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Abstract—Path loss prediction is an essential building block
for planning and optimization of cellular radio networks. Semi-
empirical land use based models yield accurate and efficient
path loss prediction results in rural areas. Consequently, land
use information serves as a key input for those models. In
this paper, we present a new C ×K-Nearest-Mean classification
method operating on landscape images to provide the required
input data for land use based path loss prediction models. With
respect to this purpose our approach exceeds conventional land
use classification using a neural network particularly in terms
of total error rate. Utilization of our classification method by
a specific path loss prediction model leads to prediction results
with a mean square error of less than 6dB.

I. INTRODUCTION

For effective planning and optimization of cellular radio

networks path loss prediction is required, see [1]. Ray optical

algorithms often achieve very high prediction accuracy, see [2],

and are often used for path loss prediciton in urban areas.

In rural areas, semi-empirical land use models yield accurate

and efficient path loss prediction results. For instance, Erceg’s

widely-used path loss model [3] predicts path loss by choosing

one fixed land use type for a considered prediciton area. In [4],

a direction-specific land use based path loss model calculates

path loss by considering the particular radio wave propagation

characteristics of all land use segments that lay on the direct

path between receiver and transmitter. A similar approach

including different land use types is presented in [5].

However, all of these models need suitable land use in-

formation for the considered prediction area as input data.

Since purchasing land use data is very expensive, we propose a

new C ×K-Nearest-Mean classification method that operates

on landscape images such as aerial photographs or satellite

image data as a less expensive alternative. Particularly, our

classification method provides the relevant land use input

data demanded by DiLaP. General information on existing

classification methods can be found in [6] and [7], respectively.

As cost-saving land use maps used for the classifier training

process suffer from partially defective information, adequate

handling of that property is a challenge for designing an appro-

priate classification method. In this paper, we develop a land

use classification method that is robust against imbalanced and

noisy training data. Adaption to a specific path loss prediction

model leads to accurate path loss prediction results for rural

areas.

The remainder of this paper is organized as follows. In

Section II, we show how the prediction quality of the con-

sidered path loss model is related to the land use input data.

Afterwards, we describe the data preprocessing in Section III

and the new C × K-Nearest-Mean classification method to

generate the required land use information from landscape

images in Section IV. In Section V, we validate the quality of

our new classification method and compare it to a conventional

neural network approach in terms of total error rate. Finally,

in Section VI we conclude this paper.

II. CONSIDERED PATH LOSS MODEL

Common path loss prediction models such as Erceg’s model

and others, see [3], [8], define a distance dependent signal

attenuation but leave alternating land use types between trans-

mitter and receiver unconsidered. Thus, all receiver points at

the same distance from the transmitter gain identical path

losses. Obviously, this often does not correspond to reality.

As illustrated in Figure 1, in a typical rural area, the two

receivers r1 and r2 will experience different signal attenuation

due to differing land use segments on their individual path to

transmitter t, even if they are located at the same distance d
from the transmitter. The Direction-specific Land use based
Path loss model (DiLaP) is intended for application in rural

areas containing multiple land use types. Different land use

types basically have different attenuation properties on the

straight ray from receiver to transmitter. Accordingly, the

model is not only restricted to one land use type but considers

all land use segments - with varying sizes and types - that

are passed by the straight way from receiver to transmitter.

Moreover, smart direction-specific evaluation from receiver

to transmitter is realized, which causes a stronger influence

of land use segments that are located nearby the receiver as

compared to the segments further away. This approaches a

more realistic outcome.

For the path loss prediction, the model considers all i =
1, . . . , n(r) segments of conjoined differing land use classes

c(i) ∈ C = {FS (free space), V L (village), FR (forest)} on

the direct path from receiver r to transmitter t according to

LdB
DiLaP(r) = Cf + γc(1) 10 log10 (d(1))

+

n(r)∑
i=2

γc(i) 10 log10

(
1 +

d(i)∑i−1
j=1 d(j)

)
(1)
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dt
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2: Village 3: Forest1: Free space

Fig. 1. Rural area containing three land use classes.
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Fig. 2. DiLaP path evaluation principle.

where d(i) denotes the length of segment i, c(i) its land use

class, γc(i) the path loss coefficient, and the parameter Cf is

an offset and frequency dependent parameter. Figure 2 depicts

the idea behind formula (1), particularly the logical evaluation

direction that is reverse to the physical propagation direction.

For example, path loss contribution of segment 2 is calculated

as the path loss with respect to the corresponding land use

class c(2) and distance ratio (d(1) + d(2)) /d(1). Obviously,

DiLaP prediction quality and computational effiency strongly

depends on the number and correctness of the evaluated land

use segments. Therefore, application of the described path loss

model requires knowledge of the land use class for each pixel

in the considered area and the corresponding land use segment.

For the considered set C of land use classes this leads to a

three-class classification problem.

III. DATA PREPROCESSING AND FEATURE EXTRACTION

Generally, a sufficient amount of training data serves as

input for calibrating a classifier. For training purposes we

use eleven sets of 1000 × 1000 pixel landscape images and

corresponding pre-classified landuse maps with a resolution

of 6.25m2 per pixel. We use cost-saving aerial photographs

as landscape images.

Furthermore, the preprocessing of the landscape images is

separated from the preprocessing of the corresponding land use

maps. Preparation of the landscape images aims at providing

suitable input data for the classification method, i.e., convert-

ing image information to an appropriate data representation.

Particularly, we utilize an image segmentation technique for

Class Landscape elements
Free space location without vegetation, grassland,

arable land, streets, tracks

Forest coniferous forest, deciduous forest

mixed forest

Village buildings, vegetation inside of

residential areas, front gardens

TABLE I
DEFINITION OF RELEVANT LAND USE CLASSES.

this task. The preprocessing of the land use maps includes

the mapping from 24 existing land use classes to the three

relevant classes C = {FS, V L, FR}. The mapping process is

not described in detail here. Table I describes the assignment

from occurring landscape elements to the considered land use

classes. As the land use maps suffer from partially defective

land use information they can not be mapped precisely into

these three classes. Hence, this leads to defective training

data. Basically, image classification approaches can be devided

into two categories based on the underlying image content

representation. Approaches of the first category devide the

image into principal components and use their characteristics

for classification. Approaches of the second category classify

by means of global features derived from the image as a whole.

In this paper, we use an approach from the first category and

treat image segments as principal components.

A region growing method, see [9], is used to extract

regionally connected homogeneous landscape segments from

the image. Here, the inital seed pixel for the region growing

method is chosen randomly. Starting with the seed pixel the

region grows to adjacent neighbouring pixels depending on a

similarity criterion. We define the similarity criterion as the

Euclidean distance compared to a threshold D, i.e.,√
(x̄R − yR)2 + (x̄G − yG)2 + (x̄B − yB)2 < D , (2)

where x = (x̄R, x̄G, x̄B) is the mean RGB vector of the region

up to the present state and y = (yR, yG, yB) ∈ {0, . . . , 255}3
is the the RGB vector of the considered adjacent neighbour

pixel. The neighbour pixel y is added to the region if inequality

(2) is fulfilled. We define the pixel neighborhood as the

four horizontally and vertically connected pixels. The region

growing process stops when all image pixels are assigned to a

region. Each obtained region represents a segment for further

processing.

We apply a feature analysis to derive the describing feature

vector x for each image segment. In doing so, we analyse

color, texture, form and size. To identify suitable features for

differentiating between the three relevant land use classes,

we perform extensive measurements and comparisons between

segment features of different classes. This leads to five features

that represent an image segment suitably: The mean RGB

vector xRGB , homogeneity xH and contrast xC from the

Haralick’sche texture parameters [10],the number of pixel xS

(size), the ratio xP between the segment size and finally
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the size of the minimal circular enclosure area. Therefore, in

the classification process a segment SE is represented by its

feature vector xSE with the components

(xRGB , xH , xC , xS , xP ) ∈ [0, 1]
3 × [0, 1]× R× R× [0, 1] .

Consequently, the training data is represented by N training

data sets {(xi, ci)|i = 1 . . . N} with feature vectors xi and the

corresponding class labels ci.

IV. C ×K-NEAREST-MEAN CLASSIFICATION

Developing a classifier typically consists of a training phase,

where the classifier is trained to separate the various classes

of objects based on the training data sets, and the application

phase where the unknown class for considered objects is

determined. However, we combine both of these phases and

develop the classification rules directly while operating on the

bare training data.

A. The algorithm

We introduce the C ×K-Nearest-Mean Method as a mod-

ified version of the K-Nearest Neighbour Method (KNN) [11]

for image segment classification considering C relevant

classes. An important benefit is the effective handling of

defective training data. As described in Algorithm 1, our

approach determines the unknown land use class for a segment

SE represented by its feature vector xSE . The classification

decision basically relies on the distances between xSE and all

feature vectors from training data T = {(xi, ci)|i = 1 . . . N}
with ci ∈ C = {FS, V L, FR}, i.e., C = |C| = 3.

In contrast to the KNN method – where the classification

rule is based on the K nearest neighbours over all training data

sets – we determine the K nearest neighbours of each class

in C. Furthermore, our classification rule uses K distances of

the nearest neighbours and, hence, CK distances are taken into

account. In step 1 of Algorithm 1, the distances are calculated

and sorted ascendingly for each class separately. Since the

amount of training data sets is imbalanced for the three classes,

in step 2 the successive mean of the k = 1, . . . ,K nearest

training data sets is calculated for each class. The scoring step

3 works as follows. For each position k = 1, . . . ,K the class

with the minimum successive mean value scores a one whereas

the others do not score. To consider the imbalanced amount

of training data sets appropriately, the scores are adapted

by multiplication with a ratio factor. Finally, based on the

total scores over all K positions, segment xSE is assigned to

the class with the maximum score. The classification process

stops when all image segments are classified according to

Algorithm 1.
We define the distance measured between two feature vec-

tors x and y as distance function

d(x,y) = w1 · ||xRGB − yRGB ||2 + w2 · |xH − yH |
+ w3 · |xK − yK |

max(xK , yK)
+ w4 · |xS − yS |

max(xS , yS)

+ w5 · |xP − yP |
with feature weights w1, . . . , w5 ∈ R.

Algorithm 1 C ×K-Nearest-Mean

Input: Segment xSE = (xRGB , xH , xP , xS , xC), train-

ing data T, parameter K, set of land use classes

C = {FS, V L, FR}
1: For all Nc elements of each class c ∈ C compute the

distance dc to xSE and sort the distances ascendingly:

dcmin1
, dcmin2

, . . . , dcminNc

2: For the first K ≤ Nc distances of each class c ∈ C
compute the successive mean values:

dcs1 , d
c
s2 , . . . , d

c
sK , dcsi =

1

i

i∑
j=1

dcminj

3: For each position 1 ≤ k ≤ K score each class c ∈ C by

P
(
c, dFS

sk , dV L
sk , dFR

sk

)
=

{
1 dcs = min

{
dFS
sk , dV L

sk , dFR
sk

}
0 otherwise

4: Sum up the scores for each class c ∈ {FS, V L, FR}:

sumc =

[
K∑

k=1

P
(
c, dFS

si , dV L
si , dFR

si

)] max(NFS , NV L, NFR)

Nc

Output: cSE = argmax
c∈{FS,V L,FR}

(sumc)

Weight w1 w2 w3 w4 w5

Value 0.18 0.10 0.17 0.25 0.17

TABLE II
FEATURE WEIGHTS.

Comprehensive evaluation, aimed at satisfying parameter

constellations, leads to the feature weights listed in Table II

for K = 80 considered neighbours.

B. Classification postprocessing (smoothing)

As the classification results obtained by our C×K-Nearest-

Mean method serve as input data for the DiLaP path loss

prediction model and because the computational efficiency of

DiLaP is highly swayed by the number of land use segments,

the postprocessing step serves to reduce the number of land

use segments to a moderate amount. Due to the minor effect

of small vegetation areas within residental areas to radio wave

propagation, such areas are assigned to the land use class V L
(village). This allows us to obtain large connected areas which

contain fewer land segments for consideration in path loss

prediction.

The postprocessing is realized in two successive smoothing

steps which are applied to the classified image. In the first

smoothing step, we identify the dominating class cMAX within

a virtual window area disjunctly slided through the image. For

each 150m × 150m virtual window we count the number
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(a) Test image 7. (b) Classification result.

Fig. 3. Test image classification, source: c© LVA NRW.

of pixels NFS , NV L, NFR for the land use classes. The

dominating class cMAX is calculated as

cMAX = argmax
c∈{FS,V L,FR}

(gcNc) . (3)

for class-specific weight factors 0 ≤ gFS , gV L, gFR ≤ 1. All

segments that lay within the window area with more than 50%
are assigned to class cMAX if

gcMAX
NcMAX

> 0.5 .

The second step is performed to analogously slided virtual

windows of 100m × 100m. Again, we count the pixel num-

bers NFS , NV L, NFR and determine cMAX and NcMAX
. We

assign all segments covered with more than 50% and with a

size below 20 pixel to the class cMAX given by (3) using

gc = 1 for all c ∈ C.

Applying the smoothing steps to the classification results

provides suitable input data for DiLaP. Figure 3 illustrates the

classification results for an exemplary training data landscape

image depicted in Figure 3(a), where green color indicates

forest, yellow color represents free space and village is colored

red. For the proposed segment based C × K-Nearest-Mean
method the location of vegetation is not taken into account.

According to the training data, with the exception to forest and

tree groves which are also classified as forest, all vegetation

is classified as free space. Figure 4(a) demonstrates the result

of the two smoothing steps applied to Figure 3(b). Utilizing

this as input data for DiLaP leads to the path loss prediction

depicted in Figure 4(b).

It is important to notice that the sliding window sizes have

to be chosen carefully. Improper sizing can lead to undue

remerging of successfully separated land use segments in

oversized windows and to insufficient smoothing for keeping

the path loss calculation complexity low in window sizes that

are to small.

V. METHOD EVALUATION

The Cross validation technique is a common method for

evaluation of classification performance, see [12]. The idea is

to partition the training data into m complementary subsets, to

perform the training on m− 1 subsets (training data), and to

validate the classification results with respect to the remaining

(a) Smoothing result. (b) DiLaP prediction.

Fig. 4. Exemplary land use based path loss prediction.

subset (test set). This is repeated m-times such that each

subset is used once as validation set. Here, we use m = 11
aerial photographs as complementary subsets and perform the

C×K-Nearest-Mean classification for each aerial photograph.

The classification error rates are calculated by considering all

image pixels. As shown in Table III, applying our proposed

method we achieve cross validation error rates between 1%
and 20% for the given training images.

We compare our classification results to those obtained

by using a neural network as a widely-used conventional

classifier, see [6]. The most significant advantage of neural

networks is their generality which allows for application with-

out having detailed information about the data being classified.

A significant drawback of neural networks is the intransparent

classification rule and the inability to apply selective modifi-

cations. Therefore, counteracting against effects of defective

training data is not possible in the way our C ×K-Nearest-
Mean classification approach allows for. We do not discuss

the neural network structure in detail here and instead focus

on the cross validation error rates compared to our method.

Counteracting the imbalanced and partially defective train-

ing data by choosing appropriate classification parameters K
and w1, . . . , w5 leads to the error rate comparison shown

in Table III. By applying the smoothing operations to both

classification methods our approach achieves mean error rates

of 9% which exceeds the quality of the neural network results

significantly.

Furthermore, we consider classification accuracy for the

single classes by means of evaluating the confusion matrix,

see [13]. The confusion matrix shows the relative frequencies

of predicted class relative to the true class accumulated over

all image pixels. The results for the exemplary image from

Figure 3(a) are listed in Table IV. Particularly recognition rates

for the land use classes FS (free space) and FR (forest) are

important for classification in rural areas that are typically

dominated by free space and forest areas. As our proposed

method allows for selective parameter adaption, free space and

forest are recognized successfully by C × K-Nearest-Mean
classification with 91% and 95%, respectively, see diagonal

entries of the upper confusion matrix entries in Table IV.

Postprocessing, i.e., smoothing, is applied to the exemplary

classification results and particularly enhances classification
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Test Image Neural
Network

C×K-Nearest-
Mean

1 55% 20%
2 25% 10%
3 5% 15%
4 40% 8%
5 4% 4%
6 64% 11%
7 5% 4%
8 18% 1%
9 29% 14%
10 8% 5%
11 12% 2%

Mean value 24% 9%

TABLE III
ERROR RATES ACCORDING TO CLASSIFICATION WITH SMOOTHING

True/ village free space forest
Predicted

A: C ×K-Nearest-Mean
village 16% 1% 1%

free space 23% 91% 4%

forest 61% 8% 95%

B: C ×K-Nearest-Mean with Smoothing
village 80% 3% 1%

free space 13% 97% 0%

forest 7% 0% 99%

B-A: Absolute differences
village +64% +2% 0%

free space −10% +6% −4%
forest −54% −8% +4%

TABLE IV
CLASSIFICATION RESULTS IN FORM OF CONFUSION MATRICES.

of the land use class village, see the entries of the second

confusion matrix in Table IV. This effect becomes obvious

when comparing the elementwise absolute differences of the

confusion matrix entries corresponding to classification with

and without smoothing, see lower part of Table IV.

VI. CONCLUSIONS

In this work, we present a new C × K-Nearest-Mean
classification method to provide input data for land use based

path loss prediciton models. We adapt our classifiction algo-

rithm particularly for the DiLaP path loss prediction model.

Concerning a considerable amount of test data, we achieve

a mean classification error rate of 9% which exceeds the

error rate quality obtained by conventional neural network

classification significantly.

Utilizing our approach to generate input data for DiLaP path

loss prediction leads to prediction results with mean square

errors of less than 6dB. Particularly, this demonstrates that

the combination of appropriate land use classification and

an accurate path loss prediction model allows for yielding

excellent radio wave prediction results in rural areas.
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