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ABSTRACT

Evaluating the performance measures of distributed detection
in sensor networks is important for design procedures aiming
at optimal configurations. Direct computation of the global
error probabilities is a difficult problem and feasible only in
some special cases. In this paper, we present an approach
that provides closed-form upper bounds on the detection er-
ror probabilities in the parallel fusion network which are both
computationally simple and numerically tight. The bounds
are derived by combining a probability inequality formulated
by Hoeffding with a multiplicative form factor which is due
to Talagrand. We demonstrate that the bounds apply to sensor
networks of varying size, an arbitrary number of local quan-
tization levels, and non-identical sensors.

Index Terms— Distributed detection, parallel fusion net-
work, quantization, error analysis, performance bounds

1. INTRODUCTION

System-wide optimization of sensor networks for detection
applications requires efficient methods for evaluating the per-
formance measures of interest, e.g., the probability of false
alarm, the probability of miss, or the average probability of er-
ror. Direct computation of these probabilities is feasible only
for networks with a small number of sensors and few quanti-
zation levels. Existing approaches to performance evaluation
which circumvent direct computation include determining the
asymptotic error exponents of the distributed detection sys-
tem as the number of sensor nodes tends to infinity [1, 2]. In
[3], Aldosari and Moura have presented an application of the
saddlepoint method to provide computationally simple and
accurate approximations for the various error probabilities.
However, the obtained expressions require the numerical so-
lution of a saddlepoint equation. In this paper, we present
closed-form upper bounds on the detection error probabilities
for sensor networks of arbitrary size which are both compu-
tationally simple and numerically tight.
We consider the parallel fusion network in which all sen-

sors process their observations independently and transmit lo-
cal decisions to a fusion center for decision combining. Opti-
mal fusion of local decisions in a Bayesian framework yields
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Fig. 1. Parallel fusion network.

expressions for the global detection error probabilities, i.e.,
the probability of false alarm and the probability of miss, tak-
ing the form of tail probabilities. Our aim is to bound these
probabilities by analytical expressions which are both compu-
tationally inexpensive and tight. For this purpose, we adopt
a probability inequality introduced by Hoeffding which pro-
vides exponential bounds on the tail probabilities for sums of
bounded random variables [4]. In order to improve the sharp-
ness of the obtained bounds, we employ a multiplicative form
factor following a technique developed by Talagrand [5]. Fi-
nally, it turns out that in sensor network scenarios the form
factor can be simplified considerably leading to computation-
ally inexpensive expressions.

The remainder of the paper is organized as follows. In
section 2, the problem of distributed detection in the paral-
lel fusion network is stated. In section 3, we formulate the
Bayes-optimal fusion rule and give the distribution of the in-
volved random variables. Expressions for the global detection
error probabilities are discussed in section 4. The main results
are presented in section 5, where we derive computationally
simple and tight analytical bounds on the global detection er-
ror probabilities. We present numerical results in section 6
and conclude in section 7.
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2. DISTRIBUTED DETECTION

The problem of distributed detection in the parallel fusion net-
work is as follows. We consider a binary hypothesis testing
problem with hypotheses H0 and H1 describing the state of
the observed environment. The associated prior probabilities
are π0 = P (H0) and π1 = P (H1). A set of N sensors re-
ceive random observations Xi ∈ Xi, i = 1, ..., N , which are
assumed to be conditionally independent across sensors given
the underlying hypothesis, i.e., the joint conditional probabil-
ity density function (pdf) of the observations factorizes to

f(x1, ..., xN |Hk) =

N∏
i=1

fi(xi|Hk), k = 0, 1.

The sensors process their observations independently by form-
ing local decisions Ui = γi(Xi), i = 1, ..., N . In the case of
M -ary quantization, the sensor decision rules γi are mappings

γi : Xi → {1, ..., M}, i = 1, ..., N.

Warren and Willet have shown that the sensor decision rules
leading to globally optimal configurations under the Bayes
criterion are monotone likelihood ratio partitions of the sensor
observation spaces X1, ...,XN , provided that the observations
are conditionally independent across sensors [6]. Hence, in
the optimal design of distributed detection systems under the
assumption of conditional independence, it is necessary only
to consider sensor decision rules γi which can be parameter-
ized by a set of real quantization thresholds {λi,0, ..., λi,M},
where λi,0 = 0, λi,M = ∞, and λi,j ≤ λi,j+1. In this way,
each local decision Ui is characterized by two sets of condi-
tional probabilities {αi1, ..., αiM} and {βi1, ..., βiM} with

αij � P (Ui = j|H0) = P (λi,j−1 ≤ Li < λi,j |H0),

βij � P (Ui = j|H1) = P (λi,j−1 ≤ Li < λi,j |H1),

where Li = fi(Xi|H1)/fi(Xi|H0) is the local likelihood ra-
tio of observation Xi. In the sequel, we assume that the con-
ditional probabilities {αi1, ..., αiM} and {βi1, ..., βiM} are
computable given the local observation statistics fi( · |Hk),
k = 0, 1, and the quantization thresholds {λi,0, ..., λi,M} for
all i = 1, ..., N .
In this paper, we assume error-free communication links

between the sensors and the fusion center. The sensors trans-
mit local decisionsU1, ..., UN to the fusion center which com-
bines them to yield the global decision U0 = γ0(U1, ..., UN ).
The fusion rule γ0 is a binary-valued mapping

γ0 : {1, ..., M}N → {0, 1}.
The sensor network detection performance is characterized
by the global probability of false alarm Pf = P (U0 = 1|H0)
and the global probability of miss Pm = P (U0 = 0|H1). The
average probability of error Pe = π0Pf +π1Pm is a weighted
sum of the false alarm and miss rate.

3. OPTIMAL FUSION

We consider optimal fusion of the local decisions U1, ..., UN

in a Bayesian framework with a zero-one loss function. Thus,
the objective is to determine the fusion rule that minimizes the
average probability of error. According to Varshney [7], the
optimal fusion rule under the Bayes risk criterion in the case
of conditionally independent decisions can be performed by
evaluating a log-likelihood ratio test of the form

N∑
i=1

Li

1
≷
0

log

(
π0

π1

)
� ϑ, (1)

where Li = log(P (Ui|H1)/P (Ui|H0)) is the log-likelihood
ratio of making a decision Ui, and ϑ is the fusion threshold.
The log-likelihood ratio Li is a discrete random variable that
takes one out ofM possible values

lij � log

(
βij

αij

)
, j = 1, ..., M, (2)

and has conditional probability mass functions given by

P (Li = lij |H0) = αij , (3)

P (Li = lij |H1) = βij . (4)

For equations (3) and (4) to hold, we assume that all possible
realizations of the log-likelihood ratio Li in (2) are distinct.

4. DETECTION ERROR PROBABILITIES

When using the Bayes-optimal fusion rule according to (1),
the global probability of false alarm Pf and the global proba-
bility of miss Pm are determined by the conditional tail prob-
abilities

Pf = P (

N∑
i=1

Li ≥ ϑ|H0) (5)

and

Pm = P (

N∑
i=1

Li < ϑ|H1). (6)

Exact computation of these tail probabilities can be performed
by evaluating the test (1) for all MN possible realizations
of the local decisions U1, ..., UN under each hypothesis and
summing up the corresponding probabilities. This approach
is not appropriate for large-scale sensor networks, especially
when multiple evaluations of the detection performance mea-
sures are necessary for sensor network optimization.

5. PERFORMANCE BOUNDS

In this section, we apply a combination of a probability in-
equality formulated by Hoeffding and a method developed by
Talagrand which delivers a multiplicative form factor in order
to obtain sharp bounds on the tail probabilities (5) and (6).
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5.1. Probability of false alarm

In this subsection, we derive an upper bound on the global
probability of false alarm Pf = P (U0 = 1|H0). Introducing
the conditional zero-mean random variables

L̂i � Li − E[Li|H0] = Li −
M∑

j=1

αij lij , i = 1, ..., N,

where E[ · |Hk] denotes conditional expectation given hypo-
thesis Hk, and the new threshold

ϑ0 � ϑ−
N∑

i=1

M∑
j=1

αij lij ,

we obtain

Pf = P (

N∑
i=1

L̂i ≥ ϑ0|H0). (7)

Considering equation (7), we first apply a probability inequal-
ity for the sum of zero-mean bounded random variables for-
mulated by Hoeffding [4]. In order to improve the sharpness
of the obtained exponential bound, we use a method intro-
duced by Talagrand which delivers a multiplicative form fac-
tor [5]. Eventually, we obtain the bound

Pf ≤
(

ϕ

(
ϑ0

σ0

√
N

)
+

K0B0

σ0

√
N

)
e−NH(σ2

0
,b0,

ϑ0

N
), (8)

where ϕ(x) = e
x2

2 (1−Φ(x)), and Φ is the cumulative distri-
bution function (cdf) of the standard normal distribution. The
quantities involved are given by

σ2
0 �

1

N

N∑
i=1

M∑
j=1

(lij −
M∑

k=1

αiklik)2 · αij ,

b0 � max
i,j

lij −
M∑

k=1

αiklik,

B0 � max
i,j

|lij −
M∑

k=1

αiklik|,

and K0 is a small constant value which has to be obtained
numerically according to [5]. The function H is defined as

H(σ2, b, t) �

(
1 +

bt

σ2

)
σ2

b2 + σ2
log

(
1 +

bt

σ2

)

+

(
1− t

b

)
b2

b2 + σ2
log

(
1− t

b

)
.

5.2. Probability of miss

The construction of an upper bound on the global probability
of miss Pm = P (U0 = 0|H1) follows the same lines as for
the probability of false alarm. We obtain

Pm ≤
(

ϕ

(
ϑ1

σ1

√
N

)
+

K1B1

σ1

√
N

)
e−NH(σ2

1
,b1,

ϑ1

N
), (9)

with the functions ϕ and H as defined above and the corre-
sponding quantities

ϑ1 �
N∑

i=1

M∑
j=1

βij lij − ϑ,

σ2
1 �

1

N

N∑
i=1

M∑
j=1

(lij −
M∑

k=1

βiklik)2 · βij ,

b1 � max
i,j

M∑
k=1

βiklik − lij ,

B1 � max
i,j

|lij −
M∑

k=1

βiklik|.

Again,K1 has to be obtained numerically.

5.3. Approximate performance bounds

Due to the fact thatK0, K1 �
√

N for typical sensor network
scenarios, we will drop the second term of the multiplicative
form factor in (8) and (9) and consider the approximate per-
formance bounds

Pf � ϕ

(
ϑ0

σ0

√
N

)
e−NH(σ2

0
,b0,

ϑ0

N
), (10)

Pm � ϕ

(
ϑ1

σ1

√
N

)
e−NH(σ2

1
,b1,

ϑ1

N
). (11)

The evaluation of these expressions is straightforward and
yields tight bounds on the corresponding error probabilities,
which is illustrated by numerical examples in the next section.

6. NUMERICAL RESULTS

We indicate the sharpness of the expressions (10) and (11) by
comparing the bound on the average probability or error

Pe � π0ϕ

(
ϑ0

σ0

√
N

)
e−NH(σ2

0
,b0,

ϑ0

N
)

+ π1ϕ

(
ϑ1

σ1

√
N

)
e−NH(σ2

1
,b1,

ϑ1

N
)

(12)

with the sensor network detection performance obtained by
extensive Monte Carlo simulations.
Example 1. In the first example, we assume binary quan-

tization of local sensor observations, i.e., M = 2. We as-
sume that the hypotheses H0 and H1 have prior probabilities
π0 = 0.8 and π1 = 0.2. The local detectors transmit realiza-
tions of 0/1-valued random variables U1, ..., UN which shall
be characterized by the following local false alarm and miss
probabilities

αi1 = P (Ui = 1|H0) = 0.2 + (i− 1) · 0.002,

βi0 = P (Ui = 0|H1) = 0.5− i · 0.002, i = 1, ..., N.
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Fig. 2. Performance bound vs. simulation (M = 2).

Reasonably, the higher the false alarm rate of a sensor the
lower shall be its miss rate. The number of sensors N varies
between 5 and 100. Fig. 2 shows the evaluation of the perfor-
mance bound (12) on the average probability of error in com-
parison with numerical results obtained by extensive Monte
Carlo simulations. Besides its high accuracy, the performance
bound appears to be valid for both small and large sensor net-
work scenarios.
Example 2. Here, we assume a network of N quater-

nary local detectors, i.e., M = 4. Now we assume that
the hypotheses H0 and H1 are equally likely to occur, i.e.,
π0 = π1 = 1/2. We specify the conditional probabilities
of the local decisions Ui under hypotheses H0 and H1 in the
following way

αi1 = P (Ui = 1|H0) = 0.3, αi2 = P (Ui = 2|H0) = 0.3,

αi3 = P (Ui = 3|H0) = 0.2, αi4 = P (Ui = 4|H0) = 0.2,

βi1 = P (Ui = 1|H1) = 0.1, βi2 = P (Ui = 2|H1) = 0.2,

βi3 = P (Ui = 3|H1) = 0.3, βi4 = P (Ui = 4|H1) = 0.4,

for all i = 1, ..., N , i.e., in this example we assume identical
local quantizers. Again, we consider sensor networks con-
sisting of 5 to 100 sensors. Fig. 3 shows numerical results
provided by the performance bound (12) and extensive sim-
ulations. As in the previous example, the comparison reveals
the high accuracy and validity of the constructed performance
bound.

7. CONCLUSIONS

We presented an approach to construct tight bounds on the de-
tection error probabilities in parallel fusion sensor networks.
The results in this paper provide computationally simple ex-
pressions for performance bounds that apply to sensor net-
works of varying size with an arbitrary number of quantiza-
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Fig. 3. Performance bound vs. simulation (M = 4).

tion levels and non-identical sensors. The bounds are sup-
posed to be especially useful in sensor network optimization,
where multiple evaluations of the performance measures of
interest are necessary. Furthermore, the obtained analytical
expressions pave the way for optimization by setting the deri-
vatives of the performance bounds with respect to selected
system parameters equal to zero.
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