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Abstract—Adaptive modulation of subcarriers for orthogonal
frequency division multiplexing (OFDM) has been shown to
improve system performance significantly. As a prerequisite,
accurate channel state information (CSI) must be available at
the transmitter. For time varying, noisy channels, however, this
is difficult to achieve in practical systems. In this paper, we
consider optimal subcarrier assignment under incomplete CSI.
Soft estimates and the Cramer-Rao bound are used to analyze
the effect of CSI errors. As an important control parameter, the
frame length is coming in. We investigate analytically its influence
on the performance of adaptive modulation in OFDM systems
for the rate and power optimization problems. Simulations
demonstrate that the frame length may not be neglected as an
important overall system performance parameter.

I. INTRODUCTION

OFDM forms a method of low-complexity to combat the
effects of delay spread and frequency selective fading for
high-speed wireless data transmission. It is presently used in
many digital communication systems, such as digital audio and
video broadcasting (DAB/DVB), wireless local area networks
(WLAN) and worldwide interoperability for microwave access
(WiMAX). In OFDM, the transmission band is divided into
orthogonal subcarriers. If the bandwidth of subcarriers is
sufficiently narrow, the subcarriers are subject to flat fading
with different channel gains. A detailed description of this
method is presented, e.g., in [1], [2].

To improve the bandwidth efficiency and enhance the sys-
tem performance, different modulation schemes on different
subcarriers may be employed in order to adapt to individual
channel gains, a method also called bit loading, see [3]. In
order to take advantage of adaptive modulation, accurate CSI
is required at the transmitter. In practical wireless commu-
nications, however, due to noisy and time varying channels
only imperfect CSI is available. The induced performance
degradation is studied in [4], [5].

In this paper, we consider soft channel estimation, providing
additional information on the channel uncertainty, cf. [6], and
quantify the performance degradation of adaptive modulation
for OFDM. By considering the Cramer-Rao lower bound
(CRLB) on the error variance we derive universal results not
depending on a specific estimation method.
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The paper is organized as follows. Section II presents the
system model and assumptions. In Section III, the channel esti-
mation error is characterized and its variance is lower bounded
by the CRLB. Furthermore, its impact on data detection is
analyzed. Based on this analysis, we study the effect of the
channel uncertainty information on adaptive modulation for
both the margin- and rate-adaptive problems in Section IV.
Numerical results are given in Section V, which indicate that
the frame length is an important control parameter for system
performance.

II. SYSTEM MODEL AND ASSUMPTIONS

Consider an OFDM system with N subcarriers. The data
stream is divided into frames. Each frame consists of K
OFDM symbols and may include pilot symbols or not. It is
assumed that transmissions are subject to frequency selective
fading and that the channel is invariant within a frame. After
performing synchronization, removing cyclic prefix and exe-
cuting fast Fourier transform (FFT) at the receiver, a received
OFDM symbol may be written as

y = Dhx + ω, (1)

where the N×1 vectors y and x refer to the received and trans-
mitted OFDM symbols, respectively. The additive complex
Gaussian noise vector is denoted by ω with distribution ω ∼
CN (0, σ2

ωIN). Diagonal matrix Dh = diag(h[1], . . . , h[N ])
contains perfect CSI, where h[n] is the channel coefficient of
the nth subcarrier in frequency domain.

In practice, reliable transmission always requires very low
bit-error rates (BERs), like quasi-error-free in DVB, which
means less than one error event per hour, corresponding to
BER = 10−10 to 10−11, see [7]. Therefore, we can assume
that our systems throughout this paper are operated in the
high signal-to-noise ratio (SNR) range, where low BERs may
be guaranteed.

III. IMPERFECT CSI

Due to noisy channel estimation and unavoidable delay
between the transmitter and the receiver, it is impossible to
obtain perfect CSI in practice. However, we may neglect the
delay by assuming that the channel remains invariant for a
sufficiently long period of time. Then we can focus on the
effect of imperfect CSI only subject to channel estimation.
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A. Channel Estimation Error

The channel estimation error can be measured by the
average mean square error (MSE) over subcarriers, which is
defined as

MSE = E
{ 1

N

N∑
n=1

|h[n]− ĥ[n]|2
}

,

where ĥ[n] denotes the estimated channel coefficient of the nth
subcarrier in frequency domain. If the multipath components
experience independent Rayleigh fading, it follows that all
subcarriers undergo identical Rayleigh fading, then the MSE
may be written as

MSE = E
{|h[n]− ĥ[n]|2}.

For the sake of simplicity, we focus on one of the subcarriers
and suppress the subcarrier index within this section. Then (1)
simplifies to

y = hx + ω. (2)

With the least-squares channel estimation, the estimated chan-
nel coefficient is denoted by ĥ, derived as

ĥ =
y

x
= h +

ω

x︸︷︷︸
e

.

Obviously, h may be written as

h = ĥ− e.

If x is known or correctly detected by the receiver, the channel
estimation error e is an independent zero-mean complex
Gaussian random variable with variance σ2

e = σ2
ω/|x|2, which

can be interpreted as the channel uncertainty of h. Therefore,
the estimated channel coefficient ĥ can be treated as the
expectation of h. Then h can be viewed as an zero-mean
complex Gaussian random variable with variance σ2

e . This is
used as an assumption in [8], [9]. From this point of view it
holds that

MSE = σ2
e . (3)

Hence, σ2
e may be also interpreted as reliability information

on ĥ [6]. The pair (ĥ, σ2
e) is called a soft channel estimate, it

extends the channel estimate ĥ by the channel uncertainty σ2
e .

B. Effective Noise

Based on the decomposition above, (2) may be written as

y = ĥx−ex + ω︸ ︷︷ ︸
η

.

The latter term η = −ex + ω is called effective noise. It
comprises the channel noise and the channel estimation error.

Since e is assumed stochastically independent with zero
mean over OFDM symbols, it easily follows that

σ2
η = E(| − ex + ω|2) = Pσ2

e + σ2
ω, (4)

where P = E{|x|2} is the transmit power of data symbols.

The likelihood function with soft information included is
derived as

p(y|x) =
∫ ∞

−∞
p(y|x, h)p(h)dh

=
1

π(|x|2σ2
e + σ2

ω)
exp

(
− |y − ĥx|2
|x|2σ2

e + σ2
ω

)
, (5)

where

p(y|x, h) =
1

πσ2
ω

exp
(
−|y − hx|2

σ2
ω

)
is used for the conventional data detection with perfect CSI.
Based on (5) the maximum-likelihood detection rule with
imperfect CSI becomes

x̂ = max
x̃

p(y|x̃),

where x̃ ranges over the space of all possible data symbols.

C. The CRLB for the MSE of Channel Estimation

Channel estimation in OFDM systems has drawn a lot of
attention over the last years. There are essentially two types
of methods: pilot-based channel estimation and joint channel
estimation and data detection.

The first approach is based only on pilot symbols, as
depicted by Fig. 1.

Estimation Detection
Channel Data(ĥ, σ2

e) x̂

Fig. 1. Pilot-based channel estimation.

Its MSE can be expressed by the CRLB. In [10], the CRLB
of the pilot-based channel estimation is given as

MSE =
a

KtSNR
, (6)

where a = L/N is determined by the channel characteristics
and N , and L is the length of channel impulse response [11].
There are Kt pilot OFDM symbols in each frame. Further,
MSE is normalized by the expected channel gain E{|h|2}.

The second method additionally utilizes data symbols.
Channel estimation and data detection are jointly performed,
mutually benefiting from each other. To reduce complexity,
joint channel estimation and data detection is performed
iteratively as depicted in Fig. 2, cf. [11], [12], [13].

Estimation Detection
Channel Data

x̂

(ĥ, σ2
e)

Fig. 2. Joint channel estimation and data detection
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Fig. 3. The Cramer-Rao lower bound of the mean square error of channel
estimation for Kt = 1, Kt = 10 and Kt = 100 with a = 1.

Under the assumption of high SNR with low BERs, the
MSE of joint channel estimation and data detection is close
to the CRLB. The CRLB at high SNR can be understood
intuitively. It is given by the MSE of the least-squares channel
estimation based on full knowledge of all data symbols. In this
case, Kt in (6) is equal to the frame length K. In Fig. 3 the
CRLB is plotted against the SNR for different values of Kt.

By combining (3) and (6) the variance of the channel
estimation error is obtained as

σ2
e =

aσ2
ω

PtKt
, (7)

where Pt denotes the transmit power of pilot symbols. If the
AWGN noise power is assumed constant for each user, the
channel estimation error is affected by the transmit power of
pilot symbols and the frame length. However, if (7) is inserted
in (4), then

σ2
η = σ2

ω

(
1 +

aP

PtKt

)
, (8)

which shows that the overall noise consisting of the AWGN
and the channel estimation error depends on the transmit
power of data symbols.

If the pilot-based channel estimation is applied and the same
transmit power is allocated to the data and pilot symbols, or
if the joint channel estimation and data detection is used, we
have the case Pt = P . Then (8) may be simplified to

σ2
η = σ2

ω

(
1 +

a

Kt

)
, (9)

which will be used in the following. Note that (9) has only one
variable Kt, the number of OFDM symbols used for channel
estimation in each frame, while the additive noise power is
fixed.

IV. ADAPTIVE MODULATION WITH IMPERFECT CSI

With the results from the previous section the received
OFDM symbol (1) reads as

y = Dĥx + η, (10)

where Dĥ = diag{ĥ[1], . . . , ĥ[N ]} is the estimate of Dh. The
noise η is a zero-mean complex Gaussian random vector with
distribution η ∼ CN (0, σ2

ηIN).
In adaptive OFDM systems, different modulation schemes

are used for subcarriers such that varying channel qualities
are considered. However, only imperfect CSI is available at
the transmitter. Here, the effective noise power (9) is used to
include the channel estimation error.

Resource allocation problems can be generally divided
into two groups according to different constraints, see [1].
One criterion is to maximize the performance margin while
satisfying data transmission requirements and is called the
margin-adaptive (MA) problem. On the other hand, the number
of bits per OFDM symbol may be maximized subject to a
fixed total transmit power constraint. This approach is called
the rate-adaptive (RA) problem.

A. The Margin-Adaptive Problem

The margin-adaptive problem aims to minimize the total
transmit power while satisfying the data rate and BER re-
quirements. Considering the effective noise, which is affected
by the additive noise power and especially by Kt, the margin-
adaptive problem reads as

min
N∑

n=1

P [n] (11)

subject to :

C1 :
N∑

n=1

r[n] ≥ R

C2 : r[n] ≤M, ∀n ∈ {1, . . . , N}

C3 : r[n] = log2

(
1 +

P [n]|ĥ[n]|2
Γσ2

ω(1 + a
Kt

)

)
,

where R in C1 denotes the minimal required data rate and
M in C2 denotes the maximal number of bits that can be
transmitted over each subcarrier in one OFDM symbol. The
power-rate function C3 includes the estimation error as given
in (10). The SNR gap Γ is determined by the required BER.
For example, the SNR gap is 8.8 dB for uncoded square
quadrature amplitude modulation (QAM) and BER = 10−6.

By assuming perfect channel knowledge, the problem of
optimal rate allocation is solved by water-filling, see [1], [14],

r[n] =
[
log2

(
λ|h[n]|2
ln(2)Γσ2

w

)]+
, (12)

where [x]+ = max(x, 0) and λ is the water-level, determined
by the rate constraint.



Algorithm 1 Water-Filling

Require: min
∑

n∈D P [n]
Ensure:

∑
n∈D r[n] = R, r[n] ≥ 0 and r[n] ≤M

initialization
D ← {1, . . . , N}
A ← ∅

repeat
λ← (14)
r[n]←(13), n ∈ D
S ← {n ∈ D | r[n] = 0}
L ← {n ∈ D | r[n] > M}
if S 	= ∅ then
D ← D \ S

else if L 	= ∅ then
A ← A∪ L
D ← {1, . . . , N}/A
R← R−M × |L|

end if
until S = ∅ and L = ∅
D ← A ∪D
output

r[n], P [n]← the inverse of C3, n ∈ D

By utilizing the imperfect channel knowledge given by an
arbitrary channel estimator, the optimal solution to (11) can
be derived as

r[n] =

[
log2

(
λ|ĥ[n]|2

ln(2)Γσ2
w(1 + a

Kt
)

)]+

. (13)

Compared to (12), the rate allocation in (13) is more conserva-
tive because of the incomplete CSI. Convexity of (11) ensures
that the optimal solution is achieved at equality in C1. The
water-level is given by

λ = ln(2)Γσ2
ω(1 +

a

Kt
)2

R
d

(∏
n∈D

1

|ĥ[n]|2

) 1
d

, (14)

where D denotes the set of all used subcarriers with order d.
Algorithm 1 returns the solution to (11). Set A denotes the

set of the subcarriers that achieve the maximal rate. First D
is initialized as containing all subcarriers instead of only the
subcarrier with the highest channel gain, since a high data
rate is often required and most of the subcarriers are normally
used in practice. In the loop above, the subcarriers loaded with
more than M bits per OFDM symbol are moved from D to
A, provided there arise no negative rates for other subcarriers.
Then D must be set to contain all subcarriers except those in
A to investigate the possibility of using the before removed
subcarriers.

B. The Rate-Adaptive Problem

In the rate-adaptive problem, the objective function is to
maximize the overall rate. Furthermore, the rate constraint C1
in (11) is substituted by a power constraint. The resulting

problem is concave. The rate-adaptive problem considering
effective noise is solved similarly as the margin-adaptive
one in the previous subsection, cf. [15]. The optimal power
allocation with perfect CSI is given as

P [n] =

[
1

ln(2)β
− Γσ2

ω

|ĥ[n]|2

]+

, (15)

while the optimal solution for incomplete channel knowledge
reads as

P [n] =

[
1

ln(2)β
− Γσ2

ω(1 + a
Kt

)

|ĥ[n]|2

]+

, (16)

where β denotes the Lagrangian multiplier for RA and is
determined by the power constraint. Compared to (15), (16)
allocates less power on each subcarrier due to the impact of
the channel estimation error.

V. NUMERICAL RESULTS

In this section, numerical results are presented in order to
quantify the influence of the soft channel estimates on adaptive
modulation in realistic environments. In the simulation, we use
a frequency selective channel that is modeled as consisting
of 16 independently Rayleigh distributed multipaths with an
exponential attenuation profile. The expected channel gain on
each subcarrier is normalized to one and the AWGN power
is set to be -5 dB, which means E{|h[n]|2}/σ2

ω = 5 dB. The
OFDM system has 16 subcarriers and the maximal rate on
one subcarrier is M = 6. The constant a in (7) is set to one.
The imperfect CSI is provided by the least-squares channel
estimation. For an intended BER of 10−6, Fig. 4 gives the total
transmit power for MA and Fig. 5 gives the total achieved rate
for RA with imperfect CSI in comparison with perfect CSI.

We can interpret the case Kt = 1 as an OFDM system using
pilot-based channel estimation, where each frame includes one
pilot symbol. The other cases of Kt = 10 and Kt = 100 can
be viewed as OFDM systems using joint channel estimation
and data detection with different frame lengths, which means
Kt = K here.

It can be seen that the increment of power consumption
due to imperfect CSI in Fig. 4 and the decrement of rate
achievement by using imperfect CSI in Fig. 5 becomes larger
along the horizontal axis. This has mainly two reasons. One
is the nonlinearity of the power-rate function. The other is
that more additional power in MA or more compensating rate
in RA is needed if more subcarriers are used. This happens
when the required rate in MA or the power constraint in RA
increases. It can be seen that the curves increase rapidly at
large required rates in Fig. 4. Moreover, the curves grow only
moderately at high constraint powers in Fig. 5. This behavior
is caused by the maximal rate constraint per OFDM symbol
on each subcarrier.

Moreover, on the vertical axis, compared to perfect CSI,
the increment of total transmit power due to imperfect CSI
becomes smaller in Fig. 4 (around 42% for Kt = 1, 5% for
Kt = 10 and 0.58% for Kt = 100), and the total achieved
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Fig. 4. MA: Total transmit power vs. required rates.

rate with imperfect CSI approaches to the one with perfect
CSI in Fig. 5, when Kt becomes larger, which means that
an increasing number of pilot or data symbols are used for
channel estimation. In other words, the additional power in
MA and compensating rate in RA for the channel estimation
error tends to zero as Kt tends to infinity, since

lim
Kt→∞

MSE = lim
Kt→∞

aσ2
ω

PtKt
= 0.

However, if pilot-based channel estimation is used, a large
number of pilot symbols per frame would deteriorate the
bandwidth efficiency. For joint channel estimation and data
detection, K cannot be set very large either, since the channel
stability within a sufficiently long period of time cannot
be guaranteed. Moreover, the unavoidable delay cannot be
neglected. For example, for downlink transmission in WiMAX
each frame contains 24 to 36 OFDM symbols, see [16].
For these reasons, the number of symbols aiding channel
estimation in a frame becomes considerably large.

VI. CONCLUSION

In this paper, we have studied noisy channel estimation
in OFDM. As an approximation, we used the CRLB as
channel estimation error. With this approach, we found that the
effective noise power depends only on the number of OFDM
symbols used for channel estimation per frame. The sheer
additive noise power has been replaced by the extended noise
power in the power-rate function. Under this replacement,
our numerical results have shown that the performance of the
resource allocation with imperfect CSI converges to the one
with perfect CSI when the number of OFDM symbols used
for channel estimation in a frame increases.
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