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Abstract—The problem of decision fusion in wireless sensor
networks for distributed detection applications has mainly
been considered in scenarios where sensor observations are
conditionally independent and both local sensor statistics as
well as wireless channel conditions are available for fusion rule
design. In this paper, kernel-based learning algorithms for the
design of decision fusion rules are presented when no such prior
knowledge is available. The fusion center receives a collection
of labeled decision vectors from the sensor nodes and employs
a discrete version of the method of kernel smoothing which
exploits the ordinal nature of local sensor decisions. The aim is
to arrive at fusion rules which are Bayes risk consistent, i.e.,
asymptotically optimal as the number of training samples tends
to infinity. The kernel-based learning approach is applied to
the problem of distributed detection of a deterministic signal
in correlated Gaussian noise. Numerical results obtained by
simulation show that the kernel-based fusion rules show good
performance also for finite sample sizes.

Keywords: Decision fusion, wireless sensor networks, dis-
tributed detection, kernel-based learning.

I. INTRODUCTION

One of the primary applications of wireless sensor networks
is the detection of phenomena of interest in the monitored
environment, e.g., absence or presence of a target [1], [2].
The wireless sensor nodes typically operate on limited en-
ergy budgets and are consequently subject to communication
constraints, resulting in a finite number of bits each sensor
node can transmit to the data sink before it runs out of power.
In order to extend sensor network lifetime, preprocessing of
measured raw data at the sensors and transmission of summary
messages is recommended. In the parallel fusion topology,
the sensor nodes process their observations independently and
make preliminary decisions about the state of the observed en-
vironment. The sensors transmit the local decisions to a fusion
center that combines the received messages and computes the
final detection result. The problem of optimally designing the
fusion rule according to the joint distribution of local sensor
decisions as well as wireless channel conditions with respect
to an overall performance criterion is called the problem of
decision fusion.
Decision fusion for distributed detection is a well-developed

field of research that traces back to the early work of Chair
and Varshney [3]. Over the last two decades, the problem
of decision fusion in sensor networks has been investigated

under a variety of different aspects like e.g. performance
criteria, network topologies, and channel models [4]–[7]. In
[8], the authors consider the design of optimal fusion rules in
the practically important case that sensor decision rules are
fixed. The derived fusion rules rely on the joint conditional
probability density functions of all sensor observations as well
as all local sensor decision rules and are valid for arbitrary
network topologies and different performance criteria. In [9],
Unnikrishnan and Veeravilli present a suboptimal solution to
the fusion problem in the case of correlated observations under
the assumption that the fusion center has access to partial
statistical information about quantized observations in the form
of lower order moments. Using deflection as a performance
criterion, they obtain fusion rules which are optimal in the
class of linear-quadratic detectors.
Despite the host of investigated scenarios, the majority of

the literature relies on rather strong assumptions about the
underlying statistical model. In the area of wireless sensor
networks, these assumptions may become infeasible because
one encounters random deployment of sensor nodes in com-
plex and unamenable sensing environments. In such scenarios,
previous knowledge of the underlying statistical model of
sensor observations and wireless channel conditions may not
be available for system design. To tackle these difficulties,
adaptive approaches are recommended which facilitate the
configuration of distributed detection systems on the spot.
The adaptive approaches presented in [10]–[13] are all based

on estimating the local sensor error probabilities (i.e., the local
probability of false alarm and the local probability of miss) in
order to use these estimates in the Chair-Varshney fusion rule.
The main limitations of these approaches are on the one hand
the assumption of conditionally independent observations and
on the other hand the restriction to hard decision quantization
at the local detectors. Furthermore, error-free communication
between the sensors and the fusion center is assumed.
An alternative framework for the design of decision fusion

algorithms is provided by the field of supervised learning in
sensor networks [14]. Supervised learning refers to learning
from labeled samples of the underlying unknown probability
distribution. In this paper, we present kernel-based learning
algorithms for the design of fusion rules for distributed de-
tection in the parallel fusion topology. After deployment of
the network, the fusion center receives from the sensor nodes
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Fig. 1. Parallel fusion network with noisy channels.

a certain number of decision vectors which are labeled with
the true underlying hypothesis by an external observer. For the
subsequent learning phase we employ a discrete version of the
method of kernel smoothing that takes advantage of the ordinal
nature of local sensor decisions. Doing so, we obtain fusion
rules which are Bayes risk consistent, i.e., asymptotically
optimal for large training sets, but also show good performance
for small sample sizes.
The remainder of this paper is organized as follows. In

Section II, the problem of decision fusion for distributed
detection in the parallel fusion network with noisy channels is
stated. In Section III, we formulate kernel-based learning of
decision fusion rules in the so-called sampling paradigm. In
Section IV, we apply the kernel-based learning approach to
the problem of distributed detection of a deterministic signal
in correlated Gaussian noise and present numerical results
obtained by simulation. Finally, we conclude in Section V.

II. PARALLEL FUSION NETWORK WITH NOISY CHANNELS

The problem of decision fusion for distributed detection
in the parallel fusion network with noisy channels can be
stated as follows (see Fig. 1). We consider a binary hypothesis
testing problem with hypotheses H0 and H1 indicating the
state of the observed environment, e.g., absence or presence
of a target. The actual state of the environment is described
by a binary-valued random variable Y ∈ {0, 1} and associated
prior probabilities

π0 = P (H0) = P (Y = 0),

π1 = P (H1) = P (Y = 1).
(1)

In order to infer the true state of nature, a network of N
distributed sensors S1, . . . , SN receive measurement data

X = (X1, . . . ,XN )′ ∈ X1 × . . . ×XN , (2)

which are assumed to be generated according to either H0

or H1, the two hypotheses under test. Due to the distributed
nature of the problem, the sensors process their respective
observations Xj independently by forming local decisions

Uj = γj(Xj), j = 1, . . . , N. (3)

In the general case of M -ary quantization, the local sensor
decision rules γj are mappings

γj : Xj → {1, . . . ,M}, j = 1, . . . , N. (4)

The structure of optimal sensor decision rules under a variety
of conditions was investigated by Warren and Willett in [15].
It is important to note that under reasonable assumptions the
local sensor decisions are of an ordinal nature, i.e., the larger
the value of local decision Uj the more decides sensor Sj in
favour of one of the two hypotheses.
Upon local detection, the sensor nodes transmit a vector of

local decisions

U = (U1, . . . , UN )′ ∈ {1, . . . ,M}N (5)

to the fusion center in order to perform decision combining.
The communication channels between the wireless sensors and
the fusion center may be subject to noise and interference. We
follow an approach described by Cheng et al. [16] and model
the communication link Cj between sensor Sj and the fusion
center by a discrete noisy channel with transition matrix T .
We assume the channel transition matrix T = (Tkl)1≤k,l≤M

to be a quadratic M × M matrix with the klth entry defined
as

Tkl = P (Ũj = k|Uj = l), k, l ∈ {1, . . . ,M}, (6)

where
∑M

k=1 Tkl = 1 for any l ∈ {1, . . . ,M}. Due to the noisy
channels, the fusion center receives a vector of potentially
distorted decisions

Ũ = (Ũ1, . . . , ŨN )′ ∈ {1, . . . ,M}N . (7)

The received decisions are combined to yield the final decision
U0 = γ0(Ũ1, . . . , ŨN ), where the fusion rule γ0 is a binary-
valued mapping

γ0 : {1, . . . ,M}N → {0, 1}. (8)

The sensor network detection performance is measured in
terms of the global probability of error

Pe = P (γ0(Ũ) 6= Y )

= π0Pf + π1Pm,
(9)

which can be written as a weighted sum of the global probabil-
ity of false alarm Pf = P (U0 = 1|H0) and the corresponding
global probability of miss Pm = P (U0 = 0|H1).
Since the decision fusion problem can be viewed as a

hypothesis testing problem at the fusion center with received
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local decisions being the observations, the Bayes optimal
fusion rule γ∗

0 takes the form

γ∗
0(ũ) = argmax

k=0,1
P (Hk|ũ) (10)

= argmax
k=0,1

πk · p(ũ|Hk), (11)

where P (Hk|ũ) is the posterior probability of hypothesis Hk

given the received decision vector ũ and p(ũ|Hk) is the joint
probability mass function of the received decision vector under
hypothesis Hk, k = 0, 1. The minimum probability of error
associated with the optimal fusion rule γ∗

0 is given by the
Bayes risk

P ∗
e = P (γ∗

0 (Ũ) 6= Y ). (12)

The implementation of the Bayes optimal fusion rule requires
previous knowledge of either the posterior probabilities in
(10) or of both the prior probabilities and the conditional
joint probability mass functions in (11). Accordingly, the
design of fusion rules based on a set of empirical samples
can be done in two conceptually different ways. Whether the
posterior probabilities are estimated directly or if estimates of
the conditional joint probability mass functions are used via
Bayes’ rule, one talks about the diagnostic paradigm or the
sampling paradigm, respectively [17].
In the following section, we present a kernel-based learn-

ing approach to the design of fusion rules in the sampling
paradigm, i.e., the conditional joint probability mass functions
of the received decision vectors under each hypothesis are
estimated and plugged into (11).

III. KERNEL-BASED LEARNING OF FUSION RULES

Approaches to estimate the joint probability mass function
of an N -dimensional discrete random vector of M -ary data
have to deal with the difficulty that the joint probability distri-
bution is in general characterized by MN − 1 free parameters
corresponding to the MN different outcomes that can be
observed. For large N , this results in a prohibitive amount
of necessary training data for parameter estimation. In the
decision fusion literature, this problem was circumvented for
the hard decision case either by assuming complete knowledge
of all correlations between the binary local decisions, or by
allowing only the presence of restricted correlation structures
that can be indexed by a single parameter [18], [19].
In order to cope with unknown and arbitrary correlation

structures for M -ary local decisions, we use an extension of
kernel smoothing for multivariate binary distributions which
was introduced by Aitchison and Aitken [20]. Extending their
approach to M -ary valued discrete random vectors allows the
trained fusion rule to adapt to the correlation structure of the
multivariate discrete distribution, paving the way for Bayes
risk consistent fusion rules. Furthermore, M -ary quantization
enables to take advantage of the above mentioned ordinary
nature of local sensor decisions.
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Fig. 2. Sensor nodes S1, . . . , SN transmitting the components of the decision
vector eui = (eui1

, . . . , euiN
)′ to the fusion center (FC).

A. Kernel-based estimation

As an operational requirement for fusion rule design via su-
pervised learning, the fusion center receives a certain number
of decision vectors from the sensor nodes after deployment
of the network (see Fig. 2). During this phase, each of the
received decision vectors is assumed to be labeled with the
true underlying hypothesis by an external observer. Formally,
we assume that a training set

Dn = {(ũi, yi)}
n
i=1 ⊂ {1, . . . ,M}N × {0, 1} (13)

of potentially distorted decision vectors ũi ∈ {1, . . . ,M}N

assigned with the label yi ∈ {0, 1} of the true underlying
hypothesis is available at the fusion center. The samples in
the training set Dn are assumed to be drawn i.i.d. from the
joint probability mass function p(ũ, y) of the received decision
vector ũ and the underlying hypothesis y.
The fusion center uses the training set Dn in combination

with a discrete kernel function

K : {1, . . . ,M}N → R+ (14)

to form estimates of the conditional joint probability mass
functions p(ũ|Hk) according to

p̂(ũ|H0) = p̂(ũ|Dn0
,λ0) =

1

n0

∑

Dn0

K(ũ|ũi,λ0), (15)

p̂(ũ|H1) = p̂(ũ|Dn1
,λ1) =

1

n1

∑

Dn1

K(ũ|ũi,λ1), (16)

where Dnk
⊂ Dn is the subset of decision vectors with label

k, nk is the number of decision vectors in the subset Dnk
, and

λk = (λk1
, . . . , λkN

)′ is a vector of smoothing parameters for
k = 0, 1. The kernel-based estimates (15) and (16) are plugged
into the Bayes optimal rule (11), yielding the fusion rule

γ0(ũ) = argmax
k=0,1

π̂k · p̂(ũ|Hk). (17)

The estimates π̂0 and π̂1 of the prior probabilities are chosen
to be

π̂0 =
n0

n
, π̂1 =

n1

n
. (18)

168



For the discrete kernel function K, we employ a product kernel
according to

K(ũ|ũi,λk) =

N∏

j=1

Kj(ũj |ũij
, λkj

) (19)

where Kj(ũj |ũij
, λkj

) is the univariate kernel component
for the jth component of ũ = (ũ1, . . . , ũN )′ based on the
jth component of the training vector ũi = (ũi1 , . . . , ũiN

)′.
The simplest product kernel is composed from the nominal
Aitchison-Aitken kernel compenents [20]

K(u|v, λ) =

{
λ if u = v

(1 − λ)/(M − 1) if u 6= v
. (20)

However, the Aitchison-Aitken kernel does not allow use of
the ordinal nature of local sensor decisions since it does not
take the distance between the local decisions into account. A
variety of univariate kernel functions which allow use of the
ordinal scale of sensor decisions is given in Table I.

B. Computing the smoothing parameters

Since our objective is to optimize sensor network detection
performance, the choice of the smoothing parameters should
be based on the aim of binary hypothesis testing. That means
the smoothing parameters should be chosen according to a cri-
terion which is based on the separation of the two hypotheses
under test. We follow an approach due to Tutz and Groß [21]
that is based on the notion of discriminant loss functions.
Let p(ũ, y) denote the joint probability mass function of

the received decision vector and the label of the underlying
hypothesis and let p̂(ũ, y) denote its estimate. The family of
functions measuring the discrimination loss associated with
the estimate p̂(ũ, y) is given by

L
[
p(ũ, y), p̂(ũ, y)

]
=

∑

eu

p(ũ)L̃
[
p(y|ũ), p̂(y|ũ)

]
, (21)

where p(ũ) denotes the marginal probability of ũ and p(y|ũ),
p̂(y|ũ) denotes the posterior probability of y and the estimated
posterior probability of y, respectively. The discriminant loss
function (21) is a weighted sum of the conditional loss function
L̃ which connects the loss to the hypothesis testing problem.
The function L̃ penalizes the deviation of the estimated
posterior probability p̂(y|ũ) from the true posterior probability
p(y|ũ).
Examples of conditional loss functions are the Kullback-

Leibler divergence

L̃
[
p(y|ũ), p̂(y|ũ)

]
=

∑

y

p(y|ũ) · log
p(y|ũ)

p̂(y|ũ)
(22)

and the quadratic loss

L̃
[
p(y|ũ), p̂(y|ũ)

]
=

∑

y

(
p(y|ũ) − p̂(y|ũ)

)2
. (23)

Direct evaluation of the discriminant loss function (21) re-
quires knowledge of the true underlying distribution p(ũ, y).
Since this knowledge is assumed to be not available, it is

replaced by the empirical knowledge of the training set Dn.
Accordingly, the smoothing parameters are determined by
minimizing the cross-validatory estimate of the discrimination
loss

L̂(λ0,λ1) =

n∑

i=1

L
[
δ(eui,yi), p̂(ũ, y|Dn\{(ũi, yi)},λ0,λ1)

]
,

(24)
where δ(eui,yi) is the one-point measure putting the total mass
at sample point (ũi, yi) ∈ Dn and Dn\{(ũi, yi)} is the
reduced training set where the observation (ũi, yi) is excluded.
For the estimated joint probability mass function we employ

p̂(ũ, y|Dn,λ0,λ1) =

{
π̂0 · p̂(ũ|Dn0

,λ0) if y = 0

π̂1 · p̂(ũ|Dn1
,λ1) if y = 1

.

(25)
Using the Kullback-Leibler divergence (22) or the quadratic
loss (23) as conditional loss function, determination of the
smoothing parameters according to

(λ∗
0,λ

∗
1) = argmin

(λ0,λ1)

L̂(λ0,λ1) (26)

results in a Bayes risk consistent fusion rule (17), i.e., its
probability of error Pe converges with probability one to the
probability of error P ∗

e of the Bayes optimal fusion rule (12)
as the size of the training set Dn tends to infinity [21].

C. Example: Quadratic loss function

We give an example of the objective function (24) to be
minimized for the special case of quadratic loss (23). Inserting
expressions (25) in (24) and after some calculation, we obtain
the objective function

L̂(λ0,λ1) =
∑

Dn0

[(
1 −

π̂0 · p̂(ũi|Dn0
\{ũi},λ0)

p̂(ũi)

)2

+

+

(
π̂1 · p̂(ũi|Dn1

\{ũi},λ1)

p̂(ũi)

)2
]

+

∑

Dn1

[(
1 −

π̂1 · p̂(ũi|Dn1
\{ũi},λ1)

p̂(ũi)

)2

+

+

(
π̂0 · p̂(ũi|Dn0

\{ũi},λ0)

p̂(ũi)

)2
]

(27)

which has to be minimized over the smoothing parameter
vectors λ0 and λ1. The expression p̂(ũi) denotes the relative
frequency of the decision vector ũi in the training set Dn.

IV. NUMERICAL RESULTS

In this section, we provide numerical results by applying
the presented kernel-based learning approach to the problem
of distributed detection of a deterministic signal in correlated
Gaussian noise. The effect of correlated Gaussian noise at the
local sensors on the overall performance of the distributed
detection system was studied by Aalo et al. [22]–[24]. As
expected, they found that positive correlation between sensor
observations tends to decrease overall system performance.
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TABLE I

ORDINAL UNIVARIATE KERNELS

Modified Habbema kernel K(u|v, λ) = (1 − λ)|u−v|γ λ ∈ [0, 1], γ ∈ (0,∞]

Uniform kernel K(u|v, λ) =





(1 − λ)/|T (v)| if u ∈ T (v)
λ if u = v
0 else

λ ∈ [0, 1]

where T (v) = {w | |v − w| ≤ k, v 6= w}

Geometrical kernel K(u|v, λ) =

{
λ if u = v

1
2λ(1 − λ)|u−v| if u 6= v

λ ∈ [0, 1]

Aitken kernel K(u|v, λ) =

{
λ if u = v

(1 − λ)/2|u−v| if u 6= v
λ ∈ [0, 1]

A. Joint distribution of sensor observations

We assume that the observations X = (X1, . . . ,XN )′

at the local sensors of the distributed detection system are
conditionally distributed according to

H0 : X ∼ N (0,Σ),

H1 : X ∼ N (µ,Σ),
(28)

where N (µ,Σ) denotes the multivariate normal distribution
with mean vector µ = (µ1, . . . , µN )′ and covariance matrix
Σ = (Σij)1≤i,j≤N . The covariance matrix Σ describes the
correlated background noise and the mean vector µ indicates
the deterministic signal component under hypothesis H1. The
hypotheses H0 and H1 are assumed to be equally likely to
occur, i.e., π0 = π1 = 1

2 .
At each sensor, the local observation signal-to-noise ratio

(SNR) SNRj is given in dB by

SNRj = 10 log10(
µ2

j

σ2

j

), j = 1, . . . , N, (29)

where σ2
j = Σjj is the local noise variance.

B. Local sensor decision rules

We consider the case of quaternary sensors, i.e., the local
sensor decision rules are mappings

γj : Xj → {1, . . . , 4}, j = 1, . . . , N. (30)

Motivated by the work of Chen and Papamarcou [25], we
assume quantization of the local log-likelihood ratio

Lj = log
fj(Xj |H1)

fj(Xj |H0)
, j = 1, . . . , N, (31)

where fj(·|Hk) denotes the marginal probability density func-
tion of observation Xj under hypothesis Hk, k = 0, 1. The
local log-likelihood ratios Lj are again Gaussian random

variables with conditional marginal distributions according to

H0 : Lj ∼ N (−
µ2

j

2σ2

j

,
µ2

j

σ2

j

),

H1 : Lj ∼ N (
µ2

j

2σ2

j

,
µ2

j

σ2

j

).
(32)

The quantization of the local log-likelihood ratios Lj is done
symmetrically resulting in local sensor decisions

Uj = γj(Xj) =





1 if −∞ < Lj ≤ −
µ2

j

2σ2

j

2 if −
µ2

j

2σ2

j

< Lj ≤ 0

3 if 0 < Lj ≤
µ2

j

2σ2

j

4 if
µ2

j

2σ2

j

< Lj < ∞

. (33)

Given these fixed sensor decision rules, the objective is to
implement a fusion rule with minimum probability of error.
In the simulation, the fusion rule is constructed by a product
of geometrical kernel functions (see Table I) and computation
of the smoothing parameters is done using the quadratic loss
function (27). For simplicity, we assume error-free communi-
cation channels.
We consider networks of N = 5, . . . , 50 sensors collecting

training sets of n = 50 labeled decision vectors. Naturally,
the resulting probability of error of the distributed detection
system is a random variable because the fusion rule is trained
on a set of random samples. So we calculate the mean prob-
ability of error by averaging over 100 independent simulation
runs for each size of the network.

C. Gaussian noise with geometrically decaying correlations

First, we consider Gaussian noise with geometrically de-
caying correlations, i.e., we assume that the correlation coef-
ficients between Xi and Xj are given by

ρij = ρ|i−j|, i, j = 1, . . . , N. (34)
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Fig. 3. Average probability of error of the kernel-based fusion rule for
Gaussian noise with geometrically decaying correlations. The local observa-
tion SNR at each sensor is 2 dB.

Assuming equal noise variance at the sensors, i.e., σ2
j ≡ σ2,

the covariance matrix Σ has the form

Σ = σ2




1 ρ ρ2 · · · ρN−1

ρ 1 ρ · · · ρN−2

...
...

...
. . .

...
ρN−1 ρN−2 ρN−3 · · · 1


 . (35)

In this case, the degree of correlation is uniquely parameterized
by ρ ∈ [0, 1]. This correlation model could be a reasonable
approximation for some real-world situations.
Fig. 3 illustrates the average probability of error of the

distributed detection system implementing the kernel-based
fusion rule for various values of the correlation parameter ρ.
It is obvious that with increasing ρ both system performance
as well as the benefit of additional sensors decreases.

D. Equicorrelated Gaussian noise

Next, we consider equicorrelated Gaussian noise, i.e., we
consider a covariance matrix Σ of the form

Σ = σ2




1 ρ · · · ρ
ρ 1 · · · ρ
...

...
. . .

...
ρ ρ · · · 1


 . (36)

Again, the degree of correlation is parameterized by ρ ∈ [0, 1].
The numerical results depicted in Fig. 4 illustrate once

again the deteriorating effect of strong positive correlations on
sensor network detection performance. However, the kernel-
based learning approach to fusion rule design provides robust
results in the strong correlation case also.

E. Gaussian noise with random correlations

In order to illustrate the adaptability of the kernel-based
learning approach, we finally consider the case of Gaussian
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Fig. 4. Average probability of error of the kernel-based fusion rule for
equicorrelated Gaussian noise. The local observation SNR at each sensor is
2 dB.

noise where the degree of correlation between the observations
is random. In this case, the covariance matrix Σ is a random
matrix where the entries Σij are random variables. There are
several methods for generating random covariance matrices
with prespecified properties. We follow a recent approach
developed in [26] which is easy to implement.
First, we consider a scenario where the non-diagonal entries

of Σ are random but the diagonal entries are fixed. In partic-
ular, we assume Σ11 = Σ22 = . . . = ΣNN = σ2, resulting
in fixed and identical local observation SNR at the sensors.
Fig. 5 depicts the simulation results. The average probability
of error of the kernel-based fusion rule approximately decays
exponentially with the number of sensors N .

Finally, we allow the local observation SNR to be random,
too. Consequently, it may differ from sensor to sensor. The
distribution of the diagonal entries Σ11, . . . ,ΣNN is chosen
in a way that the local observation SNR’s are randomly
distributed between 0 and 5 dB. In correspondence with the
results of Fig. 5, Fig. 6 shows an approximately exponential
decay of the probability of error.

V. CONCLUSIONS

In this paper, we have presented a kernel-based learning
approach to the design of decision fusion rules for distributed
detection in sensor networks. Using discrete kernel functions
which exploit the ordinal nature of local sensor decisions and
computing appropriate smoothing parameters, this approach
resulted in Bayes risk consistent fusion rules which provide
optimal detection performance in the asymptotic case. Nu-
merical results obtained by application of the kernel-based
learning approach to the problem of distributed detection of a
deterministic signal in correlated Gaussian noise showed good
performance of the obtained fusion rules also for moderately
sized training sets.
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