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Abstract—We consider a stationary Rayleigh flat-fading chan-
nel with temporal correlation and a compactly supported power
spectral density of the channel fading process. We assume that the
channel state is unknown to both transmitter and receiver, while
the law of the channel is presumed to be known to the receiver.
Given a set of fixed signaling sequences, the optimum input
distribution, with respect to the achievable rate, has the property
of a constant Kullback-Leibler distance between the output
distribution and a mixture of the output distributions conditioned
on the different input sequences. Based on this, we determine
the set of optimum input distributions for PSK signaling. In
addition, we identify the special case of transmitting one pilot
symbol to acquire a phase reference as being included in the set
of optimum input distributions. We derive an integral expression
for the capacity constrained to PSK signaling depending on the
autocorrelation of the channel and the SNR. Evaluation of the
asymptotic high SNR behavior shows a loss in the constrained
capacity with respect to the case of perfect channel knowledge
corresponding to at least one signaling dimension, i.e., the
information transmitted by one symbol.

I. INTRODUCTION

In this paper, we consider a stationary Rayleigh flat-fading
channel with temporal correlation. We assume that the channel
state information is unknown to transmitter and receiver, while
the receiver is aware of the channel law. The capacity of this
scenario is particularly important, as it applies to many realistic
mobile communication systems. In order to enable the receiver
to track the channel, in many systems training sequences are
inserted into the data stream by the transmitter. These training
sequences can be understood as a specific type of code [1],
which has not been proven to be capacity-achieving.
The capacity of fading channels where the channel state

information is unknown, sometimes referred to as noncoherent
capacity, has received a lot of attention in the recent literature,
see, e.g., [1], [2], [3]. Even though there exist bounds on the
capacity for flat-fading channels, which are tight in a specific
SNR regime, see, e.g., [1], [4], [2], neither exact expressions
for the capacity, nor the capacity-achieving input distribution
are known. In [5], bounds on the achievable rates for different
input distribution, including discrete ones, have been derived
for the case of a Gauss-Markov flat-fading channel. In [6], it
has been shown that Gaussian input distributions, which are
capacity-achieving in case the receiver is aware of the channel
state, are in general not capacity-achieving in case the channel
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state is unknown to the receiver. In contrast, discrete input dis-
tributions are capacity-achieving for a variety of conditionally
Gaussian channels with bounded input constraints [7]. E.g.,
for the case of a Rayleigh flat-fading channel without temporal
correlation, it has been shown that the capacity-achieving input
distribution is discrete with a finite number of mass points
[8]. The scenario in the present paper falls into the class
of conditionally Gaussian channels. These observations and
the fact that practical realizable systems use discrete input
distributions are the motivation to study the achievable rates
for the given scenario with the restriction to discrete input
distributions, leading to the following question: We have a
bounded and closed subset S ⊂ C

N , where N corresponds
to the length of the transmit sequence in symbols, and a
maximum numberM of support points xi ∈ S, i = 1, . . . , M ,
corresponding to the signaling sequences. What is then the
optimum choice of the support points and what is their
optimum distribution p = [p1, . . . , pM ], with pi being the
probability of transmitting the sequence xi, that maximizes
the mutual information between channel input and output?
In this paper, we restrict to the special case where the set

S consists of a fixed amount of predefined support points
x1, . . . ,xM representing the possible transmit sequences.
Then, the input distribution p that maximizes the mutual
information can be evaluated. We will refer to this input
distribution as the optimum input distribution. Furthermore,
we will name the maximum mutual information constrained
to a given set of support points constrained capacity.
For additive noise channels, this problem has been examined

in [9]. In the present paper, we extend the work in [9] to
Rayleigh flat-fading channels with temporal correlation, where
the receiver has no knowledge of the channel state. The chan-
nel fading process is characterized by a compactly supported
power spectral density (PSD) with a normalized maximum
Doppler frequency fd < 0.5, i.e., it is assumed to be nonregu-
lar [1]. The optimum input distribution p is characterized by a
constant Kullback-Leibler distance between the output distri-
bution and a mixture of the output distributions conditioned on
the different input sequences. For PSK signaling, we explicitly
characterize the set of optimum input distributions p. The
special case of transmitting one pilot symbol, i.e., a symbol
that is known to the receiver, lies within this set and thus is
optimum. In addition, the asymptotic high SNR constrained
capacity is degraded at least by a factor of N−1

N
with respect

to the case of perfect channel state information at the receiver.
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II. SYSTEM MODEL
We consider a discrete-time flat-fading channel, whose

output at time k is given by

yk = hk · xk + nk (1)

where xk ∈ C is the complex valued channel input, hk ∈ C

represents the channel fading coefficient, and nk ∈ C is
additive white Gaussian noise. The processes hk, xk, and nk

are assumed to be mutually independent.
Furthermore, we assume that the noise nk is a sequence of

i.i.d. circularly symmetric complex Gaussian random variables
of zero mean and with variance σ2

n. The channel fading process
hk is zero mean jointly proper Gaussian [10]. In addition, it is
time selective and characterized by its autocorrelation function

rh(l) = E[hk+l · h∗k] (2)

where (·)∗ indicates complex conjugation. Its variance is
normalized to rh(0) = σ2

h = 1. The PSD of the channel fading
process is defined by

S(f) =
∞∑

m=−∞

rh(m)e−j2πmf , |f | < 0.5. (3)

Here, we assume that the PSD exists. For a jointly proper
Gaussian process this implies ergodicity [11].
Because of the limitation of the velocity of the transmitter,

the receiver, and of objects in the environment, the spread of
the PSD is limited and we assume it to be compactly supported
within the interval [−fd, fd], with 0 < fd < 0.5, i.e., S(f) = 0
for f /∈ [−fd, fd]. The parameter fd corresponds to the
maximum Doppler shift and thus indicates the dynamic of
the channel. To assure ergodicity we exclude the case fd = 0.
As we consider a transmission with a duration of N time
instances, we introduce the following vector-matrix notation
of the system model:

y = H · x + n = X · h + n (4)

where the vectors are defined as y = [y1, y2, . . . , yN ]T ,
x = [x1, x2, . . . , xN ]T , and n = [n1, n2, . . . , nN ]T . The
matrix H is diagonal and defined as H = diag(h) with h =
[h1, h2, . . . , hN ]T . Here, the diag(.) operator generates a di-
agonal matrix whose diagonal elements are given by the argu-
ment vector. The diagonal matrix X is given by X = diag(x).
Using this vector notation, the correlation over time of the

fading process is expressed by the correlation matrix

Rh = E[h · hH ] (5)

which has a Hermitian Toeplitz structure.

III. OPTIMUM DISCRETE INPUT DISTRIBUTIONS

As the PSD of the fading process exists (3) and as the fading
process is jointly proper Gaussian, the channel fading process
is ergodic. Therefore, operational and information theoretic
capacity coincide [11]. This allows us to base our following
derivations on the concept of the ergodic capacity.

Due to the restriction to finite size transmit constellations,
the input symbol xk is a discrete random variable with Q
support points. Consequently, the input vector x is a random
variable with

M = QN . (6)

support points x1, . . . ,xM ∈ C
N .

The mutual information of the channel model given in (1)
can be calculated as

I(y;x) = h(y) − h(y|x) (7)

where h(·) denotes the differential entropy. We will examine
the capacity of the channel given by the model in (1) with
the constraint on a discrete input distribution, where the input
vector x is from the finite set S given by S = {x1, . . . ,xM}.
We are going to determine the optimum probability distribu-
tion p = [p1, . . . , pM ] with pi the probability of transmitting
the sequence xi. Then the constrained ergodic capacity of (1)
is given by

C =
1

N
max
p∈C

I(y;x) (8)

where the set C is convex and given by

C =

{
p = [p1, . . . , pM ]

∣∣∣∣∣
M∑
i=1

pi = 1, pi ≥ 0

}
. (9)

For the calculation of the channel output entropy conditioned
on the channel input h(y|x), the conditional probability den-
sity function p(y|x) is required. It is given as

p(y|x) =
1

πN det
(
Ry|x

) exp
(
−yHR−1

y|xy
)

(10)

with

Ry|x = Eh,n[yyH ] = Eh[XhhHXH ] + σ2
nIN

= XRhX
H + σ2

nIN . (11)

Here IN indicates the identity matrix of dimension N × N .
The distribution of the channel output is given by

p(y) =
M∑
i=1

pip(y|xi). (12)

As the entropies in (7) are given by

h(y) = −
∫

p(y) log p(y)dy

= −
∫ M∑

i=1

pip(y|xi) log

⎛
⎝ M∑

j=1

pjp(y|xj)

⎞
⎠ dy (13)

h(y|x) = −
∫ ∫

p(y,x) log p(y|x)dxdy

= −
∫ M∑

i=1

pip(y|xi) log p(y|xi)dy (14)
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we get by interchanging of summation and integration for the
mutual information

I(y;x) = −
M∑
i=1

pi

∫
p(y|xi) log

⎛
⎝ M∑

j=1

pjp(y|xj)

⎞
⎠ dy

+

M∑
i=1

pi

∫
p(y|xi) log p(y|xi)dy

=
M∑
i=1

pi

∫
p(y|xi) log

(
p(y|xi)∑M

j=1
pjp(y|xj)

)
dy

=

M∑
i=1

piD

⎛
⎝p(y|xi)

∣∣∣∣∣
∣∣∣∣∣

M∑
j=1

pjp(y|xj)

⎞
⎠ (15)

where D (g||h) =
∫

g log
(

g
h

)
is the Kullback-Leibler dis-

tance, or the relative entropy between the densities g and h,
see also [12].
We now seek to find the distribution p = [p1, ..., pM ] that

maximizes (15) by calculating the gradient of f = I(y;x)
with respect to p and using directional derivatives. However,
we would like to point out that there also exists an alternative
approach as described at the end of this section.
In the following derivation, we closely follow the lines in

[9]. Therefore we calculate the gradient ∇f =
(

df
dpi

)
i=1,...,M

df

dpi

=
d

dpi

M∑
i=1

pi

∫
p(y|xi)

⎡
⎣log p(y|xi)−log

⎛
⎝M∑

j=1

pjp(y|xj)

⎞
⎠
⎤
⎦dy

=

∫
p(y|xi)log p(y|xi)dy−

∫
p(y|xi)log

⎛
⎝M∑

j=1

pjp(y|xi)

⎞
⎠dy−1.

The directional derivative of f at p̂ = [p̂1, . . . , p̂M ] in the
direction of p is given by

〈∇f(p̂),p − p̂〉 =

M∑
i=1

(pi − p̂i) (ci − bi(p̂)) (16)

where

bi(p̂) =

∫
p(y|xi) · log

⎛
⎝ M∑

j=1

p̂jp(y|xj)

⎞
⎠ dy (17)

ci =

∫
p(y|xi) · log p(y|xi)dy. (18)

Due to the concavity of the log function, bi(p̂) is concave
in C for i = 1, . . . , M . Thus, the maximum of f is attained
at p̂ ∈ C iff the directional derivatives at p̂ in any direction
p ∈ C is non-positive, i.e.,

M∑
i=1

(pi − p̂i)(ci − bi(p̂)) ≤ 0. (19)

Hence, p̂ is an optimum point iff
M∑
i=1

p̂i(ci − bi(p̂)) = max
p∈C

M∑
i=1

pi(ci − bi(p̂))

= max
i=1,...,M

(ci − bi(p̂)). (20)

Equality is only achieved iff ci − bi(p̂) equals some constant
χ for all i with p̂i > 0. Recognizing that

ci − bi(p̂) = D

⎛
⎝p(y|xi)

∣∣∣∣∣
∣∣∣∣∣

M∑
j=1

p̂jp(y|xj)

⎞
⎠ (21)

we state the following proposition.
Proposition 1: Given the signaling vectors x1, . . . ,xM ∈

C
N for the input variable x in channel model (1), the distri-
bution p̂ is optimum, i.e., achieves the constrained capacity,
if and only if

D

⎛
⎝p(y|xi)

∣∣∣∣∣
∣∣∣∣∣

M∑
j=1

p̂jp(y|xj)

⎞
⎠ = χ (22)

for some χ ∈ R and all indices i with p̂i > 0.
Thus, for the optimum p̂ the Kullback-Leibler distance

D
(
p(y|xi)

∣∣∣∣∑M

j=1
p̂jp(y|xj)

)
is constant for all i with posi-

tive p̂i. With (15), the constrained ergodic capacity amounts to

C =
1

N
max
p∈C

I(y;x) =
1

N
χ. (23)

Alternatively, we can use the analogy of our problem to the
problem of finding the capacity-achieving input distribution of
the discrete memoryless channel (DMC). Due to the restriction
to a finite set of input sequences with finite length, the
Rayleigh fading channel is similar to the DMC, except that
its output is continuous. For the DMC a characterization of
the capacity-achieving distribution is given in [13, Theorem
4.5.1.]. The same methodology, essentially the Karush-Kuhn-
Tucker conditions, may be used in our context, yielding
proposition 1.

IV. CONSTANT MODULUS INPUT DISTRIBUTIONS
In this section, we will give an explicit characterization

of the optimum input distribution p for the special case of
constant modulus input distributions, i.e., PSK type signaling
with

xk = σ2
x exp

(
j2π

i

Q

)
, i = 0, . . . , Q − 1 (24)

where σ2
x = |xk|2,∀k. Here, j is the imaginary unit, i.e.,

j =
√−1. Without loss of generality, we assume σ2

x = 1 for
the rest of this work.

A. Distinguishable Transmit Sequences
For input signals given by (24) the probability density

function of the output conditioned on the input sequence (10)
can be simplified to

p(y|xi) =
exp

(
−yHXi

(
Rh + σ2

nIN

)−1
XH

i y
)

πN det (Rh + σ2
nIN )

. (25)

It can be shown that the density function conditioned on the
two input sequences xm and xn is equal, i.e.,

p(y|xn) = p(y|xm) (26)
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if and only if

xn = xm exp (jφ) for some φ ∈ [0, 2π). (27)

Thus, transmit sequences fulfilling the constraint given in (27)
can not be distinguished by the receiver.
We select a subset S0 ⊆ S of maximal cardinality such that

the elements of S0 are pairwise distinguishable, i.e.,

p(y|xn) �= p(y|xm) for any xn �= xm ∈ S0. (28)

It is easy to see that |S0| = M
Q

= QN−1.

B. Optimum Input Distribution
Based on S0, the Kullback-Leibler distance in (22) can be

transformed to

D

⎛
⎝p(y|xi)

∣∣∣∣∣
∣∣∣∣∣

M∑
j=1

p̂jp(y|xj)

⎞
⎠

=

∫
p(y|xi) log

(
p(y|xi)∑M

j=1
p̂jp(y|xj)

)
dy

=

∫
p(y|xi) log

(
p(y|xi)∑

xj∈S0
p(y|xj)

∑
{k|xk=xjejφ} p̂k

)
dy

(29)

In the last step, we use (26) and (27).
Proposition 2: The distribution∑

{k|xk=xlejφ}

p̂k = ψ =
Q

M
=

1

QN−1
, ∀l : xl ∈ S0 (30)

is optimum, i.e., achieves the constrained capacity.
Intuitively, the optimum input distribution corresponds to a

uniform distribution over the space of distinguishable transmit
sequences.

Proof: We have to show that for the input distribution
given in (30), the Kullback-Leibler distance (29) is indepen-
dent of the index i. With (21) the Kullback-Leibler distance
can be expressed by ci − bi(p̂), with ci and bi(p̂) given in
(18) and (17).
We will first show that the term ci given in (18) is indepen-

dent of the index i for constant modulus input distributions.
All signaling sequences xi can be generated as

xi = Uix1 (31)

where the matrix Ui is diagonal, orthonormal and, thus,
unitary.
The conditional density p(y|xi), see (25), obeys the follow-

ing property

p(y|xi) = p(y|Uix1) = p(UH
i y|x1). (32)

With (32), we get

ci =

∫
p(y|xi)log p(y|xi)dy=

∫
p(UH

i y|x1)log p(UH
i y|x1)dy

=

∫
p(y|x1) log p(y|x1)dy (33)

as Ui is unitary. Thus, ci is independent of the index i.
For bi(p̂) we get with (29) and (30)

bi(p̂) =

∫
p(y|xi) log

⎛
⎝ψ

∑
xj∈S0

p(y|xj)

⎞
⎠ dy

=

∫
p(UH

i y|x1) log

⎛
⎝ψ

∑
xj∈S0

p(y|xj)

⎞
⎠ dy

=

∫
p(y|x1) log

⎛
⎝ψ

∑
xj∈S0

p(y|UH
i xj)

⎞
⎠ dy

=

∫
p(y|x1) log

⎛
⎝ψ

∑
xj∈S0

p(y|xj)

⎞
⎠ dy (34)

where we used (32) and for the last equality that∑
xj∈S0

p(y|UH
i xj) =

∑
xj∈S0

p(y|xj). Therefore, bi(p̂) is
independent of the index i for the distribution (30). Finally,
we have shown that for the distribution in (30), the Kullback-
Leibler distance D

(
p(y|xi)

∣∣∣∣∑M

j=1
p̂jp(y|xj)

)
is constant,

and, thus, (30) is optimum.
With (22), (23), (29), and (30) the constrained capacity is

given by

C =
1

N

∫
p(y|xi) log

(
p(y|xi)

1

QN−1

∑
xj∈S0

p(y|xj)

)
dy

=
N − 1

N
log(Q)

− 1

N

∫
p(y|xi) log

(
1 +

∑
xj∈S0\xi

p(y|xj)

p(y|xi)

)
dy. (35)

C. Asymptotic SNR Behavior

As we assume the PSD of the channel fading process to
be compactly supported and characterized by a maximum
normalized Doppler frequency fd < 0.5, there are eigenvalues
of the channel covariance matrix Rh which are close to zero
if fd is not close to 0.5 and if the blocklength N is sufficiently
large. Thus, in this caseRh is close to singular. As in addition,
the sequences constituting the set S0 are distinguishable, we
conjecture that the integral in (35) is close to zero and hence,

lim
σ2

n→0

C ≈ N − 1

N
log(Q) (36)

forN sufficiently large and fd sufficiently small. This behavior
can already be observed for the parameters N = 6 and fd =
0.2 used in the numerical evaluation in Section IV-E.

D. Interpretation

The optimum input distribution given in (30) intuitively
corresponds to a uniform distribution over the space of dis-
tinguishable transmit sequences. One specific solution, being
included in the set of optimum input distributions is to use only
distinguishable transmit sequences, i.e., sequences taken from
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one set S0, thus fulfilling (28), i.e., given by the distribution

p̂i =

{
Q
M

for xi ∈ S0

0 for xi /∈ S0

. (37)

As the cardinality of a subset S0 is QN−1, the constrained
capacity is limited to N−1

N
log(Q), independent of fd,

corresponding to (36).
In case the set S0 is constructed such that all used transmit

sequences are characterized by having a fixed symbol at a
predetermined time instant, this solution corresponds to the use
of a pilot symbol. This intuitively explains why at least one
signaling dimension, i.e. the information transmitted by one
symbol, is lost for requiring a phase reference at the receiver.
The above result should not be understood in the way that

it is not possible to use all the transmit sequences of the set
S. In this case it has to be assured, that the information that
is mapped to non-distinguishable sequences x is equivalent,
as the differentiation between these sequences is impossible.
Following the argumentation in Section IV-C, we con-

jecture that for infinitely long transmission intervals,
i.e., N → ∞, and the infinite SNR case we get
limN→∞ limσ2

n→0 C = log(Q), which corresponds to the case
where the receiver knows the channel fading process.

E. Numerical Results

Fig. 1 shows the result of a Monte Carlo simulation of (35)
for Q = 2, i.e., BPSK, and for Q = 4, i.e., QPSK. The tem-
poral correlation of the channel fading process is determined
by the Jakes’ spectrum with maximum Doppler frequency
fd. Thus the corresponding covariance matrix is given by (5)
and the autocorrelation function rh(l) = J0(2πfdl), where
J0 is the zeroth-order Bessel function of the first kind. For
comparison also the mutual information in case of perfect
channel state information (CSI) is shown. For SNR → ∞, the
curves converge to the expression given in (36). In addition,
we see that for a given SNR and a given sequence length
N the constrained capacity decreases with increasing fd.
Furthermore, it should be noted that the length of the trans-
mission sequence N influences the constrained capacity. The
smaller the blocklength N is, the smaller is the constrained
capacity. Due to space constraints, this is not shown here.
As the numerical evaluation is based on a Monte Carlo

simulation, the calculation time increases strongly with N and
Q, as the number of possible transmit sequences increases.

V. CONCLUSION

In this paper, we have considered a Rayleigh flat-fading
channel with temporal correlation, where the channel state is
unknown to the transmitter and receiver, while the receiver
is aware of the channel law. For PSK signaling sequences,
we have derived an explicit expression for the optimum input
distribution achieving the constrained capacity. Furthermore,
we have identified the strategy of transmitting one pilot symbol
as being included in the set of optimum input distributions.
For asymptotic high SNR, the constrained capacity is at least
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Figure 1. Effect of Q and fd on the constr. capacity (35), num. evaluation

degraded by a factor of (N − 1)/N compared to the case of
perfect channel state information at receiver side.
The extension of this work to signaling sets making use of

the amplitude component, e.g., QAM signal constellations is
subject to further study. Furthermore, a general optimization
over the input distribution, including the choice of the optimal
signaling constellation, is of high relevance.
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