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Abstract—This paper addresses the scalable optimization of
sensor networks for distributed detection applications. In the
general case, the jointly optimum solution for the local sensor
decision rules and the fusion rule is extremely difficult to obtain
and does not scale with the number of sensors. In this paper,
we consider optimization of distributed detection systems based
on a local metric for sensor detection performance. Derived
from the asymptotic error exponents in binary hypothesis testing,
the Chernoff information emerges as an appropriate metric for
sensor detection quality. By locally maximizing the Chernoff
information at each sensor and thus decoupling the optimization
problem, scalable solutions are obtained which are also robust
with respect to the underlying prior probabilities. By considering
the problem of detecting a deterministic signal in the presence
of Gaussian noise, a detailed numerical study illustrates the
feasibilty of the proposed approach.

I. INTRODUCTION

Distributed detection is one of the primary applications

of wireless sensor networks and is often the first step in

an overall sensing process [1]–[3]. The nodes in a sensor

network typically operate on limited energy budgets and

are consequently subject to communication constraints. This

recommends compression of observations at the sensors and

transmission of quantized observations or local decisions. In

the parallel fusion network, the sensor nodes process their

observations independently and make preliminary decisions

about the state of the observed environment, e.g., absence or

presence of a target. The sensors transmit the local decisions

to a fusion center that combines the received decisions and

computes the final detection result. Since the transmission

channels between the wireless sensors and the fusion center

are subject to noise and interference, it might also be necessary

to take wireless channel conditions into account [4].

The main problem is to design the local sensor decision

rules and the fusion rule with respect to an overall performance

criterion, e.g., minimum probability of error. In the general

case, the jointly optimum solution for the local decision

rules at the sensors and the fusion rule is very difficult to

obtain and does not scale with the number of sensors. Global

optimization of distributed detection systems was first investi-

gated by Reibman and Nolte [5]. They consider simultaneous

optimization of binary local detectors and the fusion rule under

the constraints of identical local sensor decision rules and

restrictions on the employed fusion rule. Numerical algorithms

that find person-by-person optimal local sensor decision rules

are presented in [6] and [7]. In [8], the authors use an iterated

combination of a genetic algorithm for optimizing the fusion

rule and a gradient-based algorithm to optimize the decision

thresholds of the local detectors. All of the above authors

assume independent and identically distributed observations

at the local sensors and the joint optimization is done only

for sensor networks with a very low number of sensors, e.g.,

in [8] the number of sensors varies between 2 and 8.

Another interesting approach to the optimization of dis-

tributed detection systems is presented in [9]. The authors

decrease the computational complexity of the original opti-

mization problem by using distributional distances as objective

function instead of the original minimum probability of error

criterion. The local sensor decision rules are obtained by

solving a system of coupled nonlinear equations which in

general has multiple solutions. Besides the fact that their ap-

proach is only applicable to binary quantization at the sensors,

the main drawback lies in the coupled optimization problem

which again restricts the number of sensors considered in the

optimization to a maximum of 15.

In this paper, we consider the optimization of distributed

detection systems based on a local metric for sensor de-

tection performance. An appropriate metric is derived from

the asymptotic error exponents in binary hypothesis testing

and is given by the Chernoff information between probability

distributions. By locally maximizing the Chernoff information

between the probability vectors of quantization probabilities

at each sensor, a decoupling of the optimization problem is

obtained. Channel state information at the sensors might also

be used in the optimization procedure. After the local sensor

decision rules have been determined, the optimal channel-

aware fusion rule can be derived. As the numercial results

show, the presented approach enables scalable design of near-

optimal distributed detection systems and is also applicable to

realistic scenarios with nonhomogenous sensing conditions.

The remainder of this paper is organized as follows. In

Section II, the problem of distributed detection with M -ary

quantization, noisy channels, and soft decision fusion is stated.

The Chernoff information-based optimization procedure is

motivated and presented in Section III. In Section IV, a

detailed numerical analysis of the proposed approach is given.

Finally, we conclude in Section V.
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Fig. 1. Parallel fusion network with noisy channels.

II. DISTRIBUTED DETECTION

The problem of distributed detection in parallel fusion

networks with M -ary quantization at the local sensors, noisy

channels and soft decision fusion at the fusion center can be

stated as follows (see Fig. 1). We consider a binary hypothesis

testing problem with hypotheses H0 and H1 indicating the

state of the monitored environment. The associated prior

probabilities are π0 = P (H0) and π1 = P (H1). In order

to detect the true state of nature, a network of N sensors

S1, . . . , SN obtains random observations

(X1, . . . , XN )′ ∈ X1 × · · · × XN , (1)

which are generated according to either H0 or H1. The random

observations X1, . . . , XN are assumed to be conditionally

independent across sensors given the underlying hypothesis,

i.e., the joint conditional probability density function of all

the observations factorizes according to

f(x1, . . . , xN |Hk) =

N∏

j=1

fj(xj |Hk), k = 0, 1. (2)

According to the distributed nature of the problem, the sensors

process their respective observations Xj independently by

forming local decisions

Uj = δj(Xj), j = 1, . . . , N. (3)

Thus, the local decision Uj of sensor Sj does only depend

on its own observation Xj and not on the observations of the

other sensors.

A. Local sensor decision rules

In the general case of M -ary quantization at the local

sensors, the local sensor decision rules δj are mappings

δj : Xj → {1, . . . ,M}, j = 1, . . . , N. (4)

Warren and Willett have shown that the sensor decision rules

leading to jointly optimal configurations under the minimum

probability of error criterion are monotone likelihood ratio par-

titions of the sensor observation spaces X1, . . . ,XN , provided

that the observations are conditionally independent across

sensors [10]. Hence, it is necessary only to consider sensor

decision rules δj that can be parameterized by a set of real

quantization thresholds τj1 , . . . , τjM−1
, where τj0 = −∞,

τjM
= ∞, and τjk

≤ τjk+1
. In this way, each sensor Sj is

characterized by the conditional quantization probabilities

αjk
= P (Uj = k|H0) = P (τjk−1

< Lj ≤ τjk
|H0), (5)

βjk
= P (Uj = k|H1) = P (τjk−1

< Lj ≤ τjk
|H1), (6)

where Lj = log(fj(Xj |H1)/fj(Xj |H0)) is the local log-

likelihood ratio of observation Xj . The probability vectors

αj = (αj1 , . . . , αjM
)′ and βj = (βj1 , . . . , βjM

)′ are com-

putable given the local observation statistics fj( · |Hk) and the

quantization thresholds τj1 , . . . , τjM−1
for each j = 1, . . . , N .

B. Transmission of local decisions

Upon local decision-making, the sensor nodes transmit their

local decisions

(U1, . . . , UN )′ ∈ {1, . . . ,M}N (7)

to the fusion center in order to perform decision combining.

We model the communication link Cj between sensor Sj and

the fusion center by a discrete noisy channel with transition

matrix Tj . The channel transition matrix Tj = (T
(j)
kl )1≤k,l≤M

is an M × M matrix with the klth entry defined as

T
(j)
kl = P (Ũj = k|Uj = l), k, l ∈ {1, . . . ,M}, (8)

where
∑M

k=1 T
(j)
kl = 1 for any l ∈ {1, . . . ,M}. Because

of the noisy channels, the fusion center receives a vector of

potentially corrupted decisions

(Ũ1, . . . , ŨN )′ ∈ {1, . . . ,M}N . (9)

The distribution of the received decisions Ũj is determined by

the conditional probabilities

α̃jk
= P (Ũj = k|H0) =

M∑

l=1

T
(j)
kl αjl

, (10)

β̃jk
= P (Ũj = k|H1) =

M∑

l=1

T
(j)
kl βjl

. (11)

Assuming knowledge of the channel transition matrices Tj , the

probability vectors α̃j = Tjαj and β̃j = Tjβj characterizing

the distribution of the received local decisions Ũ1, . . . , ŨN

under each of the two hypotheses can be calculated.
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C. Optimal channel-aware fusion rule

At the fusion center, the received decisions Ũ1, . . . , ŨN are

fused to the final detection result U0 = δ0(Ũ1, . . . , ŨN ), where
the fusion rule δ0 is a binary-valued mapping

δ0 : {1, . . . ,M}N → {0, 1}. (12)

The sensor network detection performance is measured in

terms of the global probability of error

Pe = π0Pf + π1Pm, (13)

which can be written as a weighted sum of the global probabil-

ity of false alarm Pf = P (U0 = 1|H0) and the corresponding

global probability of miss Pm = P (U0 = 0|H1).

The optimal fusion rule under the minimum probability of

error criterion can be performed by evaluating a log-likelihood

ratio test of the form

N∑

j=1

Lj

U0 = 1

≷

U0 = 0

log
(π0

π1

)
= ϑ, (14)

where Lj = log(P (Ũj |H1)/P (Ũj |H0)) is the log-likelihood

ratio of the received decision Ũj and ϑ is the fusion threshold.

It is important to note that once the quantization probabili-

ties (10) and (11) of the received local decisions Ũ1, . . . , ŨN

are determined, the optimal channel-aware fusion rule (14) is

also determined.

D. Global error probabilities

When using the optimal fusion rule according to (14), the

global probability of false alarm Pf and the global probability

of miss Pm are determined by the conditional tail probabilities

Pf = P
( N∑

j=1

Lj > ϑ|H0

)
(15)

and

Pm = P
( N∑

j=1

Lj ≤ ϑ|H1

)
. (16)

In order to efficiently evaluate the sensor network detection

performance in terms of the global probability of error Pe, we

employ an approach introduced in [11] which provides tight

upper bounds on the global probability of false alarm (15) and

the global probability of miss (16).

III. CHERNOFF INFORMATION-BASED OPTIMIZATION OF

SENSOR DECISION RULES

In this section, we motivate and present the Chernoff

information-based optimization procedure for the local sensor

decision rules. The rationale behind this approach is that the

Chernoff information arises as asymptotic error exponent in

Bayesian hypothesis testing [12].

A. Hypothesis testing and Chernoff information

If we assume conditionally independent and identically

distributed (i.i.d.) sensor observations X1, . . . , XN , the local

conditional probability density functions fj(·|Hk) are the same

for all j = 1, . . . , N , and we can write

H0 : Xj ∼ f0,

H1 : Xj ∼ f1,
(17)

where fk is here the conditional probability density function

under hypothesis Hk for all sensors. The Chernoff information

between the two distributions f0 and f1 is defined as

D∗ = C(f0, f1) = − min
0≤t≤1

log

∫
f0(x)tf1(x)1−tdx. (18)

If the fusion center has access to the unquantized and non-

distorted observations X1, . . . , XN and uses the Bayes optimal

decision rule, for the probability of error Pe asymptotically it

holds that

lim
N→∞

log Pe

N
= −D∗. (19)

In other words, for large N we obtain

Pe ≈ exp(−ND∗), (20)

i.e., the Chernoff information D∗ is the asymptotic error

exponent in minimum probability of error hypothesis testing.

Intuitively, in the unquantized case considered above, every

sensor contributes with the full Chernoff information D∗ to

the exponent in (20). The higher the contributed Chernoff

information D∗, the lower the global probability of error

Pe. This motivates the approach that in the case of M -ary

quantization of observations at the sensors, the quantization

thresholds at each sensor should be chosen such that the

Chernoff information between the probability vectors of quan-

tization probabilities (10) and (11) is maximized.

B. Chernoff information between probability vectors

Analogously to definition (18), the Chernoff information

between two probability vectors p = (p1, . . . , pM )′ and

q = (q1, . . . , qM )′ in R
M is given by

D∗ = C(p, q) = − min
0≤t≤1

log

M∑

k=1

pt
kq1−t

k . (21)

According to their local knowledge, the sensors maximize

the Chernoff information C(α̃j , β̃j) between the transformed

probability vectors α̃j = Tjαj and β̃j = Tjβj . Thereby,

we assume that every sensor Sj has knowledge of its own

observation statistics given by the conditional marginal prob-

ability density functions fj(·|Hk), k = 0, 1, and that it has

local channel state information, i.e., it has knowledge of the

channel transition matrix Tj . The observation statistics of the

other sensors as well as their channel state information do not

have to be available at sensor Sj . Furthermore, the knowledge

of the prior probabilities is not necessary at the sensors.

Based on the knowledge available locally at the sensors,

the quantization thresholds τj1 , . . . , τjM−1
of sensor Sj are

978-1-4244-5950-6/09/$26.00 ©2009 IEEE 608



determined in such a way that the Chernoff information

between the corresponding probability vectors of quantization

probabilities is maximized.

IV. NUMERICAL RESULTS

In the following, we provide a detailed numerical analysis of

the Chernoff information-based optimization procedure. First,

we consider conditionally i.i.d. observations and compare the

detection performance between 1-bit and 2-bit quantization at

the local sensors, i.e., we consider distributed detection sys-

tems consisting of binary and quaternary sensors, respectively.

We study the influence of the local observation signal-to-noise

ratio (SNR) on both detection performance and quantization

thresholds. Furthermore, the robustness with respect to the

underlying prior probabilities is shown. Finally, we consider

the case when the observations are non-identically distributed,

i.e., we assume that the local observation SNR varies randomly

across sensors. For the sake of simplicity, we consider ideal

communication channels.

A. Joint distribution of sensor observations

As an illustrative example, we consider the problem of

detecting the presence or absence of a deterministic signal in

Gaussian noise, i.e., we assume that the random observations

X1, . . . , XN at the local sensors are distributed according to

H0 : Xj ∼ N (0, σ2
j ),

H1 : Xj ∼ N (µj , σ
2
j ),

(22)

for j = 1, . . . , N . The variance σ2
j describes the Gaussian

background noise and the mean µj indicates the deterministic

signal component under hypothesis H1 at sensor Sj . Accord-

ingly, the local observation SNR at sensor Sj is given by

SNRj = 10 log10

(µ2
j

σ2
j

)
[dB]. (23)

The local log-likelihood ratios Lj are again Gaussian random

variables with conditional marginal distributions according to

H0 : Lj ∼ N
(
−

µ2
j

2σ2
j

,
µ2

j

σ2
j

)
,

H1 : Lj ∼ N
( µ2

j

2σ2
j

,
µ2

j

σ2
j

)
.

(24)

In the distributed detection systems considered in the follow-

ing, the local log-likelihood ratios Lj are quantized to 1 or 2

bits, respectively.

B. Optimal centralized detection system

For the optimal centralized detection system that has ac-

cess to all the unquantized and non-distorted observations

X1, . . . , XN , the minimum probability of error P ∗
e for the de-

tection problem (22) can be calculated explicitly. Calculating

the Mahalanobis distance dM which is given in the present

case by

dM =

√√√√
N∑

j=1

µ2
j

σ2
j

, (25)
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Fig. 2. Probability of error of the Chernoff information-based distributed
detection systems with binary and quaternary sensors compared to the optimal
centralized detection system at low observation SNR of -3 dB.

the minimum probability of error P ∗
e of the optimal centralized

detection system can be calculated as

P ∗
e = π0 ·

(
1 − Φ

(ϑ + 1
2d2

M

dM

))
+ π1 · Φ

(ϑ − 1
2d2

M

dM

)
, (26)

where Φ is the cumulative distribution function of the standard

normal distribution and ϑ = log(π0/π1). The minimum prob-

ability of error P ∗
e of the optimal centralized detection system

will be the benchmark for the performance of the Chernoff-

information based distributed detection systems. It should be

kept in mind however, that the optimal centralized detection

system achieving P ∗
e has full access to the unquantized and

non-distorted observations X1, . . . , XN .

C. Conditionally i.i.d. observations

First, we consider the case of conditionally i.i.d. obser-

vations and analyze the performance of distributed detection

systems with binary sensors and quaternary sensors, respec-

tively. In the case of binary sensors, i.e., M = 2, there is

only one local quantization threshold τj1 at every sensor. Since

the observations are conditionally i.i.d., the optimal threshold

maximizing the local Chernoff information is identical for

every sensor. In the case of quaternary sensors, i.e., M = 4, the
same argument holds, so that the three quantization thresholds

τj1 , τj2 , τj3 are the same for every sensor. After the thresholds

are determined such that the Chernoff information is max-

imized, we employ a technique presented in [11] in order

to numerically evaluate the probability of error Pe of the

distributed detection systems with high accuracy.

Fig. 2 illustrates the numerical results at low observation

SNR. The probability of error Pe is evaluated for sensor

networks consisting of N = 5, . . . , 50 sensors for a local

observation SNR of -3 dB. The prior probabilities are assumed

to be π0 = π1 = 0.5. The probability or error of distributed

detection systems with quaternary sensors is considerably
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Fig. 3. Probability of error of the Chernoff information-based distributed
detection systems with binary and quaternary sensors compared to the optimal
centralized detection system at medium observation SNR of 0 dB.
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Fig. 4. Probability of error of the Chernoff information-based distributed
detection systems with binary and quaternary sensors compared to the optimal
centralized detection system at high observation SNR of 2 dB.
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Fig. 6. Difference Pe−P ∗

e between the probability of error of the Chernoff-
information based distributed detection system with N = 20 quaternary
sensors and the optimal centralized detection system at a local observation
SNR of 0 dB plotted against the prior probability π0.

smaller compared to distributed detection systems with binary

sensors. For example, in order to obtain a global probability

of error of Pe ≈ 0.05, one needs either 22 unquantized

observations, 27 quaternary sensors or 33 binary sensors.

Fig. 3 illustrates the numerical results at a medium ob-

servation SNR of 0 dB. Again, the probability of error is

evaluated for sensor networks consisting of N = 5, . . . , 50
sensors and the prior probabilities are assumed to be equal.

The probability or error of distributed detection systems with

quaternary sensors is approximately in the middle between

distributed detection systems with binary sensors and the

optimal centralized detection system.

Fig. 4 illustrates the numerical results at a high observation

SNR of 2 dB. In order to obtain a global probability of error

of Pe ≈ 0.01, one needs either 14 unquantized observations,

18 quaternary sensors or 21 binary sensors.

The optimal quantization thresholds τj1 , τj2 , τj3 of the

Chernoff information-based distributed detection system with

quaternary sensors as a function of the local observation SNR

are depicted in Fig. 5. The results show that the local log-

likelihood ratios Lj are quantized symmetrically, i.e., τj2 = 0
and τj1 = −τj3 . Furthermore, the higher the local observation

SNR, the larger is the distance between the lowest threshold

τj1 and the highest threshold τj3 . Obviously, the observation
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Fig. 7. Probability of error of the Chernoff information-based distributed
detection systems with binary and quaternary sensors compared to the optimal
centralized detection system for a randomly distributed observation SNR
between -3 and 2 dB.

SNR level has a direct influence on local quantizer design.

The robustness of the Chernoff information-based optimiza-

tion procedure with respect to the prior probabilities is shown

in Fig. 6. For a sensor network of N = 20 quaternary sensors

and a local observation SNR of 0 dB the difference Pe − P ∗
e

between the probability of error of the Chernoff-information

based distributed detection system and the optimal centralized

detection system is plotted against the prior probability π0.

The results show that the maximal deviation between the two

probabilities of error is reached for π0 = π1 = 0.5, i.e., in
our previous numerical results we have already considered the

worst case. For unequal prior probabilities, the performance

gap between the Chernoff information-based distributed detec-

tion systems and the optimal centralized one is even smaller.

D. Non-identically distributed observations

In general, the asymptotic considerations presented in (19)

and (20) only hold for conditionally i.i.d. observations. How-

ever, we take them as motivation to study the decoupling

of the optimization across sensors also for non-identically

distributed observations. As in the i.i.d. case, every sensor

determines the quantization thresholds in a way that the

Chernoff information between the corresponding quantization

probablilities is maximized, although the maximum value of

the Chernoff information now may vary from sensor to sensor.

Fig. 7 illustrates the numerical results when the local

observation SNR is a uniformly distributed random variable

between -3 and 2 dB. The probability of error is evaluated for

sensor networks consisting of N = 5, 10, . . . , 50 sensors and

the prior probabilities are assumed to be π0 = π1 = 0.5. For
the considered scenario, the probability of error of distributed

detection systems with quaternary sensors is approximately in

the middle between distributed detection systems with binary

sensors and the optimal centralized detection system. The

numerical results strongly indicate that Chernoff information-

based optimization of sensor networks for distributed detection

is also feasible in the case of non-identically distributed

observations as long as the observations are conditionally

independent.

V. CONCLUSIONS

In this paper, we presented an approach to the optimization

of sensor networks for distributed detection that is based on

the local maximization of the Chernoff information between

the probability vectors of quantization probabilities at every

sensor. By considering the problem of detecting a deterministic

signal in the presence of Gaussian noise, the numerical results

reveal the effect of 1-bit and 2-bit quantization of sensor obser-

vations on the overall detection performance when using the

Chernoff information-based optimization approach. Further-

more, the dependency of the optimal quantization thresholds

with respect to the local observation SNR and the robustness

to the prior probabilities are revealed. Finally, it is shown that

the Chernoff information-based optimization procedure is also

feasible for realistic scenarios with non-identically distributed

observations.
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