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Abstract—A data terminal seeks the optimal power allocation
for M sub-carriers under a general concave performance function
(“capacity”), and a per-Watt price. The value to the terminal of
one transferred information bit, as well as the noise-normalised
channel gains for each sub-carrier are the critical parameters.
We provide the structure of the general solution, and give
closed-form expressions for the logarithmic form. The analysis
reveals that if a sub-channel gain is less than or equal to the
suitably normalised power price said sub-channel is not usable.
Our results are directly applicable for power allocation in a
time-division OFDM system. They can also be useful in an
OFDMA system, if complemented with some sensible sub-channel
allocation scheme, as we propose separately.

I. INTRODUCTION

In an orthogonal frequency-division multiplexing (OFDM)

system, a data-transferring terminal seeks the optimal amount

of power for each of M sub-carriers, under a total power

constraint, and a per-Watt price. The water-filling solution to

this type of problems with costless power is well-known (for

example, see Section 5.3.3 in [1]). However, when power is

costly, the problem seems much less explored. Theorem 1 from

[2] is the most relevant contribution of which we are aware, but

it only addresses a specific logarithmic performance function,

and it is stated without proof.

Below we formally solve the problem for a general concave

performance function (see figure 1), and give closed-form

solutions for the logarithmic special case. Our motivation is

to apply our results within a decentralised, market-oriented

resource-allocation scheme for multi-user OFDM [3]. How-

ever, we believe that the analysis has independent value, and

in particular our results are directly applicable for price-based

power allocation in a time-division OFDM system.

II. DEFINITIONS/NOTATION

Let M be the number of sub-carriers; hm > 0 be the

transmitter-receiver channel gain over sub-carrier m divided

by the average noise level, c0 the price per unit of power,

and b0 the value of one transferred information bit. c0 and b0
can be interpreted as “true” economic values measured in a

pertinent monetary unit.

For convenience, and without loss of generality, we assume

that the channel gains are labelled so that h1 ≥ ·· · ≥ hM > 0.
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general performance function and its derivative (−.)

Figure 1. A performance (“capacity”) function and its derivative (dash)

Let pm ≥ 0 be the amount of power allocated to sub-carrier

m, and xm := hmpm (the signal-to-noise ratio (SNR) at the

receiver)

The terminal wishes to solve the problem :

max
x1,··· ,xM

b0

M

∑
m=1

f0(xm)− c0

M

∑
m=1

xm

hm

s.t.
M

∑
m=1

xm

hm
≤ P (1)

xm ≥ 0

Definition 1. f0 :ℜ+ →ℜ+ is strictly increasing, concave, and

satisfy (i) f0(0) = 0, (ii) f ′0(0) < ∞, and (iii) limt→∞ f ′0(t) = 0

(see figure 1).

Remark 2. Since f0 is concave, f ′′0 is negative, and therefore

f ′0 is strictly decreasing. In particular, f ′0(0) > f ′0(t) ∀t > 0.

Definition 3. fS(t) := ln(1+ t)

For reasons that may later become clear, the objective
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function can be re-written as

b0 f
′
0(0)

(

M

∑
m=1

f (xm)

f ′0(0)
−

c0

b0 f
′
0(0)

M

∑
m=1

xm

hm

)

(2)

Since the b0 f
′
0(0) factor will not change the optimiser,

with c := c0/(b0 f
′
0(0)) and f (t) := f0(t)/ f

′
0(0) the terminal’s

problem can be re-stated as:

max
x1,··· ,xM

M

∑
m=1

f (xm)− c
M

∑
m=1

xm

hm

s.t.
M

∑
m=1

xm

hm
≤ P (3)

xm ≥ 0

Remark 4. f retains the properties of f0 (Definition 1, Remark

2) with the additional specification that f ′(0)= 1, by definition

of f .

III. KKT CONDITIONS AND SOLUTIONS

A. KKT FONOC

Fact 5. If (x∗1, · · · ,x
∗
M) is a (local) optimiser corresponding

to Problem (1), then there are non-negative real numbers

λ, µ1, · · · .µM such that

hm f ′ (x∗m) = c+ λ−µm ∀m (4)

λ

(

M

∑
m=1

x∗m

hm
−P

)

= 0 (5)

µm
x∗m
hm

= 0 ∀m (6)

Remark 6. Fact 5 follows directly from the well-known

Karush-Kuhn-Tucker (KKT) first-order necessary optimising

conditions (FONOC) [4], [5].

Remark 7. µm arises from the non-negativity constraint xm ≥ 0.

The denominator in (6) is for algebraic convenience.

Lemma 8. Conditions (4) and (6) can be replaced by the

equivalent condition:

hm f ′ (x∗m) ≤ c+ λ ∀m with equality if x∗m > 0 (7)

Proof: (i) Since µm ≥ 0, hm f ′ (x∗m) + µm = c+ λ =⇒
hm f ′ (x∗m) ≤ c+ λ;

(ii) If x∗m > 0, (6) requires µm = 0 which, with (4), further

implies that hm f ′ (x∗m) = c+ λ

B. Solutions to the FONOC

Definition 9. With S := {m : hm ≤ c}, let

m0 :=

{

M+1 if S = /0

min(S) otherwise

Lemma 10. If (x∗1, · · · ,x
∗
M) is a (local) optimiser of Problem

(1) then (m0 ≤ m≤M) =⇒ x∗m = 0.

Proof: By convention, hm ≥ hm+1 ∀m; thus, hm0
≤ c =⇒

hm ≤ c ∀m > m0. Furthermore, since λ ≥ 0, hm ≤ c =⇒ hm <
c+ λ.

By Remark 4, f ′ is decreasing, with f ′(0) = 1. Thus

hm ≤ c+ λ =⇒ hm f ′ (t) < c+ λ ∀t > 0, and this implies that

there exists NO t > 0 that can satisfy the necessary condition

hm f ′ (t) = c+ λ (conditions (4) and (6) together).

Remark 11. Lemma 10 indicates that a general solution to (4)

— (6) allocates power to at most the first m0− 1 ≤ M sub-

carriers. The quantity c, the normalised power cost, defines a

threshold for channel usability; if hm ≤ c then the sub-channel

is useless.

Below we discuss separately two cases: (i) λ = 0 and (ii)

λ > 0 (respectively, “plentiful” and “scarce” power).

1) Plentiful power (λ = 0):

Lemma 12. If a non-negative vector (x∗1, · · · ,x
∗
M) is such that

(i) x∗m = 0 ∀m ∈ {m0, . . . ,M}, (ii)

hm f ′ (x∗m) = c ∀m ∈ {1, . . . ,m0−1} (8)

and (iii) ∑
M
m=1(x

∗
m/hm) ≤ P then (x∗1, · · · ,x

∗
M) satisfies condi-

tions (4), (5) and (6).

Proof: It can be verified by direct substitution that, under

the hypothesis, the choice λ = µ1 = · · ·= µm0−1 = 0, and µm =
c− hm ∀m ∈ {m0, . . . ,M}, satisfies conditions (4), (5) and

(6).

Remark 13. For the specific case in which f = fS, the solution

to (8) is given by

p∗m +
1

hm
=

1

c
∀m ∈ {1, . . . ,m0−1} (9)

( “water filling” for the first m0−1 sub-carriers).

2) Scarce power (λ > 0):

Lemma 14. If there exist λ > 0 and non-negative (x∗1, · · · ,x
∗
M)

such that (i)

x∗m =

{

0 if hm ≤ c+ λ

hm f ′ (x∗m) = c+ λ otherwise
(10)

and (ii) ∑
M
m=1(x

∗
m/hm) = P, then (x∗1, · · · ,x

∗
M) satisfies condi-

tions (4), (5) and (6).

Proof: Under the hypothesis, the choice

µm =

{

c+ λ−hm if hm ≤ c+ λ

0 otherwise
(11)

satisfies conditions (4), (5) and (6).

Remark 15. By Definition 1, f ′ is monotonic and hence

invertible (see figure 1). Thus, xm(λ) := f ′−1((c + λ)/hm)
yields xm as a function of λ. If f ′−1 can be expressed in

closed form, replacing xm(λ) into the power constraint yields

a single-variable equation which can be solved for λ. This

is done below for f = fS. Notice also that, since λ > 0,

hm≤ c =⇒ hm < c+λ, thus the sub-channels for which hm≤ c

remain unusable, and need not be considered. At most m0−1

sub-channels are used.

Remark 16. For f = fS, equation (10) yields xm/hm =
max(0,1/(c+ λ)− 1/hm). For 1 ≤ m ≤ m0 − 1, hm > c, but

depending on the value of λ, hm could be less than c+ λ
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for some m. Assuming first that for the resulting value of λ,

hm0−1 ≥ c+ λ the power constraint leads to

m0−1

c+ λ
−

m0−1

∑
m=1

1

hm
= P (12)

or

c+ λ =
m0−1

P+ ∑
m0−1
m=1

1
hm

(13)

If hm0−1 is greater than or equal to the right side of (13),

and this is greater than c, then the corresponding value of λ is

accepted. Otherwise, xm0−1 is set to zero (sub-channelm0−1 is

abandoned), and the previous step is repeated considering the

first m0−2 channels only: c+λ = (m0−2)/(P+∑
m0−2
m=1 1/hm).

And so forth. The procedure ends with an appropriate λ∗, and

only the first M1 ≤ m0−1 receiving positive power.

Thus, (10) ultimately yields to “water filling” with the

adjusted power price c+ λ∗:

p∗m +
1

hm
=

1

c+ λ∗
∀m ∈ {1, . . . ,M1} (14)

IV. DISCUSSION

The sub-channel power allocation problem and its “water-

filling” solution are well-known, when the performance (“ca-

pacity”) function is logarithmic and power is constrained but

costless. We have generalised this problem by considering a

general concave performance function and a per-Watt price.

Our analysis is directly applicable as a price-driven power-

allocation solution, for example, in a time-division OFDM

scenario. It can also be useful in an OFDMA scenario, if

combined with an appropriate sub-channel allocation scheme

(as we propose separately [3]).

The solution retains the general water-filling structure, but

the costly power does change matters significantly. In particu-

lar, suitably normalised, the power price translates to a channel

gain threshold for channel usability: if a noise-normalised sub-

channel gain fails to exceed the normalised power price, the

sub-channel is not usable. Conversely, the highest sub-channel

gain defines a maximum (normalised) power price, beyond

which no sub-channel is used. The intuition is clear: when a

sub-channel gain is sufficiently low (or the normalised power

price is sufficiently high), the marginal benefit of buying a unit

of power is less than its cost. It is possible that all sub-channels

be discarded for that reason.

When the power is plentiful, each usable sub-channel can

be allocated its individual maximiser (“greedy” solution);

that is, the choice that maximises benefit minus cost on a

channel-by-channel basis. The “greedy” optimiser is defined

by hm f ′(hmpm) = c, which itself has a “water-filling” interpre-

tation in logarithmic (“dB”) scale: log(hm)+ log( f ′(hmpm)) =
log(c). Of course, the power levels resulting from individual

sub-channel optimisation may exceed the total power con-

straint (“scarce power”), in which case , λ, the corresponding

Lagrange multiplier, becomes non-zero. Its net effect is that

the system behaves as if the power price was c+λ (“effective”

price): hm f ′(hmpm) = c+ λ. At the optimum, c+ λ takes the

value necessary to make total power consumption (“demand”)

equal to the total available “supply” (i.e., the “market clear-

ance” price). Thus, some sub-channels that would be usable

at the true price (hm > c), may become unusable under the

“effective price”: hm ≤ c+ λ.

In the development, closed-form solutions are given for the

special case f (t) = ln(1+ t) leading to water-filling over the

usable sub-channels: pm+1/hm = 1/c when power is plentiful,
and pm +1/hm = 1/(c+ λ) otherwise.

We have not yet checked the second-order sufficient con-

ditions, but it is intuitively clear that at least the plentiful-

power solution is globally optimal: each usable sub-channel is

allocated its individual optimiser; the terminal cannot possibly

do better. We have not discussed the constraint qualification

condition, but some reflection indicates that such condition

is always satisfied. These issues will be addressed in greater

detail in future reports of this work.
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