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Abstract—The capacity region of code-division multiple access
(CDMA) is determined by the set of transmission rates combined
with quality-of-service (QoS) requirements which allow for a fea-
sible power allocation scheme for mobiles in a cellular network.
The geometrical and topological properties of the capacity region
are investigated in the present paper for the case of unlimited and
limited power, respectively. As a central result, we show that the
capacity region is convex by breaking the complicated topological
structure into characteristic properties of its boundary and inte-
rior points, each of interest in itself. Based on these results, we fur-
thermore investigate optimal power assignment schemes in the case
that the demand of a community of users is infeasible. Weighted
minimax and Bayes solutions are explicitly determined as appro-
priate means to share the capacity of a cellular network in a rea-
sonable and fair way.

Index Terms—Bayes strategy, capacity region, cellular net-
works, code-division multiple access (CDMA), convexity, minimax
strategy, optimal power control, Perron–Frobenius theory.

I. INTRODUCTION

POWER control is an essential building block of code-divi-
sion multiple-access (CDMA) cellular radio for achieving

the high potential capacity. Each mobile calibrates its transmis-
sion power according to the desired data rate, quality of trans-
mission, and path loss to the linking base station such that a
certain minimal bit energy-to-noise ratio is achieved. If the chip
rate of the system is fixed, the data rate and quality of transmis-
sion jointly determine the effective spreading gain of each user.
For a fixed connectivity of mobiles to linking base stations,
and corresponding fixed path losses, we define the capacity re-
gion as the set of effective spreading gain vectors, which allow
for a feasible power assignment such that everybody receives
the data rate and quality of transmission as required.

In this work, we thoroughly investigate the geometry and
topological properties of the capacity region thus defined for
the case of unlimited and limited transmit power, respectively.
For both cases, the capacity region is shown to be a convex set.
A number of related results has been published in recent years,
each with different intentions, and using different methods
of proof. Sung [1] was the first to show log-convexity of the
feasible signal-to-interference ratio (SIR) region neglecting
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power constraints. In [2], a generalization to log-convex trans-
formations of certain quality-of-service (QoS) requirements
is given. The work [3] by the same authors includes power
constraints and also investigates the convergence behavior at
boundary points. Independently, in [4], the convexity of the
capacity region is derived. This paper also gives an interesting
duality between up- and downlink, deals with computational
aspects, and includes a stochastic model for power control
when path gain is assumed to be a random variable.

To achieve the results in the present paper, a number of
preparatory results, each of interest in itself, is needed. We deal
with supporting hyperplanes and exposed points, and more-
over, interior and boundary points of the capacity region. The
geometrical characterization and convexity pave the way for
determining optimal resource sharing strategies in the unlimited
and limited case. For any infeasible demand profile, we seek a
closest feasible power assignment in the sense of minimizing
the maximum deviation. Since the capacity region for unlimited
power is an open set, the above results can be achieved only
up to some allowable deviation. We therefore introduce the
concept of -minimax allocations and then provide a complete
solution to the corresponding -minimax allocation problem.
Besides these minimax strategies we also determine -Bayes
power allocations, which means to minimize a weighted mean
of effective spreading gains over the capacity region. Both
strategies describe best effort power balancing schemes for
infeasible user demands, which are particularly suitable for
data applications where the target QoS is negotiable.

Our optimality criteria are based on QoS requirements in
terms of the effective spreading gain. A direct approach by using
the signal-to-interference plus noise ratio (SINR) directly is also
conceivable. In this case, however, convexity is lost, see, e.g.,
[3], and the present general methods for power balancing would
be no more applicable.

Capacity and optimal power control are closely related
such that the following works are of importance to the present
paper. Reference [5] was one of the first to address the power
control problem analytically as a minmax interference bal-
ancing problem. The method of considering the power control
and assignment problem for CDMA by linear equations with
positive solutions has been used in [6]. In this paper, the
existence of a feasible power control vector is clarified by
use of Perron–Frobenius’ theory and, furthermore, a provably
convergent algorithm is presented for assigning mobiles to base
stations.

In an excellent survey article, the authors [7] consider power
control as a flexible mechanism to ensure QoS demands of indi-
vidual users. Mainly two questions are studied, namely, optimal

0018-9448/$20.00 © 2005 IEEE



2012 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 6, JUNE 2005

power control and characterizing the resulting network capacity
under different receiver designs.

Power control algorithms are extended to imprecise measure-
ments via stochastic modeling in [8]. Two classes of distributed
power control algorithms are introduced and their mean square
convergence is shown.

We partly use methods akin to [9]. The carrier-to-interference
ratio is of equivalent importance in the beamforming concept.
The crosstalk terms between stations depend on the channel and
beamforming vectors, and directly relate to the path loss coeffi-
cients in this paper.

This paper is organized as follows. Section II contains some
prerequisites and basic notation. In Section III, we study the
boundary of capacity regions without power constraints. This
provides a fairly complete description of the geometry of these
regions, which we use in Section IV to derive explicit expres-
sions of -optimal power allocations in the unconstrained case.
In Section V, we establish a close relationship between capacity
regions with power constraints and certain capacity regions
without constraints but with suitably modified path losses.
This key result opens the door to understanding the rather more
complex constraint case. We show in particular that the capacity
region remains convex in the presence of power constraints.
The results thus obtained are used in Section VI to construct a
minimax power allocation, that is, a best compromise between
contrary interests.

II. NOTATION AND PREREQUISITES

We start by introducing the basic notation, for an overview
see Table I. Assume a CDMA system with chip rate , e.g.,

3.84 MChip/s for the universal mobile telecommunications
system (UMTS). Each user has a certain data
rate to transmit and requires an individual minimum bit-error
rate. Let denote the spreading gain. Since the bit-
error rate is a function of the bit energy-to-noise ratio, ,
individual quality demands can be described by lower bounds

as follows:

(1)

where denotes the carrier-to-interference ratio at the mo-
bile’s connecting base station.

In the following, we assume a fixed allocation of mobiles to
base stations, expressed by an assignment function

such that denotes ’s connecting base station. The set of mo-
biles allocated to base station is denoted by

, . is simply a partition of the set
.

In the uplink, let denote the transmit power of mobile ,
and the path loss from mobile to base station .
We assume that for all , which is obvious to
avoid meaningless assignments. Using the effective spreading
gain , (1) reads as

(2)

TABLE I
BASIC NOTATIONS

The numerator represents the received power of mobile
at the connecting base station , collects the re-

ceived interference from all other mobiles, and denotes
the general background and thermal receiver noise at base sta-
tion . , , combines the user demands, namely,
the data rate and the quality of transmission into a single
quantity.

Only the minmum transmit power is of interest such that (2)
is satisfied. Since the numerator of (2) is increasing in and
the denominator is increasing in , , it is clear that the
minimum is attained at the boundary such that a solution

of the system

is needed. The above equations are easily converted into the
following system:

(3)

Collecting the user demands into a diagonal matrix

using the notation

with
if
if

and

the system of linear (3) can be written as

(4)

In the following, the notation “ ” and “ ” for vectors
and matrices means that the corresponding relations hold
elementwise. Furthermore, let denote the spectral radius
of a square matrix , i.e., the maximum of the absolute values
of all complex eigenvalues of . An immediate consequence
of Perron–Frobenius’ theory (see [10, p. 30]) is the following
result.
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Proposition 1: Suppose that is irreducible. If
, then (4) has a unique solution and . If

, then (4) does not have any nonnegative solu-
tion .

This gives rise to define the set of feasible user demands as
the set of vectors that allow for an
admissible power allocation, and hence can be served by the
network.

(5)

is called the set of feasible uplink demands, or the uplink ca-
pacity region of the network. Subscript refers to the matrix

. In the sequel, the involved matrix will vary. Throughout the
paper, it is assumed that is nonnegative and irreducible.

In view of Proposition 1, there is a one-to-one correspondence
between the feasible demands and the power allocations. Ex-
plicitly, for every there is a unique power allocation
vector such that (4) holds with

and . Conversely, multiplying (4) by ,
one obtains the equation , and it follows that for
every there is a unique
such that (4) holds with . The functions and

satisfy

for all (6)

for all (7)

This yields in particular the following parametric representation
of the capacity region:

where

(8)
From (5) it is obvious that is independent of the relative

background noise . This is due to the fact that there is no upper
bound on the transmit power of mobiles. In Section V, we will
include restrictions on the maximum transmission power and in-
vestigate the structure of the capacity region under this addi-
tional constraint. It turns out that there is an intimate connection
between any given capacity region with power restrictions and
a suitably selected capacity region with unrestricted power.

III. CAPACITY REGIONS WITHOUT POWER CONSTRAINTS

In this section, we study the geometry of the capacity region
. The results will be applied to construct optimal power allo-

cations and will play a fundamental role in studying the capacity
region under power constraints.

A result of central importance is the following, its proof is
given in [4].

Proposition 2: is an open convex subset of .

The boundary points of are of particular interest since
they represent boundary states of the system where no additional
capacity can be provided. Close to such points, contradicting
interests of users must be somehow balanced taking account of
individual demands and utilities.

Proposition 3:

a) The set of boundary points of is given by

(9)

(10)

b) If is a sequence of points in that converges
to a boundary point , then the corresponding power al-
locations behave as follows. For all

(11)
where is the Perron vector of

, the Perron root being ; that is,

and

Proof: We first prove b). Write

and

Thus, and, by (7)

(12)

If , there would exist a subsequence
and some such that .

But then, from (12), . In particular and
it would follow from Proposition 1 that the boundary point

belongs to the open set , which is impossible. Hence,
.

Now set

It will be shown that every convergent subsequence of
necessarily has the same limit, namely, . This

clearly implies that the whole sequence converges to .
Thus, suppose that for some . Since

, it follows from (12) that .
To conclude from this equation that coincides with the
Perron vector , and in fact to prove the very existence of
that Perron vector, it has to be shown that . To this end,
consider the index set . Assume that .
Since , . Thus, since is
irreducible, there exist and such that .
Consequently

which is a contradiction. Therefore, , so that . It
now follows that indeed and . That is,
is a positive eigenvector of the nonnegative matrix cor-
responding to the eigenvalue . This implies that the Perron root

, see [11, Corollary 8.1.30, p. 493]. As
is irreducible, the Perron root is a simple eigenvalue, and so
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. This proves the second limit assertion in (11).
The first one follows from the second since and

.
To prove a), first note that if , then, as we have just

shown, and for some . That is,
is an element of the set (10). Next, if belongs to this set,

then for some , and so, again by [11,
Corollary 8.1.30], . That is, is an element
of the right-hand side of (9). Finally, if ,
then , but for every

so that . That is, .

The parametric representation (10) establishes a natural
one-to-one correspondence between the boundary points of

and the rays of the form with . To
all points in one ray there corresponds the same boundary
point with . For every boundary point

, the corresponding ray is the set of positive multiples of the
Perron vector of . Part b) of Proposition 3 says
that as , the power allocations move in the
direction of the ray corresponding to the limit point toward
a horizon point.

As the set is convex, so is its closure . For
any , there exists, therefore, a supporting hyperplane,
i.e., there exists some inward normal , such that

for all . Furthermore, it holds that .
For suppose that for some index . By choosing ,

, , all , are upper-bounded independent
of . However, as such that there is some

with , a contradiction. The above conclusions
resemble a standard argument of statistical decision theory (e.g.,
[12, p. 87]).

The following proposition provides more detailed informa-
tion on the supporting hyperplane and an explicit formula for
the normal. The result is crucial for analyzing -optimal alloca-
tions in the uncontrained case, see Theorems 1 and 2. The result
will also be used to prove some geometric properties of the ca-
pacity region with power constraints, see Propositions 6 and 8.

Proposition 4: Through every boundary point of the
closed convex set , there passes a unique supporting hyper-
plane to . The corresponding inward normal is (a positive
multiple of) , where
and are the Perron vectors of
and , respectively. In particular, . More-
over, every boundary point is an exposed point of , that is,

for all

Proof: Let be any inward normal to at .
Then, in particular, for all . In view of
Proposition 3 a), this means that

for all , and . Hence, for

or, equivalently

That is, is an eigenvector of the irreducible
matrix corresponding to the eigenvalue . By
Proposition 3 a)

and it follows that is proportional to the Perron
vector . This proves the uniqueness of the supporting hyper-
plane and, furthermore, that is a positive multiple of .

To prove that is an exposed point, assume, on the
contrary, that there exists some point such that

. We will derive contradictory assertions on
how far one can follow the line through the points and
without leaving the boundary . Thus, let

and

Then the whole segment is contained in
.

Let be the maximum value with

and let be the maximum value such that

remains in the positive orthant . Note that since
, the half-line actually leaves the positive

orthant. Note also that , because is a subset of
the positive orthant. By (9), for all

. But the determinant is a rational function of , and
so

for all (13)

Since is an algebraically simple eigenvalue
of and all the eigenvalues of depend con-
tinuously on for , there exist a neighborhood

of and such that for all
, has exactly one eigenvalue in

and . Thus, by (13),
and so for all . This contradicts the
definition of .

IV. -OPTIMAL POWER ALLOCATION WITHOUT POWER

CONSTRAINTS

Let be an infeasible demand profile. That is, there
does not exist a power allocation such that the corre-
sponding effective spreading gains satisfy
simultaneously for all . From the perspective of
user , a power allocation should be chosen such that the dif-
ference becomes as small as possible. This is impor-
tant, e.g., for data applications whenever instead of suboptimal
time multiplexing a best effort power balancing point is used.
A fair compromise between the conflicting interests of the in-
dividual users can be achieved by choosing as to minimize

, or somewhat more generally, to minimize
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Fig. 1. An "-minimax power allocation (filled circle) for the infeasible user
demand ttt (empty circle) in two dimensions.

Here, is
a given weight vector, where reflects the relative importance
attached to user . It turns out that in the absence of power con-
straints there does not exist a power allocation that is optimal
in the sense indicated, but there are allocations that come ar-
bitrarily close to the optimum. By allowing a maximum devia-
tion from the optimum we arrive at the concept of -minimax
strategies, which is visualized for and constant weights
in Fig. 1.

Let be fixed. A power allocation is said to be
an -minimax allocation for a given infeasible demand profile

and weight vector if

The geometric framework developed in Sections II and III
allows to construct -minimax allocations and to describe their
behavior as . For this purpose, we need the following well-
known minimax representation of the spectral radius (see, e.g.,
[11, Corollary 8.1.31, p. 493]). For any nonnegative irreducible
matrix

(14)

Let and .

Theorem 1: Let be the largest real eigenvalue of
and let be a corresponding eigenvector nor-

malized so that . Then , and is an
-minimax power allocation for and if and only if

(15)

If for every , is any -minimax power allocation, then
as

(16)
, and moreover

Proof: First we determine the minimax value of the allo-
cation problem. By (8)

where and
The definition of ensures that is nonnegative, and as is
irreducible, so is . If are the eigenvalues of

, then the eigenvalues of are , the eigen-
vectors remaining unchanged. Hence, and .
It now follows from (14) that

For the power allocation one obtains from the equation
that for

This shows that is -minimax if and only if satisfies (15).
Now suppose that for every , is an arbitrary

-minimax allocation, so that

(17)

It will be shown that as , where
and . By Proposition 3 a), , and

can be written as

(18)

According to Proposition 4, there exists such that
for all with equality if and only if

. Hence, by (17)

and, by (18), the expression on the right-hand side tends to as
. Thus, every convergent subnet of

must converge to , and since the net is bounded, it follows that
. This and (18) prove the third assertion in (16)

and the first two follow from Proposition 3 b).

By Theorem 1, the remaining gap between the demand pro-
file and the realized spreading gain of any -minimax power
allocation is , the largest real eigenvalue of , which
always exists. The corresponding eigenvector determines the
limit direction of any sequence of power allocations achieving
this gap.

Next we aim at minimizing a weighted mean of in the
following sense. Let be fixed. A power allocation is
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said to be an -Bayes allocation with respect to a given weight
vector if

Bayes allocations also realize a certain best effort power bal-
ancing scheme. In contrast to the previous minimax criterion,
not the worst case, but a weighted average of user interests is
employed as the benefit criterion.

Theorem 2: There is a unique such that

(19)

where . The power allocation is an -Bayes
allocation with respect to if and only if

(20)

If for every , is any -Bayes power allocation, then
for , as

(21)
Proof: It will be first shown that (19) does have a posi-

tive solution. Since , the linear function at-
tains its minimum over at some point . Thus,

is a supporting hyperplane to at
. Now set and let and be

the Perron vectors of and , respectively. Thus,
and . By Proposition 4, the sup-

porting hyperplane to at is unique and the normal is pro-
portional to . Hence, for some . It fol-
lows that

On the other hand

proving the existence of a positive solution of (19).
Now let be any solution of (19) and define

and . Then, by (19)

Therefore, is proportional to the Perron vector of .
Besides, is the Perron vector of . It thus follows from
Proposition 4 that for all . In
particular, . For the candidate
one has

Hence is -Bayes if and only if (20) holds. It is also easy to
see that if for every , is an arbitrary -Bayes power
allocation, then as . In view of Proposi-
tion 3 b), (21) follows immediately. In particular, the solution

of (19) turns out to be unique.

V. CAPACITY REGIONS WITH POWER CONSTRAINTS

In this section, we extend the geometric results of Section III
to capacity regions which arise when the transmit power of each
user is bounded. If is a fixed vector of
maximum transmit powers, the corresponding capacity region
is given by

where and .
As a central result of this section, the convexity of the set

is obtained. This forms the basis for various strategies
aiming at optimizing . A first application is given in the next
section. The result itself seems reasonable: if two demand pro-
files can be served by the network subject to a given power
constraint, then one would expect that a convex combination
of these profiles can be served subject to the same constraint.
However, a direct verification appears to be rather difficult even
when . The arguments used in [4] to prove convexity in
the unconstrained case do not carry over to the present situation.

The key observation is that if one restricts only one compo-
nent of , then the resulting capacity region is basically the same
as the closure of a certain capacity region without contraints
associated with a suitably chosen path loss pattern. This will
be shown in two steps. First, we focus on the relation between
the boundaries of both regions. Then, using the results already
proved for the unrestricted case, we extend this relation to the
sets themselves.

Thus, consider, for each , the manifold

and

and the surface

and

Obviously, . To see that both sets actually coin-
cide, first note that

But and do not have common boundary points. For if
, then there exists a sequence

with and . By Proposition 3 b),
. Thus, , which is just the

boundary of in with respect to the relative topology.
The map is a homeomorphism from onto

. Hence, the boundary of in is

Altogether

(22)
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Fig. 2. A graphical overview of the proof principles in two dimensions. Concrete values are n = 2, a =a = a =a = 0:5, � =p̂ = 1, i = 1; 2.

The link between , the boundary of the capacity region
with a single power constraint , and the boundary of a
certain capacity region without power constraints can be estab-
lished through the following representation of , which is valid
only on the boundary

for all with

(23)
where denotes the th unit vector, and

is defined by

if and
otherwise.

That is, is the matrix obtained from by adding the vector
to the th column. In par-

ticular, is nonnegative and irreducible, so that all the results
of Section III apply with replaced by . Equation (23) may
be seen as follows. If , then

and for

Now by (23)

But the set obviously remains
unchanged when the power constraint is removed. In
view of Proposition 3 a), is the boundary
of the whole unrestricted capacity region for . Recalling
(22), we have thus proved the following representations of the
boundary of .

Proposition 5: For

Proposition 5 says that the capacity region under path loss
pattern for mobiles with the power of the th fixed to
coincides with the boundary of the unconstrained capacity re-
gion under path loss pattern shifted by a constant vector.

Proposition 6: Each of the sets , is a closed
convex subset of , and for every there even exists
some such that

for all (24)

Proof: In view of Proposition 5, ,
showing that is closed. To prove (24), fix . It
follows from Propositions 5 and 4 that there exists
such that the inequality in (24) holds for all . To
show that the inequality continues to hold on the interior of ,
let be an arbitrary interior point and set . Then

, and multiplying by leads to the
point . For

Hence,

proving (24). Thus, through every boundary point of there
passes a supporting hyperplane to . This implies that
is convex, provided that the interior of is not empty, see
[13, p. 21]. The existence of interior points is obvious from
Proposition 5.

Fig. 2 gives a graphical overview of the proof principles so
far in two dimensions for .

The convexity of is an immediate consequence of
Proposition 6 since , as we state in the
following theorem.

Theorem 3: For any given power constraint , the
corresponding capacity region is a closed convex subset
of .

Fig. 3 shows the capacity region for two mobiles. It is
assumed that , i.e.,
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Fig. 3. The capacity region for n = 2, a =a = a =a = 0:5, � =p̂ =

1, i = 1; 2.

the path loss to the other mobile’s base station is twice as high
as to one’s own. The ratio . Recall that the relative
background noise is defined as , . Because
of symmetry, the sets coincide for both cases and

. The capacity region is the intersection ,
as shown in Fig. 3.

Another consequence of Proposition 6 is that the relation be-
tween the boundaries and given in Proposition 5
extends to the sets themselves.

Proposition 7: For

Proof: A closed convex set which is not an affine set or a
closed half of an affine set is the convex hull of its boundary, see
[14, p. 166]. Thus, by Proposition 6, and
by Proposition 2, . The assertion is now
obvious from Proposition 5.

As an application of Proposition 7, we establish a result which
is intuitively clear but would be intricate to verify directly. It
says that if a demand profile can be satisfied subject to a given
power constraint, then any less stringent demand profile can be
served subject to the same constraint.

Proposition 8: If and , , then
. If and , , then
.

Proof: The second assertion follows from the first since
. To prove the first, it suffices by Propo-

sition 7 to show that if and , , then
. Write and .

Suppose first that , that is, . The
monotonicity of the spectral radius gives that

so that . Now suppose that and set
. The monotonicity of yields only that

But if , it would follow that the three points
lie on the boundary of . This is impossible,

because according to Proposition 4, every boundary point is an
extreme point of . Hence, .

VI. OPTIMAL POWER ALLOCATION

WITH POWER CONSTRAINTS

If power is limited, the capacity region is closed, whereby
for any boundary point there is an admissible power allocation.
The power assignment which corresponds to the feasible point
closest to some given infeasible user demand profile can be re-
alized by the network and is called minimax allocation, with
distance measured by the maximum norm. Fig. 1 applies ac-
cordingly with .

To be more precise, a power allocation is said to be a
minimax allocation for a given infeasible demand profile ,
a weight vector , and a power bound if and

The weights reflect service priorities to different users.

Theorem 4: For , let denote the matrix ob-
tained from by adding the vector to the th column of

and let be the largest real eigenvalue of .
Let be such that .
The unique minimax power allocation for the demand profile

and the weight subject to is given by the unique
eigenvector of corresponding to normal-
ized so that . Moreover, for

.
Proof: The proof consists of two steps. First, for each ,

the minimax allocation subject to the single constraint
will be determined. It will then be shown that among these

allocations the one corresponding to satisfies all constraints
simultaneously and so is the sought allocation.

As is nonnegative and irreducible, so is
, provided is chosen sufficiently large. The largest real

eigenvalue of that matrix, , is therefore simple and a
corresponding eigenvector can be
chosen so that and . Note that
and that is indeed uniquely determined. From the equations

and one
obtains that

(25)

Thus,

(26)

By Proposition 5, is a boundary point of
. It therefore follows from Proposition 6 that there exists

such that for all
. Hence,

so that

for all (27)



IMHOF AND MATHAR: CAPACITY REGIONS AND OPTIMAL POWER ALLOCATION FOR CDMA CELLULAR RADIO 2019

It is thus proved that is a minimax power allocation subject
to the constraint , but need not belong to .
By (25), and since ,

. Therefore, by Proposition 8, for
all , and so . It now follows from
(26) and (27) that is the minimax power allocation.
Note finally that need not be unique, but the point

is independent of the choice of , so that the
minimax power allocation is indeed unique.

In Theorem 4 it is not required that the demand profile be
infeasible. If is feasible, the minimax solution leads to
spreading gains that satisfy for all .
Moreover, for any loss function of the form
with a strictly increasing function , the minimax solution is
given by from Theorem 4.

VII. CONCLUSION

We have defined the capacity region of a CDMA cellular net-
work as the set of data rates combined with quality-of-trans-
mission demands of users that can be served by choosing an
appropriate power setting below a maximum threshold. In this
work, we show that the boundary of the capacity region with
one mobile’s power fixed and the rest unbounded is a shift of
the boundary of some capacity region with changed parameters,
but unlimited power. Using supporting hyperplanes and topo-
logical arguments, the convexity of the capacity region with lim-
ited power follows.

The boundary points of the capacity region are of particular
interest since they represent system states of extreme load. In
such states, the system is unable to provide more capacity to
any of the users without drawing off capacity from others. Based
on the above structural insights, we have explicitly determined
minimax and Bayes power assignment strategies to balance con-
flicting interests of users in a rational way.

Interpreting the effective spreading gain as user payoff leads
to a game theoretic setup where the capacity region plays the

role of the payoff set. Future investigations will be devoted to
access control strategies by using appropriate utility functions
in this framework.
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