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Abstract— Least square and minimum mean square error
data estimation based on rectangular and circulant channel
submatrices is compared in terms of estimation quality, storage
requirements and the number of multiplications. The circulant
case is applied in OFDM based transmission systems. When
applying an approximated Cholesky decomposition, the compu-
tation of the estimator in the rectangular case may require even
less computations than in the circulant case, while yielding better
bit error rates in a time dispersive wireless transmission scenario.
The considered approximations may improve the condition of the
estimator and thus may even yield lower bit error rates than the
exact estimator. The actual computation of the estimates is usually
more efficient in the circulant case than in the rectangular.

I. INTRODUCTION

In high speed wireless communications the transmitted
data symbols will usually suffer from severe inter symbol
interference caused by the time dispersive channel. Since the
data symbols are assumed to be transmitted very fast, only
a very short time period is available in real time applica-
tions to remove this interference. Processing power is also
limited, therefore there is a need to perform the interference
removal very efficiently. Block transmission systems relying
on Orthogonal Frequency Domain Multiplexing (OFDM) are
seen to fulfill this requirement and are therefore used in many
high speed wireless communication standards [1], [3], [4].
If we describe the OFDM based block transmissions by a
linear data model, different concept are found that contribute
to OFDM’s low complexity in equalizing the wireless channel:
Data blocking is used to create small circulant structured
submatrices, least square estimates of the transmitted data are
computed blockwise on the basis of the small submatrices,
and the eigenvalue decomposition (EVD) of the circulant
submatrices is used [6], [8], [9].

It is known that the estimation of the transmitted data
based on rectangular structured submatrices shows significant
advantages in terms of the quality of the estimates and the
guaranteed existence of the estimator [5], [6]. However, it
is seen to be far more computational demanding in terms of
number of multiplications and storage requirements. Here we
suggest an implementation of the data estimator on the basis
of rectangular submatrices by using approximated Cholesky
decompositions. By using the approximations, the required
number of multiplications to compute the estimator and the
required storage may be even smaller than in the circulant

case. However, the estimation of the data itself requires more
multiplications in the rectangular case than in the circulant
case, if the size of one data block is only a few times
longer than the channel vector, which is usually the case
in the above cited WLAN standards. We also find that the
considered approximations may have a positive effect on the
estimation quality. They may improve the condition number
of the exact Cholesky factor and thus feature lower noise
enhancement, which might be reflected in lower bit error rates
of a block transmission system applying the approximated
Cholesky factors instead of the exact ones.

A system model that is used to discuss blockwise Least
Square (LS) and Minimum Mean Square Error (MMSE) esti-
mation on the basis of rectangular and circulant submatrices
is presented in Section II. The number of multiplications and
the storage requirements for computing the data estimates
are compared for the two structures of submatrices. In the
circulant case, the EVD is applied, in the rectangular case
the Cholesky decomposition. The usage of the approximated
Cholesky factors is discussed in Section III. Bit error rates
of block transmission systems that apply the considered esti-
mation methods are compared in Section IV. Conclusions are
drawn in Section V.

II. SYSTEM MODEL

A data vector d ∈ C
JB is to be transmitted over a time

dispersive wireless channel that is described by a channel
vector h ∈ C

L. On the channel, which is assumed to be
time invariant during the transmission of the data vector d,
a noise vector n ∈ C

JB+L−1, which is obtained by sampling
a white Gaussian noise process with power σ2, is additively
superimposed. The received vector x ∈ C

JB+L−1 can then
be computed according to

x = Hd + n, (1)

where H ∈ C
(JB+L−1)×(JB) denotes the channel convolution

matrix. The data vector d consists of J data blocks d(j) ∈ C
B

that are arranged amongst one another. The receiver shall
compute linear estimates d̂ of the transmitted data vector
d by using perfect channel state information (knowledge of
vector h), an estimate of the power σ2 and the received
vector x. Assuming uncorrelated data d and noise n and
an autocorrelation of the data according to E{ddH} = I ,
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where I denotes an identity matrix, MMSE estimates of the
transmitted data and the MMSE estimator matrix are obtained
from

d̂mmse =
(
HHH + σ2I

)−1

HHx. (2)

Setting the power σ2 to zero in this equation yields the LS
estimates of the transmitted data and also the LS estimator.

If we use this approach in high speed wireless commu-
nications we are confronted with the fact that only a very
short period of time is available to compute the MMSE/LS
estimator from the channel vector h and the noise power
σ2 and to compute the matrix vector product between the
estimator and the received vector. This approach might be
inappropriate. First, because processing power is limited, and
the larger the involved matrices and the dimension L of the
channel vector, the more processing power and storage is
required to compute the MMSE/LS estimator and the data
estimates. Second, the assumption of time invariant channels
does not hold for arbitrarily long data vectors d.

To reduce the required computational complexity it would
be very helpful to reduce the size of the data vector d,
therefore reducing the size of the matrices that are involved
in the computation of the estimates. If we divide the data
vector d in equation (1) into many (lets say J) data blocks
d(j) of block size B and separate the data blocks by guard
periods of sufficient length, we obtain several much smaller
systems of equations that are independent of each other. The
LS/MMSE estimation may then be performed on the basis
of the small systems of equations. This concept is known
as data blocking. It may reduce the required computational
complexity enormously: We have to compute the LS/MMSE
estimator only once for one small data block, which means
we may compute the estimator on the basis of a small channel
submatrix. The same estimator can then be used to compute
all estimates of the J data blocks d(j) that belong to the
data vector d in a blockwise manner. Therefore, both the
required computational complexity to compute the estimator
and to compute the estimated symbols is reduced. Once the
estimator is computed, we would need B + L − 1 complex
multiplications for the computation of one estimated symbol
instead of JB + L − 1.

If we use zero pads that serve as a guard period between
the data blocks, we may decompose the channel matrix H
of equation (1) into many small rectangular channel matrices
H̄B . We illustrate this for the case J = B = L = 2, where
we have to use L − 1 = 1 zero pad:
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If we use cyclic prefixing instead, add the columns that
correspond to identical data symbols and discard the first
L−1 rows we obtain independent circulant structured channel
submatrices H̃B :
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The existence of the LS estimator in the rectangular case is
guaranteed, whereas in the circulant case, the estimator might
not exist. However, the MMSE estimator is guaranteed to exist
in both cases.

The insertion of a cyclic prefix actually requires transmis-
sion energy, which is discarded at the receiver, whereas zero
padding does not require extra transmission energy. Basically,
different data blocking methods convert the large system of
equation (1) into J small systems, whose system matrix is
either rectangular (subscript R) or circulant (subscript C)[6].
The small systems are

x
(j)
R = H̄Bd

(j)
R + n

(j)
R , x

(j)
C = H̃Bd

(j)
C + n

(j)
C . (7)

Data estimation may now be performed on the basis of these
systems. The LS/MMSE estimators in the two cases are
according to equation (2) given by

ER =
(
H̄

H
B H̄B + σ2

RI
)−1

H̄
H
B , (8)

EC =
(
H̃

H

B H̃B + σ2
CI

)−1

H̃
H

B . (9)

Each of the J received data blocks need to be multiplied by
one of those estimators. To keep the computational complexity
of this operation as small as possible suitable matrix decom-
positions may be applied.

Here we use the Cholesky decomposition of correlation
matrices and the EVD of circulant matrices [2]. The Cholesky
decomposition of the correlation is given by(

H̄
H
B H̄B + σ2

RI
)

= RH
B RB , (10)

where RB is the upper triangular Cholesky factor. The EVD
is given by

H̃B = F H
B DBF B , (11)

where F B and F H
B are the DFT and IDFT matrices of size

B × B. The diagonal matrix DB contains the eigenvalues
of H̃B . Applying these decompositions to the estimators in
equations (8) and (9) leads to

ER = R−1
B R−H

B H̄
H
B , (12)

EC = F H
B

(
DH

B DB + σ2
CI

)−1

DH
B︸ ︷︷ ︸

D−1
B,mmse

F B . (13)
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By using these estimators, we would require the following
number of real multiplications to compute the estimates of
one data block d(j). In the circulant case, we have to perform
a DFT, an IDFT and a multiplication by a diagonal matrix.
By selecting B as a power of 2, FFT algorithms may be
applied. They require 2B ld(B/2) real multiplications per FFT
and thus we obtain a total of MC,EVD = 4B + 4Bld(B/2)
real multiplications. Note that the number is independent of
the dimension L of the channel vector and depends solely
on the block size B. In the rectangular case, we perform
the multiplication by the inverse Cholesky factors by using
back/forward substitutions. Since the Cholesky factor retains
the band structure of the correlation matrix, we require less
than 4LB real multiplications per substitution. The mul-
tiplication by the banded matrix H̄

H
B requires 4LB real

multiplications. So, we obtain a total of MR,Chol < 12LB.
Here, the number depends on both the dimension L of the
channel vector and the block size B. Without using the matrix
decompositions, the matrix vector product of the estimator and
a received data block would have required MC = 4B2 and
MR = 4B(B + L − 1) real multiplications, respectively. We
may compare the complexity of the rectangular and circulant
cases by their ratio of necessary real multiplications:

MR,Chol/MC,EVD < 3L/(1 + ld(B/2)). (14)

Setting the block size B = 64 and L = 17 (parameters from
WLAN standards [1], [3]), leads to MR/MC < 8.5. Smaller
channel dimensions L or larger block sizes B would improve
the ratio in favour of the rectangular system. However, for
the considered parameters, the circulant system shows a lower
number of multiplications. The advantages of the rectangular
systems are higher estimation quality and the guaranteed
existence of the LS estimator [6].

So far, we have considered the complexity for computing the
estimates of one data block from the received symbols and the
estimator. Additionally, we need to consider the computation
of the estimator from the channel vector and the noise power,
which will be addressed in the next section.

III. APPROXIMATED CHOLESKY FACTORS

In the circulant case, the computation of the estimator is
particularly simple. We need to perform one DFT from the
first column of H̃B (denoted by H̃B(:, 1)) to obtain the
eigenvalues in DB . If the eigenvalues are arranged on a
diagonal by using the function ’diag’, we may describe the
diagonal matrix DB as

DB = diag
(
F BH̃B(:, 1)

)
. (15)

From this matrix and a noise power σ2
C we need to compute

the diagonal matrix D−1
B,mmse = (DH

B DB + σ2
CI)−1DH

B

and store the B values in it. The computation of DB re-
quires 2Bld(B/2) real multiplications. For the computation of
D−1

B,mmse further 4B real multiplications (and B inverse real
values) are necessary. On total the computation of D−1

B,mmse
requires MinvDmmse = 4B + 2Bld(B/2) real multiplications.

In order to compute the Cholesky factor, we must first com-
pute the values in the correlation matrix CB = (H̄H

B H̄B +
σ2

RI). Since the correlation matrix shows a hermitian banded
Toeplitz structure, we only have to compute the first row. This
requires 2L(L+1) real multiplications. The band structure of
the correlation matrix and the corresponding Cholesky factors
are depicted in Figure 1. Unfortunately, the Toeplitz structure
of the correlation matrix is not handed down to the Cholesky
factors. The actual computation of the Cholesky factor from

=

L

B

L

B

CB RH
B RB

Fig. 1. Cholesky decomposition. The band structure of CB is retained in
the Cholesky factors. The Toeplitz structure is not.

the correlation matrix is performed by the Cholesky algo-
rithm [2], [6]. It may compute the values in RB row by row,
starting with the first row. In each row, the diagonal element is
computed first, followed by the non diagonal elements that are
to the right of the diagonal element. We only have to compute
the values in the Cholesky factor that are different from zero
and we only have to perform the multiplications, where no
zero value is involved. If we do so, 2(L − 1)(B − L/2) real
multiplications are required to compute the diagonal elements.
The computation of the elements of one row without diagonal
element require 2(L − 2)(L − 1) real multiplications. Since
we may also save some operations in the computation of
the first and last L − 1 rows, we get an upper limit of the
required number of real multiplications to compute the banded
Cholesky factor from the channel vector and the noise power:
Mbandchol < 2L(L+1)+2(L−1)(B−L/2)+2B(L−2)(L−1).

By now, the computation of the correlation matrix and the
Cholesky factor seems to demand significantly more computa-
tions than the computation of the diagonal matrix D−1

B,mmse in
the circulant case of the estimator. It also requires more storage
space: A little less than LB + L values need to be stored
instead of B in the circulant case. For the example (B = 64,
L = 17), this means the computation of the exact Cholesky
factor requires about 37 times the number of multiplications
required by the computation of D−1

B,mmse from the channel
vector and the noise power. To reduce these computational
requirements in the rectangular case, we consider the following
approximations: The correlation matrix CB shows a Toeplitz
structure, which is not handed down to the Cholesky factor.
However, the Cholesky factor of a correlation matrix that
occurs in the context of joint detection of multi-user CDMA
signals, shows an approximated Toeplitz structure [7]. It is
observed there that the Cholesky factor draws with increasing
number of computed rows much closer to a Toeplitz structure.
This observation also holds for the correlation matrix CB

which we are dealing with here.
This observation might be exploited by computing only a
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Matrix Approx. number of real mult.

D−1
B,mmse 896

Exact banded Cholesky factor 33108
Approx. Cholesky factor (D = 17) 9044
Approx. Cholesky factor (D = 1) 628

TABLE I

REAL MULTIPLICATIONS NECESSARY TO COMPUTE DIFFERENT MATRICES

(B = 64, L = 17).

few rows, lets say D rows, of RB and by copying the last
computed row (B−D) times down the diagonal. Then, an ap-
proximated Cholesky factor is obtained. If the parameter D is
small enough, the required number of multiplications to com-
pute the approximated Cholesky factor is enormously smaller
than the computation of the exact Cholesky factor. It might
even be smaller than the number of multiplications required
to compute the values in D−1

B,mmse. The number of necessary
real multiplications to compute the approximated Cholesky
factors, the exact Cholesky factor and the matrix D−1

B,mmse

from the channel vector and the noise power are compared in
Table I for L = 17 and B = 64. The larger the parameter
D, the lower is the deviation between the approximated and
the exact Cholesky factor. The approximation also lowers the
required storage space since now LD + L values need to be
stored (the values in the first D rows of RB and in the first
row of H̄

H
B ) instead of a little less than LB + L (values in

the whole Cholesky factor and in the first row of H̄
H
B ). We

may also force a complete Toeplitz structure into the Cholesky
factor by copying the Dth row not only down the diagonal but
also overwriting the first D − 1 rows. In this case, we only
have to store 2L values to represent this approximation of the
Cholesky factor and the banded Toeplitz matrix H̄

H
B . These

are less values than we would store in the circulant case, since
2L is smaller than B in the case of B = 64 and L = 17.

IV. SIMULATIONS

In this section, we compare the bit error rates as function
of EB/N0 values of different block transmission systems that
apply the presented methods. The reference system is based
on the data estimation by applying the EVD of circulant
submatrices. This system is very similar to the well known
OFDM based transmission systems with the main difference
that the IFFT (the multi carrier modulation) is performed
at the receiver. Therefore, it shows exactly the same overall
complexity in computing the data estimates as OFDM based
block transmissions. The circulant submatrices are created
by cyclic prefixing at the transmitter side and by discarding
some received symbols, see example in equations (5) and (6).
The EVD of the LS/MMSE estimator, which is computed on
the basis of perfect channel state information, is then used
to compute the estimated data. Rectangular submatrices are
created by zero padding at the transmitter. The Cholesky
decomposition is used to compute the LS/MMSE estimates of
the transmitted data on the basis of the rectangular submatrix.
We use both the exact Cholesky factor and the approximations
of it. The first approximation (App1) uses a Cholesky factor,
which is computed up to the Dth row, which is then copied

down the diagonal. In addition, the second approximation
(App2) overwrites the first D− 1 rows of the Cholesky factor
with the Dth row to obtain a complete Toeplitz structure. The
corresponding transmission systems are depicted in Figure 2.

In our simulations we use BPSK modulated data, a block
size of B = 64 and a channel length of L = 17. The
L = 17 channel taps are separated by the symbol duration
and their amplitudes are Rayleigh distributed. The mean
powers of the Rayleigh taps are −4, 0, −1, −3, −2, −3,
−15, −7, −6, −8, −9, −10, −3, −15, −7, −6, and −8
dB, respectiveley. In Figure 3, we consider the bit error
rates of transmissions using LS estimation on the basis of
either circulant or rectangular submatrices. The case ’REC-
LS-CHOL’ uses the exact Cholesky factor in the rectangular
case. It clearly outperforms ”CIR-LS-EVD”, which computes
the LS estimates on the basis of the circulant system. The
large difference between these two bit error rate curves reflect
that the LS estimator might not exist in the circulant case and
that even when it exists, it averages a larger condition number
than the one based on rectangular submatrices. We then use
an approximated Cholesky factor (case ’REC-LS-APP1-D=1’)
with approximation depth D = 1. This means only the first
row of the Cholesky factor is computed, which requires partic-
ularly few computations, and is then used to build a Toeplitz
structured approximated Cholesky factor. This method shows
up to about 13 dB a lower simulated bit error rate than using
the exact Cholesky factor. The approximated Cholesky factor
shows an improved condition number compared to the exact
Cholesky factor. Therefore, it causes lower noise enhancement
and can finally result in lower bit error rates than the exact
method. In contrast, for higher EB/N0 values, the influence
of noise enhancement is diminished and the approximation
leads to an error floor, which means that for large EB/N0

values the exact method results in a lower bit error rate than
the approximated one. Increasing the approximation depth
to D = 17 (case ’REC-LS-CHOL-APP1-D=17’), shows the
lowest BER in the range of ratios EB/N0 considered. By using
the second approximation, i.e. building a full Toeplitz matrix
on the basis of the Dth computed row does not result in an
improved condition of the Cholesky factor. This approximation
shows the highest floor of the simulated BER, see case ’LS-
CHOL-APP2-D=17’.

From this, we see that the approximations may have two
effects. On one hand, they only compute the approximated
solution of a system of equations, on the other hand, the
approximation may reduce the influence of noise enhancement.
Therefore, approximations may also result in improved quality
of the estimates. This also gives a design rule of an approx-
imation of receiver algorithms in general: The approximation
should reduce the condition number of the respective system
matrix.

In contrast to the LS estimator, the existence of the MMSE
estimator on the basis of the circulant matrix is guaranteed.
The MMSE estimator also averages a lower condition number.
This results in a significantly improved bit error rate of the
case ’CIR-MMSE-EVD’ in Figure 4 in comparison to case
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Fig. 2. Block transmission systems using zero padding and LS/MMSE estimation on the basis of either circulant or rectangular submatrices. We also apply
the EVD and the exact/approximated Cholesky decomposition.
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Fig. 3. Comparison of simulated bit error rates of block transmissions
applying least square estimation based on rectangular (REC) or alternatively
circulant (CIR) subsystems. The data estimates in the rectangular case are
computed by using the Cholesky decomposition (CHOL) or alternatively by
using the approximations of the Cholesky factors (APP1, APP2), which are
described in Section III. The row of the Cholesky factor which is used in the
approximations is either set to D = 1 or D = 17.

’CIR-LS-EVD’ in Figure 3. However, a good estimate of the
noise power σ2 is required, which is not the case in the
LS estimation. Cases ’REC-MMSE-CHOL-APP1-D=1’ and
’REC-MMSE-CHOL-APP2-D=17’ show a lower bit error rate
than ’CIR-MMSE-EVD’ up to about 9 and 13 dB, respectively.
In the considered range, the first approximation ’REC-MMSE-
APP1-D=17’ shows a similar bit error rate than the exact
Cholesky factor ’REC-MMSE-CHOL.’

V. CONCLUSIONS

The usage of the EVD for computing the LS/MMSE
estimates in the circulant case may result in lower num-
ber of multiplications and lower storage requirements for
computing the estimates and the estimator than using the
Cholesky decomposition in the rectangular case. However, if
the considered approximations of the Cholesky factors are
used, storage requirements and the number of multiplications
required to compute the estimator in the rectangular case may
even become lower than in the circulant case. The computation
of the data estimates is usually more efficient in the circulant
case (assuming the block size does not significantly exceed
several times the channel length).

The considered approximations may have the effect of
improving the condition of the estimator in the rectangular
case. This is reflected in a bit error rate that is up to a specific
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Fig. 4. Comparison of simulated BERs of block transmissions applying
minimum mean square estimation based on rectangular (REC) or alternatively
circulant (CIR) subsystems. The data estimates in the rectangular case are
computed by using the Cholesky decomposition (CHOL) or alternatively by
using the approximations of the Cholesky factors (APP1, APP2), which are
described in Section III. The row of the Cholesky factor which is used in the
approximations is either set to D = 1 or D = 17.

ratio EB/N0 even lower if the approximated instead of the
exact Cholesky factor is used. One may think of designing
approximations that lower beside the storage requirements and
number of multiplications also the condition number. Then,
the approximation may even improve bit error rates in noisy
environments.
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