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Analyzing Routing Strategy NFP in Multihop 
Packet Radio Networks on a Line 

Rudolf Mathar and Jurgen Mattfeldt 

Abstract - We present a one-dimensional model to  
analyze routing strategy N F P  (Nearest with Forward 
Progress) for a multihop packet radio network. It is 
assumed that each station has adjustable transmission 
range to  address target nodes, distributed on a line ac- 
cording to  a nonhomogeneous Poisson process. N F P  
transmits to  the nearest neighbor in the desired di- 
rection with transmission range as small as possible, to  
minimize the probability of collisions. This model is ap- 
propriate e.g. for road traffic information systems. Our 
analysis is based on a complete mathematical descrip- 
tion, the solution of certain differential equations is one 
of the key points t o  arrive at a closed form solution. Re- 
sults are presented graphically. It turns  out  that N F P  
has uniformly largest throughput, while progress be- 
haves comparable t o  other routing strategies proposed 
in the literature. 

I. INTRODUCTION AND MODEL ASSUMPTIONS 

We investigate a packet radio network where pack- 
ets have to be routed by intermediate stations to reach a 
target node. An important problem is the determination 
of transmission power (equivalently range) for each termi- 
nal in the network. Several transmission strategies have 
been proposed in the literature, a comprehensive presen- 
tation may be found in [4]. Assuming that stations are 
distributed in the plane according to a homogeneous two- 
dimensional Poisson process Hou and Li [4] gave an analy- 
sis of three competing strategies. In this paper and related 
ones [3], [5], [6], [9], [ll] mathematically untractable prob- 
lems were by-passed by simulation or simplifying approx- 
imations. We instead assume a one-dimensional random 
model which is more realistic, e.g. for road traffic informa- 
tion systems. Basically this means that stations are dis- 
tributed according to a one-dimensional nonhomogeneous 
Poisson process with intensity function A@),  t E W. For 
the homogeneous model, in [7] three transmission strate- 
gies have been completely analyzed: most forward and pos- 
itively most forward with fixed range R, as well as posi- 
tively most forward with variable transmission radius. 

In this paper we investigate 
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NFP: (nearest with forward progress) Each node will tra- 
nsmit to the nearest neighbor in the desired direc- 
tion. Transmission power will be adjusted to be 
just strong enough to reach the receiving station. 

The goal of NFP is to reduce collisions as much as 
possible, though the number of hops to reach a target 
node possibly may increase. NFP is best suited for ap- 
plications in road traffic information systems such as co- 
operative driving by data exchange between neighboring 
vehicles. For this purpose large throughput is most impor- 
tant to achieve real time and reliable data flow. Moreover, 
we will see that NFP behaves very stable with respect to 
varying station densities, once an optimum transmission 
probability has been chosen. In contrast to these one-hop 
applications it turns out that NFP behaves slightly worse 
than other routing strategies, if typical multihop tasks are 
required. For such applications progress is an adequate 
measure of performance. 

We now briefly outline the precise model assumptions, 
which in a one-dimensional environment are an extension 
of the ones given by [4]. The stations (nodes, terminals, 
vehicles) are distributed as a nonhomogeneous Poisson pro- 
cess [* on R with increasing intensity function A(z), z E R, 
normalized by A(0) = 0. We assume that A(.) is differen- 
tiable with continuous rate X(z) = A'(x), i.e. the number 
of nodes in a fixed interval (s, t ]  has a Poisson distribution 
with parameter s," X(u)du = A(t)-A(s).  This scenery may 
be seen as a snapshot of randomly moving stations on a 
road from the point of a fixed station S positioned at the 
origin. 

Channel access is organized by slotted ALOHA [lo], 
and we assume that acknowledgement traffic is performed 
on a separate channel. We further assume that each station 
always has packets waiting to be transmitted (heavy traffic 
assumption). Collisions may occur if two or more stations 
with overlapping radius transmit in the same slot. In this 
case destroyed data packets are rescheduled at some future 
time. Traffic load is supposed to be.uniform, expressed by 
the fact that every station transmits in a slot indepen- 
dently with probability p (transmit mode) and does not 
transmit with probability 1 - p  (receive mode), 0 5 p 5 1. 
R will denote the maximum transmission range. 

If a station is going to address a neighboring station on 
the right (left) we call it in right-(left-)target mode, other- 
wise in receive mode. This makes additional probabilities 
pi and pr necessary, p i  + p ,  = p ,  where p i  ( p , )  denotes 
the probability of finding a station in left-(right-) target 
mode. If a station in left- or right-target mode does not 
find a receiver within its transmission range, it remains in 
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receive mode. This differs from the assumption in [4], [5], 
[ll], where stations do not switch from transmit to receive 
mode in case they cannot find a receiving target station. 

As is well known (cf. [SI), by the above assumptions 
the joint process may be partitioned into independent 
corresponding nonhomogeneous Poisson processes (& + 
(& = ( A ,  the transmitting and receiving process. (& 
has intensity rate (1 - p)X(z), while [& is splitted up as 
(,̂  + (p = (& with rates p t X ( z )  and prX(z). 

We emphasize that this model is local from the view- 
point of some fixed transmitter S at the origin. With con- 
stant X(z) = X it reduces to the one considered in [7], and 
measures of performance may be considered globally over 
the whole axis. In the two dimensional model of [4], [5], 
[ll] a target direction is chosen according to a uniform 
distribution. Obviously, in one dimension there are only 
two possible directions. The corresponding distribution is 
given by p i  = p ,  = p/2. 

In [ll] the following measure of performance were in- 
troduced. 
s N F p  (pi, Pr , A) the one-hop throughput, defined as the 

expected number of successful transmis- 
sions per slot. 

the expected progress of a packet in the 
desired direction per slot from a termi- 
nal 

ZNFP(pf ,pr ,  A) depends on the dimension of length 
(e.g. miles). To achieve a scale invariant measure we nor- 
malize by deviding by M ( p f ,  p , ,  A),  the expected distance 
between S and its target station E in left- or right target- 
mode, 

Z N F P ( p f , p r , A )  

provided the integrals exist. This holds if 

for some E > 0. (1.1) generalizes the normalization intro- 
duced in [ll], it is adapted to the more general basic pro- 
cess. In the homogeneous case (1.1) reduces to .$ + $ = + 
which is the average distance between neighboring stations. 

malized expected progress of a packet 
in the desired direction per slot from a 
terminal. 

If the Poisson process is homogeneous it holds that 
ZAFp (pc , pr, A) = X Z N F ~  (pf , pr , A).  Another scale invari- 
ant measure is achieved by taking R as normalizing dis- 
tance unit (cf. [7]). 
V&p(pf,Pr, A)  = k Z N F P ( P f , p r ,  A) ,  the relative expected 

progress with respect to the maximum 
progress R. 

ZhFp(pf , pr, A) = M(pf , pr, A) - lZNFP(p l ,  Pr , A) the nor- 

The paper is organized in the following way. The 
next chapter deals with the analytic description of SNFP 
and Z i F p .  In the Appendix two methods are described 
to solve the occuring differential equations. We have ap- 
plied the second method to determine numerically per- 
formance measures in the homogeneous model. The be- 
haviour of throughput and progress under NFP with op- 
timum p-values in the homogeneous case and for a cer- 
tain non-homogeneous example are presented graphically 
in Section 111. Some concluding remarks are given in Sec- 
tion IV. 

11. MATHEMATICAL ANALYSIS 

The subsequent investigations will depend on many 
disjoint subcases. To combine them under a few principles 
we introduce two general definitions which allow to treat 
all cases jointly after simple transformations (cf. Theorem 
1). In the following Propositions we assume a general inho- 
mogeneous Poisson process with intensity A ( t ) ,  A(0) = 0. 
Necessary shifts such that a tagged transmitting station S 
is fixed at the origin are finally applied in Theorem 1. 

Consider a fixed realization ['(U) of the underlying 
nonhomogeneous Poisson process (A and any station S in 
right target mode which addresses a station E to the right. 
Observe that in the following "left of' always means po- 
sitions with smaller, and "right of' with larger coordinate 
values. For example, in the third system of Fig. 2.1 the 
station leftmost of R - y is Q, and in the first system Q 
denotes the station leftmost of R. 

Fix 2 2 0 and shift the origin to E.  For any range R 
transmission from S to E is not interfered by stations in 
(0, z/2) if for any station Q in (0 ,2/2)  there is a station 
Q' in (Q, 2 9 )  (except the case that the first station right- 
most to E is in left target mode). On the other hand, by 
reverting the coordinate system and shifting the origin to 
S ,  if y 2 0 denotes the distance between S and E ,  trans- 
mission from S to E is not interfered by stations right of S 
in (0, (z - y)/2) whenever each station Q in (0, (z - y)/2) 
finds a target station Q' in (Q,2Q + y). We say that the 
interval (0, z) is free of local y-interference. If position 3: is 
occupied by a station, as will happen later by conditioning, 
then stations in (0,z) do not cause collisions, except the 
case y = 0. Then additionally the first station right of E 
must not be in left target mode. Fig. 2.1 visualizes these 
ideas. 

The first definition characterizes patterns of stations 
without local interference. 

Definition 1. The interval (0, z) is called free of local y- 
interference, z, y 2 0, if for any station Q E (0, f(z - y)] 
there is a station Q' E (Q, 2 9  + y). 

Obviously the empty interval (0, z) is free of local y- 
interference, which is contained in Definition 1 as a special 
case. 
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N t ,  case (i), y = 0: 

0 E 2 R 2 9  Q + R  

or: - no stations 
N k ,  case (ii), y = 0: 

0 2 R Q + R  R - - no stations - 

-Y R - -  Q + R  ~ Q + Y  R R - Y  2 y o  
or: - no stations - 

N t ,  case (ii), y > 0: 
Q S  E - I I I 1  I I 1 I I *  

Q + R  R-Y + y  0 -Y 

-no s ta t ionsc  

Fig. 2.1. Free of y-interference 

In order to calculate recursively the probability of 
successful transmission we define the function gA(2, y) : 

tioning on {Zb = z }  we obtain for all 0 5 y 5 z 

[O, ..I x [O, ..I [O, 11 by gA(Z, y) = e-A(z) + ~ ( ( 0 ,  z )  free of local 

gA(z, y) = ~ ( ( 0 ,  z) is free of local y-interference). 

Proposition I. gA(Z, y) has the following representation. 

with initid condition j A ( z ,  y) = eA(z), o 5 3: 5 y. 

Proof. If y > 0 and 0 5 z 5 y, by definition we have 

Now let 0 5 y 5 z, and let the random variable Z,̂  
denote the position of the first station left of x. By condi- 

gA(z, Y) = 1. 

y-interference I z,̂  = z )  d ~ Z y ( z )  

y-interference I Z: = z ) A ( z ) e A ( z ) d z ) ,  

where e-"(') is the probability that no station is located 
in (0, c). Using conditional independence it follows that 

GA(z ,  Y) = 1 + /; A(z)jA(z, Y)dz, z >_ Y >_ 0,  (2.3) 

where ~ A ( z ,  y) = gA(z, y)eA(") is a continuous function of 
z 2 0. Therefore we may differentiate with respect to 
z 2 y (one sided derivative at c = y). This immediately 
leads to (2.2). The initial condition originates from the 
continuity of j A ( . ,  y). 

Remark. It can be shown that gA(z,y) is a continuous 
function of both variables in its domain 0 5 z, y. Further- 
more, the solution j~ of (2.2) satisfying the initial condi- 
tion is unique. If y = 0 this follows by applying the Banach 
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Fig. 2.2. 94(2 ,  y) 

fixed-point theorem to representation (2.3), otherwise from 
Theorem 3 of the Appendix. Fig. 2.2 shows a plot of gA in 
case A ( t )  = 4t.  

Example. By verifying (2.1) and (2.2) it can be shown 
that for the intensity function A ( t )  = sgn(t + c)ln (1 + 
X l t  + c1/2)’ - In (1 + Xc/2)’, c 2 0,X > 0, t E W, the 
corresponding probability gA(z, 0) is given by gr\(z, 0) = 
(1 + ~ c / 2 ) / ( 1 +  ~ ( z  + c)/2), z 2 0. In section III we will 
further investigate this example. 

We now describe patterns of stations which do not 
allow interference of transmission from S to E ,  provided 
the first station right of E is not in left-target mode. The 
concept “free of local interference” of Definition 1 is essen- 
tially needed. The main ideas of Definition 1 and 2 are 
illustrated in Fig. 2.1. 

Definition 2. The interval (0, R - y], R, y 2 0 ,  is called 
free of y-interference if one of the following events occurs 
N t :  (0, R - y] contains no station 
or 
N.f :  there is a t  least one station in (0, R - y], the first 

station less than R - y denoted by Q. In this case 
(0, Q) is free of local y-interference, and 

(i) if Q 2 max (0, $ - y) then there exists a t  least 
one station in ( R  - y,2Q + y) or the interval 
( R  - y, Q + RI is empty, 

(ii) if 0 < Q < max (0, $ - y) then ( R  - y, Q + R)  
contains no station. 

We call the interval (0, R - y] free of left y-interference if 
additionally in N.f the first station right of E is not in left 
target mode. 

The relevant caSe of ”free of left y-interference” is y = 
0. Define the functions G p t , ~ ,  GA : {(R,y) I 0 5 y 5 

Fig. 2.3. h0,0.25,4(2, Y) 

1 
is 

G p t , ~ ( R ,  y) = P((0 ,  R - y] is free of left y-interference) 
and 

GA(R,  y) = P((0 ,  R - y] is free of y-interference) 

Proposition 2. G P I , ~  and GA have the following explicit 
represen tations 

‘ J o  

Proof. NP and N.f are disjoint events. Conditioning on 
Zi-y,  the position of the first station left of R - y, yields 
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Some further simple transformations lead to the asserted 
representation. GA is obtained following the same lines 
with p i  = 0. 

Observe that in Fig. 2.1 for y > 0 stations in left- 
target mode to the right of S cannot interfere transmission 
from S to E.  This means that the left target process 
right of S does not influence the probability of interfer- 
ence. Consequently, for this case p i  = 0 has to be taken in 
G P t , A  (see the above Proposition and its proof). The same 
choice, p i  = 0 whenever y > 0, must be used in analogous 
subsequent cases. 

Up to now we have not taken into account target or 
receive mode of relevant stations. Even if the topology 
of stations fails to be free of y-interference it may happen 
that transmission from S to E is successful, due to a fa- 
vorable line-up of modes. To cope with this problem we 
introduce two auxiliary functions of similar structure as gA 
and G P t , ~ .  

Let h P t , P r , A  : [0, m) x [0, CO) + [0,1] be defined as 
h p c , p r , ~ ( z ,  y) = P((0 ,  z) has local y-interference and trans- 

mission from S to E is not interfered by 
stations in (0, z)) 

Fig. 2.3 shows a plot of h 0 , 0 . 2 5 , ~  for A(t) = 4t.  As in 
Fig. 2.1, in case y = 0 we fix E at 0 and S on the left of 
E ,  and in case y > 0 station E at -y and S at 0. 
Proposition 3. h p t , p r , ~ ( z ,  y) has the following represen- 
t a tion. 

h ~ t , p ~ , A ( ~ ,  Y) = e-A(")ipt,pr,A(x, Y)l[y,co)(x), (2.4) 

where h p t , p v , ~ ( x , y )  for each y 2 0 is the solution of the 
differential equation 

a -  
X h ~ t , ~ r , A ( z ,  y) = X ( z ) h p t , p r , A ( z ,  y) - $A(?) 

(prhpt ,p7 ,A(y ,y)  - (l -Pel{o}(Y)) (2.5) 

(1 - P r ) g A ( y ,  Y) + Pil{O}(Y)Pr), x E w, 
with initial condition k p t , p r , ~ ( z ,  y) = 0, 0 5 z 5 y. 

Proof. If y > 0 and 0 5 z 5 y, then &,t ,pv,~(z ,y)  = 0 
holds by definition. Let 2: be as in the proof of Proposi- 
tion 1 and Q the first station less than x. By conditioning 
we get for all 0 5 y 5 3: 

h ~ t , ~ r , A ( z ,  Y) 

= /; P((0 ,  z )  has local y-interference and a transmis- 
sion from S to E is not interfered by stations 
in (0, z )  I 2: = z )  dFZ;(z) 

P(Station Q is not in right-target mode and 
((0, z )  free of local y-interference and there 

is a station in (0, z ) )  or ( ( 0 , ~ )  has y-inter- 
ference and transmission from S to E is 
not interfered by stations in (0, z ) )  I 2: = 

+ 

dFz;(z) 

+ 1" P([Station Q is in receive mode if y = 0 
and not in right-target mode if y > 01 and 
[(o, z )  contains no stations] I z,̂  = z )  

dFZ!k) 

The second term in the sum is a bit complicated. gA(z, y) 
is the probability that (0, z )  is free of local y-interference, 
which contains the event that ( 0 , z )  is free of stations. 
The corresponding probability has to be subtracted from 
gA(z,y). If y = 0 the first station rightmost of E must 
not be in left transmit mode which explains the factor 

With h p t , p r , ~ ( z ,  y) = eA(")hPt ,P , ,A(z ,  y) we obtain 
(1 - Pel{O}(Y)). 

Since hpt,p,,A(x,y) is a continuous function of x 2 0 we 
may differentiate with respect to z 2 y (one sided deriva- 
tive at z = y). This-leads to the differential equation 
(2.5). The initial condition originates from the continuity 
Of h ~ t , ~ ~ , A z ( ' ,  Y).  

We now consider the probability that transmission 
from S to E is possible, in spite of an unfavourable line-up 
of stations. Define the function H p t , p , , ~ ( R ,  y) : { ( R ,  y) I 

H p t , p , , ~ ( R ,  y) = P((0 ,  R - y] has left y-interference and 
transmission from S to E is not interfered 
by stations in (0, R - y]). 

0 I Y I RI + [O, 11 by 

Proposition 4. I t  holds that 

, 
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) )I R- Y 

+ J 
A(z)eA(R-Y) (e-A(2z+Y) - e-NR+') d t  . 

max( 6 -y,o) 

Proof. 
such that ZA-, = Q. We distinguish two disjoint cases: 

Let Q E (0, R-y] be the first station left of R-y 

1) Q is unable to produce interference, with two sub- 
cases: 

Sfl = { (R - y, R + Q] is free of stations}, 
Sf2 = {there is a station in (R - y, y + 2Q]}. 

2) Q is able to produce interference, again with two sub- 

Stl = { max(f-y,O) 5 Q,nostat ionin(R-y,y+ 
in [y+2Q, R+ 

St2 = { 0 < Q L max( f - y, 0) and there is a sta- 

By summing the probabilities of the following disjoint 

cases: 

2Q), and at least one station 
Ql}, 

t ionin ( R - y , R + Q ] } .  

events we get 

We have six additive terms. The first one corresponds to 
Sfl, the second one to Sf,, the first pair of the remaining 
ones to Stl, and the last pair to St2 ,  each intersected with 
the event {transmission from S to E is possible}. In deriv- 
ing this formula the individual cases have to be considered 
very carefully. Observe that hpt,Pr,A(z, y) = 0 if 0 5 z 5 y. 
Some further algebra yields the assertion. m 

We are now prepared to prove the main result of this 
section. 

Theorem 1. Let A ,  pl  + pr = p be the parameters of 
the underlying nonhomogeneous Poisson process C A ,  and 
R denote the transmission range. The one-hop through- 
put SNFP ( p i ,  pr, A) and the normalized expected progress 
z c F p  (pt, pr A) satisfy 
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with M(pl ,prIA)  from (1.1). 

Proof. The basic idea in the following proof is to shift 
and mirror the intensity function A. Since S is fixed at the 
origin this allows to apply Propositions 2 and 4 easily. 

Define the event M,̂  = {S in right-target mode, trans- 
mission of S is sucessful}. With S in right target mode, S 
fixed at the origin, let the random variable X:$ denote 
the position of the first station on the right of S (the posi- 
tion of E in case 0 < y 5 R).  Conditioning on X&$ and 
splitting up into disjoint events yields 

P (M: 1 XiGC) 
= P ( S  in right-target mode, E in receive mode, trans- 

mission from S to E is not interfered by stations 
on the left of S and on the right of E )  

+ P ( S  and E in right-target mode, no station in 
[y, y+ RI, and transmission from S to E is not 
interfered by stations on the left of S) 

= pr(l  - ( G p t , A ( . + ~ ) - A ( ~ ) ( R ~  O) 

-k H ~ t , ~ ~ , A ( . + ~ ) - A ( ~ ) ( R i  O)) 

(G-A(-.)(Ri Y) + H O , p t , - A ( - , ) ( R i  Y)) 
+ Pre -(A(R+Y l w A ( Y  )) (G-A(- ,) ( R ,  y) 

+ HO,pt,-A(-.)(R, Y)). 

Defining the event M: and the random variable X?i$ 
analogously, the final result follows from 

By multiplying each integrand of SNFP by M ( p t ,  prl A)- l  
and (yl, after some algebra we obtain the corresponding 
expression for ZhFP. 

With Theorem 1 we have arrived a t  rather compli- 
cated terms for throughput and normalized expected prog- 
ress. To evaluate these expressions numerically the differ- 
ential equations in Proposition 1 and 3 have to be solved. 
This is carried out in the Appendix for the special case 
A ( t )  = A t ,  X > 0 a constant, t 2 0. Furthermore, we 
have prepared subroutines to calculate the probabilities in 
Proposition 2, Proposition 4, and Theorem 1 for varying 
parameters pl  and pr. In section I11 these are applied to 
obtain numerical results. 

The remaining part of this section deals with the ho- 
mogeneous case A ( t )  = A t ,  t E R, X > 0. Significant simpli- 
fications turn out. We first consider pr = p~ = 5 ,  p E [0,1], 
which yields an analogous model to e.g. [4] in the one- 
dimensional case. The following analytic representation of 

~ 
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throughput and normalized expected progress is deduced 
from Theorem 1, for notational convenience we use sub- 
script X instead of A.. 

Corollary I. Let pr = p i  = 5 ,  p E [O,I], X ( t )  = X > 0, 
t E R,  R > 0, and N = XR. Then M(pL,Pr,A) = X in 
(1.1) and 

~ N F P ( ~ ,  5 ,  A) 

Numerical evaluations of the formulae in Theorem 1 
for the homogeneous model show that one sided transmis- 
sion (pe = 0, pr = p )  maximizes throughput and nor- 
malized expected progress. The assertions of Corollary 
2 are derived from Theorem 1 taking into account that 
GA(z,  y) + Ho,o,x(z, y) = 1 (cf. the Appendix). 

Corollary 2. Let p l  = 0, pr = p .  Then 

SNFP (0 I PI A) = P ( 1 - e- ) 

((1 - P)(GA(R, 0) + Ho,p,x(R, 0)) + N N )  
ZI;Fp(O,p,X) = p ( l -  e-N - N e - N )  

From Theorem 2 of the Appendix it is easily seen that 
SNFP (0, p ,  A) and ZhFP(O,p, A) depend on X and R only 
through N = XR. Both terms are convergent when N 
tends to infinity. In contrast to the results in [7] both 
limits coincide. To determine the limiting value we define 
the functions mn(p) and m(p),  0 5 p 5 1, by 

Using the solutions of the differential equations (2.2) and 
(2.5) in the case y = 0 (cf. the Appendix) we obtain the 
following representation of this limit. 

Corollary 3. For increasing network connectivity N = 
XR, for anyp E [0, 11 i t  holds that 
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f (p )  
0.14 

0.12 

0.10 

0 . 0 8  

0 . 0 6  

0 . 0 4  

0 .02  
I I I I 

0 0 . 2  0 . 4  0 . 6  0 . 8  1 

Fig. 2.4.  f(p) 

Consider the right hand side of Corollary 3 as a func- 
tion f of p ,  0 5 p 5 1. This function is depicted in Fig. 2.4. 
The maximum over p is attained at p* = 0.367 with value 
0.157. For MFR-like routing strategies RS the correspond- 
ing terms supolpll &s(O,p ,  A )  are zero, while 
limj,r+m supolpll Z&(O,p, A)  = 1/2e = 0.184 > 0.157 (cf. 

This shows that for high station densities the MFR- 
type limits of normalized expected progress are superior to 
the corresponding NFP-limit. 

111. NUMERICAL RESULTS 

For the homogeneous case (A@) = A t )  we now present 
the results of the preceding section graphically. The cor- 
responding curves will give a thorough insight into the be- 
haviour of NFP. Some remarks concerning applications in 
road traffic information systems will also be given. 

First we have examined numerically the behaviour of 
S~~p(pl,p,, A )  as a function of pi and p ,  in the domain 
0 5 pt,pr,  p = pt+pr 5 1, with X fixed. The corresponding 
graph for X = 2 is depicted in Fig. 3.1. The function surface 
is saddle shaped. On diagonal lines pt + p, = p = const 
we see convex behaviour with a unique minimum at p t  = 
pr = p/2. This shows that throughput is largest if p l  = 0 
and p ,  = p (or vice versa), and smallest if pl = p, = p/2 
for any p E [0,1]. 

The same behaviour turns out for any value X > 0, 
and as well for normalized and expected progress. Thus, 
the (0,p)- and (5, :)-model are the most outstanding cases 
which are investigated further. It can be shown that the 
considered performance measures depend on A and R only 
through N = XR. 

Fig. 3.2 deals with the (0,p)-model (best case). The 

0 . 2  

0.1 

c 

1 
0 pl-axis 

solid, dotted, and dashed line show for optimum pvalues 

and sup V*(O,p,2N),  
O l P l l  

respectively. The z-axis is scaled in units 2 N  to make the 
results comparable with [4], [7], and [ll]. It can be seen 
that for throughput and relative expected progress magic 
numbers exist, namely maximum throughput 0.25 at 2 N  = 
1.4 and maximum relative progress 0.11 at 2N = 1.2 with 
p = 1 in both cases. The corresponding optimump,-values 
are shown by the solid line in Fig. 3.4. From Corollary 2 it 
is easily seen that these values coincide for throughput and 
normalized progress, and obviously for relative expected 
progress as well. 

Remember from Corollary 3 that the limits of both 
throughput and normalized progress are 0.157. The curves 
show that this limit is attained very rapidly. 

Along the same lines we have treated the (5, ;)-model 
in Fig. 3.3. Magic numbers occur at 2 N  = 2.9, p ,  = 0.235 
with S = 0.15, and at 2 N  = 1.8, p ,  = 0.297 with V* = 
0.064. In contrast to the above, the corresponding opti- 
mum pvalues slightly differ for throughput and progress 
(see Fig. 3.4). 

Some significant differences to the results of [4] turn 
out. For the two-dimensional model of Hou and Li normal- 
ized expected progress is uniformly larger compared with 
MFR+ and MVR+, in contrast to our results which show 
MFR-like routing strategies superior. This could be due to 
dimensionality differences or rough interpolation of simula- 
tion results in [4]. Moreover, the asymptotically optimum 
p in [4], Fig. 10 is 0.32, approximately 0.05 smaller than 
ours. 

In the next step we have fixed the asymptotically op- 
timum p' = 0.367 (cf. Corollary 3) for the (0,p)-model. 
Throughput S(O,p*, 2N)  and progress Z*(O,p*,2N) are of 
course smaller than with optimum pvalues. This is clearly 
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Fig. 3.4. Optimum p,-values 

seen from Fig. 3.5. Surprisingly the curves differ not much 
from the corresponding ones in Fig. 3.2. This proves strong 
robustness of NFP in the (0,0.367)-model against varying 
station densities. The value p* = 0.367 is a uniformly well 
behaving transmission probability. With that p* , nearly 
each second transmitted packet is successful for any sta- 
tion density N 2 2. 

In order to realize the advantage of the (0,p)-model in 
cooperative driving, available slots should be devided into 

1 1 1 1 1 1 

1 
1 1 1 1 1 1 1 

0 2 4 6 8 1 0  1 2  1 4  2N 

Fig. 3.3. Performance measures, ( f ,  ;)-model 
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Fig. 3.5. Performance measures with asympt. opt. p' 

two groups, odd and even ones, say. All stations should use 
slots of the same group to transmit into the same direc- 
tion, alternatively to their right and left neighbor stations. 
Our analysis recommends constant transmission probabil- 
ity p* = 0.367 to achieve stable system behaviour against 
varying station densities. 

We have also investigated an example of a non-homog- 
eneous underlying Poisson process with intensity function 
A ( t )  = sgn(t)ln (1 + 1t1/2)2 and M(pl ,p , ,  A) = 2. This 
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Performance measures, (0, p)-model, 
non-homogeneous case 

Fig. 3.6. 

means decreasing station density with growing distance 
from the reference station. As in the homogeneous model it 
turns out that p l  = 0 and pr = p (and vice versa) maximize 
performance. For numerical purposes we can use the rep- 
resentation of gA(Z,O) in Example 1. The corresponding 
results are shown in Fig. 3.6 and 3.7. Qualitatively we ob- 
serve a similar behaviour as in the homogeneous case. The 
limits of the optimum S ( 0 , p )  and Z * ( O , p )  (with N -+ m) 
have changed to approximately 0.12, smaIler than the cor- 
responding 0.157 in Fig. 3.2.  Magic numbers occur at 
2N = 2.1, p = 1 with S = 0.276, and 2N = 1.7, p = 1 
with V* = 0.116. 

IV. CONCLUSIONS 

We have presented an analysis of routing strategy 
NFP in a generalized one dimensional model which is of 
most interest in applications. On the basis of this model 
a full analytic description of important performance mea- 
sures has been given. We have found nice stability prop- 
erties of NFP concerning variations of traffic density, in 
contrast to MFR-like strategies. There are some differ- 
ences to the analysis given for the usual two dimensional 
model, but one should visualize that an exact analysis in 
two dimensions is still an open problem. 

In this paper we have thoroughly investigated homo- 
geneous and nonhomogeneous traffic. Suitable intensity 
functions A may be obtained from fitting inhomogeneous 
Poisson processes to statistical data. Future work will be 
devoted to this task. 

0 2 4 6 8 10 12 14 2N 

Fig. 3.7. Optimum pvalues, (0,p)-model, 
non-homogeneous case 

APPENDIX 

We now solve the differential equations (2.2) and (2.5) 
if the underlying Poisson process (A is homogeneous with 
A ( t )  = A t ,  t E R, X > 0. The cases y = 0 and y > 0 turn 
out to have essential structural differences. So we will treat 
them separately. 

Theorem 2. Let y = 0 and A(t) = A t ,  t E R, X > 0. 
Then 

a) 

." . 
k=O 

with m k ( p )  from (2.6) solves the differential equation 
(2.2). 

b) The solution of the differential equation (2.5) is given 
bY 

where 

Proof. a) j x ( z ,  0) fulfills the initial condition jx(O,O)=l 
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and it holds that 

= X(ix(z,O) - $ j x ( ; , o ) ) .  

b) Clearly hpflPr,~(O,  0) = 0 holds, and furthermore for the 

derivative Lkf,pr,x(z, 0) = ErZo b k + l ( p t , p r ) w .  BY 
comparing the coefficients of the corresponding power se- 
ries in (2.5) we obtain for k = 0 

w 

Theorem 2 allows to validitate the correctness of our 
considerations. From Definition 1 and 2 it follows that 

n ( z ,  0) + ~ o , o , x ( z ,  0) = 1 and 
Gx(R, 0) + Ho,o,x(R, 0) = 1. 

The first identity holds since mk(1) + = 1, 
as may be shown by induction. Elementary calculations 
show that Gx(R, 0) and Ho,o,x(R, 0) in Proposition 2 and 
4 in fact sum up to 1. 

Theorem 3. Let y > 0 and A(t) = At, t E R, X > 0. 
a) 

where jx,o(z, y) = ex=, z E R, and 

Proof. Let j ~ , ~ ( z ,  y) = j x ( z ,  y) whenever x F: [(2n- 
l)y,(2”+’ - l)y], n E No. Then (2.2) may be written 
as a system of infinitely many inhomogenous differential 
equations as follows. 

a) 

ix,o(z, Y) = ex= 

&jA,n+l(z, Y> = X(jx,n+l(z,  Y> - f j x , n ( V ,  PI), 
n E N, 

(4.6) 
with successive initial conditions j~,-,+l ((Zn+’ - l )y ,  y) = 
j x , n  ((2”+l- l )y ,  y). This type of inhomogeneous differen- 
tial equation is well known to have solution (4.4) (cf. [2]). 
The proof of b) follows the same lines. w 

For numerical purposes representation (4.3) allows to 
determine j x ( z ,  y) recursively in a very effective manner. 
This method can be easily extended to the inhomogeneous 
case. We offer another possibility to determine i j ~ , ~ .  Let 
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Then 
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We omit the complicated proof of this statement. Simi- 
larly, ( 4 . 5 )  admits to calculate differeptial equation ( 2 . 5 )  
effectively when y > 0. As above, ~ o , ~ , , x  may also be 
determined with 

as 

),  EN. 
X(Z - (2 i  - 1 ) y )  

exp ( 2i 

We also skip the proof of this representation. 
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