b) Route METRO201

 80

 100

 120

 140

 160

 180
 0 200 400 600 800 1000

p
a
th

 l
o
s
s
 [
d
B

]

measurement location number

mean error [dB]: -0.0536679 mean squared error [dB]: 5.71088 std. dev. [dB]: 5.71062

Prediction
Measurement

(c) Route METRO202

Fig. 5. Comparison between measured and predicted path loss in the COST
231 Munich scenario.

