
Hardware Acceleration Techniques for 3D Urban
Field Strength Prediction

Michael Reyer, Tobias Rick, Rudolf Mathar

Institute for Theoretical Information Technology
RWTH Aachen University
D-52074 Aachen, Germany

Email: {reyer,rick,mathar}@ti.rwth-aachen.de

Abstract— Planning and optimization of radio networks are
active research areas. Therefore, both fast and accurate radio
wave propagations predictions are required. To fulfill those
requirements we propose specialized algorithms on ordinary
graphics cards. We present an efficient algorithm for determining
the visibility between objects. Therefore, we exploit the discrete
pixel structure on graphics processing units (GPU). This leads
to a tremendous acceleration of up to 140 times compared to a
version on a CPU.

I. INTRODUCTION

Accurate radio wave propagation predictions are a prereq-
uisite for effective dimensioning of cellular radio networks.
In [4], [5] ordinary graphics cards are used to accelerate the
calculation of certain wave guiding effects. Automatic cell
planning algorithms have to explore a vast amount of network
configurations to find an optimal solution. Hence, on one hand
the reliability of cell planning solutions is strongly influenced
by the prediction quality of the propagation algorithms. On
the other hand, planning time is directly dominated by the
runtime of the underlying field strength prediction algorithms.
Therefore, low computation times of accurate field strength
predictions are essential for automatic cell planning algorithms
to find appropriate solutions. An overview of radio wave
propagation models is given in [1], [2].

In spite of their very poor prediction quality, statistical
propagation models are frequently used, due to short runtimes.
This may be sufficient for simple rural environments. However,
complex urban scenarios demand for a great emphasis on site-
specific details in the propagation environment which are not
covered by such statistical approaches. Ray tracing algorithms
compute paths through a scene due to wave guiding effects
like reflection and diffraction and are well-known to achieve
extremely accurate prediction results at the cost of very large
runtimes. To cope with high runtimes, usually all necessary
propagation predictions are precomputed and stored in large
databases [3], to be accessed later by planning algorithms.

Ray optical models are classified in ray tracing and ray
launching, depending on the way the ray paths are determined.
In ray tracing models all possible paths from receiver point to
transmitter point are searched. Multiple calculations of nearly
identical ray path pieces are needed, particularly, if receiver
points are located nearby. Ray launching approaches [6], [7]

emit a finite set of rays in predetermined directions. As the
rays disperse, important deflection sources may be missed.
Alternatively, in [8], [9] 3D cones are used instead of single
rays. Beyond this work, mixed models have been investigated,
which follow partly rays and partly use empirical parameters,
cf. [10]. Additional work on prediction algorithms, which is
based on ray optical approaches, can be found in [11], [12].

In [7] a cube oriented ray launching algorithm (CORLA) has
been proposed to counteract the high runtimes of classical ray
tracing algorithms while maintaining high prediction accuracy.
This has successfully reduced runtimes down to roughly 10
seconds for a 7 km2 urban area with a mean squared error
(MSE) of less than 7 dB. The key idea of this ray launching
algorithm is to represent urban environments by a grid of dis-
crete blocks. Costly ray-object intersections are then replaced
by traversing those blocks via an algorithm which samples a
continuous line into discrete components.

Graphics cards for personal computers offer a very high
computing power (up to 300 GFLOPS). In this paper we
therefore propose to exploit such hardware in order to acceler-
ate the above mentioned ray launching algorithm. Our current
results indicate that runtimes are significantly reduced by this
approach.

The advantages of the enormous runtime reduction is
twofold. First, field strength predictions can be delivered to
cell planning algorithms on demand, i.e., there is no longer
a need for precomputations. Second, statistical propagation
models can be replaced by accurate ray launching algorithms
improving overall results, without increasing planning time.

This paper is organized as follows. In Section II the basic
structure of graphics cards is described. After introducing
the model for radio wave propagation in Section III, we
explain the underlying principles of determining the necessary
information for evaluating the system model in Section IV.
The transfer of those principles onto graphics hardware is
given in Section V. Finally, Section VI provides results and
concludes this work.

II. GRAPHICS HARDWARE

In the last few years, the programmable graphics processing
units have evolved into an extremely powerful computing



������ �� ��� �

	 
�� 
 � �� ���
���� �� ��� �

� �� �
�� ��� �

� � ����
� ������� ��

� ��� �� �
� ������� ��� � �� ���� �

Fig. 1. The Graphics Rendering Pipeline.

device. The main reason for the high throughput is that the
Graphics Processing Unit (GPU) is specialized for computa-
tional intensive, highly parallel calculations. That is, the GPU
is especially designed to support data processing, rather than
data caching and flow control as is the Central Processing
Unit (CPU). Thus, the architecture of graphics cards is a
Single Instruction Multiple Data (SIMD) architecture, i.e.,
many parallel processors simultaneously execute the same
instructions at a time on different parts of data. In order to
perform radio wave propagation on graphics hardware the key
challenge is to correctly map the problem related tasks to the
graphics rendering context.

The programming paradigm of today’s graphics hardware
is best described by the stages of the Graphics Rendering
Pipeline (Fig. 1). The input of the pipeline consists of planar
geometric objects (triangles or quadrangles) which are de-
scribed by their coordinates (vertices) and additional arbitrary
numerical information (textures). In the first processing step
of the rendering pipeline, multiple vertex processors execute
in parallel the instructions from a user-written program on the
vertices. Commonly, geometric transformations like transla-
tions and rotations are applied here.

In the subsequent step, the processed geometry is sampled
(rasterized) into discrete points (fragments). Each fragment
has a pixel position on the screen, a depth value and additional
data. Analogous to the vertex processors, multiple fragment
processors execute a user-written program on each fragment
in parallel, producing the final result of the GPU computation.
Usually, the output consists of a three-dimensional vector
which is commonly interpreted as color information.

Finally, all fragments are collected and recorded in the frame
buffer. If multiple fragments are mapped to the same pixel
position, the depth test specifies which one is written into
the frame buffer by evaluating the fragments’ depth values.
One cycle through the rendering pipeline is called rendering
pass. For more details on the programming of today’s graphics
hardware see [13].

III. RADIO WAVE PROPAGATION MODEL

The well-known free space propagation model (cf. [14])
describes the received power Pr (d) of a receiver antenna
with distance d to a transmitter antenna when they have an

unobstructed, clear line of sight (LOS) path as

Pr (d) =
PtGλ2

(4π)2 d2
(1)

with transmitted power Pt, antenna gains G and wavelength
λ. The corresponding path loss in dB is than given by

PLdB = 10 log10

(
Pt

Pr(d)

)
. (2)

The path loss prediction in regions with no line of sight
(NLOS) is known to be more complex. In common radio
frequencies wave guiding effects like reflection, diffraction and
scattering typically have a substantial effect on the radio wave
attenuation. As we are interested in an average received power
we neglect the influence of multipath effects and concentrate
on the path with the dominant contribution. The resulting error
is rather low as the following example illustrates. Consider
two equally strong ray paths, if their contribution is added in
logarithmic scale the overall error of the approximation is less
than three dB. This error is negligible, regarding since mean
squared errors of 5 to 10 dB are considered as excellent, see
[1]. Applying this approximation reduces computation time
significantly.

We take into account different wave guiding effects by in-
troducing distinct attenuation functions. Let α be the change of
direction of the corresponding deflection, than the attenuation
functions due to reflection, vertical diffraction and horizontal
diffraction are denoted by PLdB

R (α), PLdB
V (α) and PLdB

H (α).
In our model the path loss at a point in NLOS is evaluated by
taking the strongest ray path and adding its attenuations due
to the corresponding wave guiding effects

PLdB
NLOS =PLdB +

NR∑
i=1

PLdB
R (αR,i)

+
NV∑
j=1

PLdB
V (αV,j) +

NH∑
k=1

PLdB
H (αH,k) ,

(3)

where NR, NV and NH denote the number and αR,i, αV,j and
αH,k depict the corresponding direction changes of deflection
points for each type of wave guiding effect.

IV. CUBE ORIENTED RAY LAUNCHING

The cube oriented ray launching algorithm, CORLA for
short, is applicable for determining the ray path information
needed for evaluating the system model of the preceding
section. The main idea is to rasterize the given environment
into cubes. If the center of a cube lies within a polyhedron
describing the environment the cube is marked as filled.
Otherwise, it is marked as empty. If a cube intersects with a
surface section of a polyhedron it is called a reflection source.
Additionally, a reflection source is a horizontal or vertical
diffraction source if it intersects with the boundary of a surface
section. Cubes below ground level are also marked as filled.
Given two points p1 and p2, p2 is called visible to p1 if no



Fig. 2. Cube Oriented Ray Launching Principle

cube on the straight line between p1 and p2, other than the
cubes containing either p1 or p2, is filled. Fig. 2 illustrates this
concept.

The main task in CORLA is to determine the set of cubes
visible to a source p. If p represents a source of deflection
the search for visible cubes is limited to the corresponding
deflection cone. The task of determining visible cubes can
be accomplished relatively easy and accurate when exploiting
the cubical representation of the environment. The required
density for hitting all cubes with potential deflection sources
can easily be determined. Hence, deflection sources are only
ignored if the cube resolution is chosen too low. Determin-
ing visibility is than achieved by traversing the discretized
(sampled) three-dimensional direct line between source and
destination point and look up if there is a filled cube in
between. Line discretization can be efficiently performed by
the well-known Bresenham-algorithm, cf. [15].

V. RAY LAUNCHING ON THE GPU

The key operation in CORLA is the sampling of cubes along
a certain ray or cone (e.g. diffraction cone). In the standard
CPU implementation this sampling is achieved with the well-
known Bresenham-algorithm [15]. Basically, a continuous line
segment is represented by a set of pixels.

According to the ray launching principle, the cubes of a
ray are processed, beginning from the start point until a filled
cube is reached. Hence, from an algorithmic point of view,
we simply generate the sampling of cubes plus an additional
memory access at every cube to check for a filled one. This
memory access presents the main obstacle when implementing
this algorithm on the graphics hardware, since the number
of memory accesses (texture fetches) in a shader program is
limited. Hence, this algorithm cannot directly be implemented
as a fragment shader program.

In order to cope with the rather large amount of memory

Algorithm 1 PROCESSSUPERCUBES()
T ←GETTRANSMITTERPOS()
M ←GETMAXALLOWEDMEMACCESSES()
SETQUADSIZE(M )
CLEARBUFFER(A,B)
ENABLESHADER(TRACERAY() )
for i = 0 . . .maxSteps do

SETDRAWBUFFER(A)
FILLBUFFERWITH(B)
for all sc ∈ GETNEIGHBORINGSUBERCUBES(T, i) do

SETBOUNDARYCOORDS(T , sc)
DRAWQUAD(sc) {TRACERAY() is invoked on every pixel
of this quad}

end for
SWAP(A,B) {Update results for next rendering pass}

end for
DISABLESHADER(TRACERAY() )

Algorithm 2 TRACERAY()
T ←GETTRANSMITTERPOS()
M ←GETMAXALLOWEDMEMACCESSES()
l ←GETBOUNDARYCOORDS()
r ←GETFRAGMENTPOS()
{Determine new start point q}
d ←NORMALIZE(r − T )
λ ←max {(M · l.x)/d.x, (M · l.y)/d.y}
q ←T + (λ− 1)d
{Continue with Bresenham-algorithm from q to r}
BRESENHAMLINE(q,r)

accesses, we propose the following multi-pass approach. We
execute multiple subsequent rendering passes such that ren-
dering pass i+1 can access the results from rendering pass i.
The idea is sketched in Algorithm 1.

The goal is to sample a line from a source point T to every
other point. Let the maximum number of allowed memory
accesses per shader invocation be M . Hence, we can only
traverse lines with at most M pixels length per shader instance.

The algorithm operates on a grid of cubes (pixels). We
define a supercube to be a quad with edge length of M pixels.
Then a set of supercubes is constructed such that T lies on
the corner of four supercubes (as illustrated in Fig. 3 top left)
and all supercubes are a partition of the whole area.

Then the algorithm proceeds as follows. Supercubes are
processed by simply rendering a quad of the same size as the
supercube. On rendering, a fragment shader (cf. Algorithm 2)
is invoked on every pixel that belongs to the quad. The
shader program traverses the pixels from a start point q to its
corresponding fragment position r and passes the information
if a filled cube has been reached.

The coordinates of the vertical and horizontal boundary
lines are given as those coordinates of the current supercube
sc, which are nearest to the transmitter T . Thus, in the first
loop of Algorithm 1 the boundary coordinates and the start
point q are of course given by the transmitter coordinates
itself. In the subsequent steps of Algorithm 1 the intersection



point between the line from the position of the fragment r to
the transmitter T and the boundary lines are determined in
Algorithm 2. The intersection point with the larger distance
to the transmitter determines the new starting point q, which
is a direct neighbor of the current supercube sc. This cube
contains the information, if a filled cube has been seen on the
way from the transmitter point T to q, i.e., if the direct path
is obstructed yet.

Then a standard Bresenham-algorithm can be applied in the
shader to update the cube-information inside the supercube,
if there is a filled cube on the way. As the edge length of
each supercube is M , it is ensured that there will be at most
M texture fetches to check for filled cubes for each shader
instance.

This procedure is repeated as sketched in Algorithm 1 until
all supercubes are processed.

VI. RESULTS

For comparison of the runtimes of line rasterization on CPU
and GPU hardware we have implemented the rasterization
for both. The reference scenario consisted of a 512×512 grid
where we have sampled rays from the center to every point in
the grid. At each sampling step we performed a memory access
and a summation of four floating point values. Total runtime
on the CPU (Intel(R) Xeon(TM) CPU 2.40GHz) was about
1.24 seconds. The GPU (NVIDIA GPU GeForce 8800 GTX)
implementation exhibits a runtime of only 8.93 milliseconds.
Hence, as Fig. 4 illustrates, the CPU version with roughly
211,000 rays per second is clearly outperformed by orders of
magnitude by the GPU which was able to process about 29
million rays per second, which is approximately 140 times
faster than the CPU version. Note, the grid size has been
chosen, such that the number of iteration (maxSteps) in
Algorithm 1 is zero. Otherwise the GPU version would benefit
even more, because pixels outside the four supercubes are
not followed to the transmitter but only to the neighboring
supercube. We conclude that ray launching based on graphics
hardware can significantly speed up radio wave propagation
predictions.

REFERENCES

[1] E. Damosso, Ed., COST Action 231: Digital mobile radio towards future
generation systems, Final Report. Luxembourg: Office for Official
Publications of the European Communities, 1999.

[2] N. Geng and W. Wiesbeck, Planungsmethoden für die Mobilkommuni-
kation. Berlin: Springer, 1998.

[3] G. Wölfle, R. Hoppe, and F. Landstorfer, “A fast and enhanced ray
optical propagation model for indoor and urban scenarios, based on
an intelligent preprocessing of the database,” in Proceedings PIMRC,
Osaka, Japan, 1999.

[4] D. Catrein, M. Reyer, and T. Rick, “Accelerating radio wave propagation
predictions by implementation on graphics hardware,” in Proceedings:
IEEE VTC Spring, 2007.

[5] T. Rick and R. Mathar, “Fast edge-diffraction-based radio wave propa-
gation model for graphics hardware,” in ITG INICA, 2007.

[6] G. Durgin, N. Patwari, and T. S. Rappaport, “An advanced 3D ray
launching method for wireless propagation prediction,” in Proceedings
IEEE VTC Spring, Phoenix, AZ, 1997, pp. 785–789.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

� �

�

�

��

�

�

�

������ ��
	 
���

�

�

Fig. 3. Processing of supercubes and boundary line

Fig. 4. Rays per second, comparison CPU vs. GPU

[7] R. Mathar, M. Reyer, and M. Schmeink, “A cube oriented ray launching
algorithm for 3D urban field strength prediction,” in Proceedings IEEE
International Conference on Communications, Glasgow, Scotland, June
2007.

[8] M. Nidd, S. Mann, and J. Black, “Using ray tracing for site-specific
indoor radio signal strength analysis,” in Proceedings IEEE VTC Spring,
Phoenix, AZ, 1997, pp. 795–799.

[9] T. Frach, “Adaptives hierarchisches Ray Tracing Verfahren zur parallelen
Berechnung der Wellenausbreitung in Funknetzen,” Ph.D. dissertation,
RWTH Aachen University, 2003.

[10] J. Beyer, “Ausbreitungsmodelle und rechenzeiteffiziente Methoden für
die Feldstärkeprognose in städtischen Mikrozellen,” Ph.D. dissertation,
Universität-Gesamthochschule Siegen, 1997.

[11] R. Wahl, G. Wölfle, P. Wertz, P. Wildbolz, and F. Landstorfer., “Domi-



nant path prediction model for urban scenarios,” in 14th IST Mobile and
Wireless Communications Summit, 2005.

[12] P. Wertz, R. Wahl, G. Wölfle, P. Wildbolz, and F. Landstorfer., “Domi-
nant path prediction model for indoor scenarios,” in German Microwave
Conference (GeMiC), 2005.

[13] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E.
Lefohn, and T. J. Purcell, “A survey of general-purpose computation

on graphics hardware,” in Eurographics 2005, State of the Art Reports,
Aug. 2005, pp. 21–51.

[14] T. S. Rappaport, Ed., Wireless Communications: Principles and Practice.
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1995.

[15] J. E. Bresenham, “Algorithm for computer control of a digital plotter,”
IBM Systems Journal, vol. 4, pp. 25–30, 1965.


