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Abstract—Imposing so called peak power constraints on the
input of a channel in many cases leads to a discrete capacity-
achieving distribution with finite support. Given a finite number
of signaling points ab initio, in this paper we determine reduced
subsets in order to simplify the receiver design. The objective is
to still keep the channel quality high. Two criteria are maximized,
channel capacity and cutoff rate. By considering a uniform
distribution over all signaling points, a lower bound to the
general problem of finding an optimum signaling constellation in
a bounded set and simultaneously the optimum input distribution
is obtained. By semidefinite programming we show that even if
only a small number of signaling points is selected the capacity
and cutoff rate of the channel can be kept high.

I. INTRODUCTION

Shannon’s classical result shows that the scalar additive
Gaussian noise channel subject to average power constraints
achieves capacity if the input distribution is Gaussian as well.
Telatar extended the result to complex circularly symmetric
Gaussian vector channels, see [1]. This general model par-
ticularly applies to multiple-input multiple-output (MIMO)
transmission system. Because of the unlimited support of the
normal distribution, this input, however, is not realizable in
practice. In order to avoid unbounded power requirements
for the transmitter, peak power constraints of different types
have been imposed. Interestingly, the capacity achieving input
distribution then becomes discrete with finite support, as
was shown in [2] for the real and in [3] for the complex
Gaussian channel. A good overview of previous research on
this topic is given in [4]. Especially for Poissonian channels,
for channels with quadrature Gaussian and additive vector
Gaussian noise distributions it is shown that the capacity-
achieving input distribution subject to average and peak power
constraints is discrete. By considering conditionally Gaussian
vector channels subject to bounded-input constraints by some
bounded set S ∈ Rn this reference and [5] generalize a number
of previous papers on the subject. Under certain conditions
on S the capacity achieving distribution is discrete, which
includes the previously mentioned channels as special cases.
Non-coherent additive white Gaussian noise channels are
investigated in [6] and it is shown that the optimum distribution
is discrete. The same conclusion was shown for general fading

channels in [7] and for Rician fading channels in [8]. Related
topics are discussed in the following two references. In [9]
a characterization for the optimum number of mass points is
given. Reference [10] investigates the optimum constellation
of M equiprobable complex signals for an additive Gaussian
channel under average power constraints such that the error
probability is minimum.

Summarizing the above, for practical purposes it is suf-
ficient to investigate signaling constellations of a maximum
number M of mass points. In this context, the following
general problem of uttermost interest arises. Starting from
a closed and bounded subset S ∈ Rn of possible signaling
points, determine a discrete input distribution consisting of a
maximum number M of support points x1, . . . ,xM ∈ S and
probabilities P (X = xi) = pi, 1 ≤ i ≤M , which maximizes
mutual information between channel input and output, thus
is capacity-achieving in the set of discrete distributions over
S with at most M support points. Note that the optimum
solution may exhibit pi = 0 for some i ∈ {1, . . . ,M} such
that the number of effectively used points may be less than
M . For the special case of conditional Gaussian channels and
a nonrestricted number of signaling points, a partial answer
is given in [4]. However, in general this seems to be a hard
problem.

In this paper, we confine ourselves to a large, finite con-
stellation set and ask the question of how to select a small
subset of prescribed cardinality such that the capacity and
cutoff rate is highest. The main purpose of using only a small
number of signaling points is to simplify the receiver design
and corresponding decoding algorithms.

The material in this correspondence is organized as follows.
First, we introduce the precise system model and the problem
description in Section II. In Section III we show how the
problem can be transformed into a semidefinite program and
solved by using two different relaxation techniques. Further,
the case of sum power constraints is also considered in this
section. Numerical results are presented in Section IV. The
paper concludes with a short summary and outlook on future
research in Section V.
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II. SYSTEM MODEL AND PREREQUISITES

Consider a channel with discrete input and continuous
output. Let random variable X denote the discrete chan-
nel input with finite input alphabet X of possible signaling
points x1, · · · ,xM ∈ Rn. These signaling points are used
by the transmitter according to a certain input distribution
p = (p1, · · · , pM ). The channel output Y corresponds to
randomly distorted channel input. The distribution of Y given
input X = xi is assumed to have Lebesque density

f(y |xi) = fi(y), y ∈ Rn.

An example for such a channel is the additive channel Y =
X + n with fi(y) = g(y − xi) where g denotes the noise
density.

Now assume that a finite set of signaling points is given un-
der the above system model. In general, it is still a challenging
task to select a subset of prescribed size from these points and
simultaneously determine a distribution such that the channel
capacity is maximized. We confine ourselves to the simpler,
but for practical purposes most relevant problem of selecting
a subset of given cardinality from the initial signaling points
while using the uniform as input distribution. Hence, the task is
reduced to deciding which signaling points should be included
in the subset and which are excluded. Once having found the
optimum configuration, mutual information may be improved
through determining the optimum input distribution by help
of the following proposition, which was shown in [11].

Proposition 1: Input distribution p∗ is capacity achieving
if and only if

D(fi ‖
M∑

j=1

p∗jfj) = const,

for all i such that pi > 0, where D(f ‖ g) =
∫
f log f

g
denotes the Kullback-Leibler divergence between densities f
and g. Furthermore, if H(fi) = −

∫
fi(y) log fi(y) dy is

independent of i, then p∗ maximizes the mutual information
over the set if and only if∫

fi(y) log(
M∑

j=1

p∗jfj(y)) dy = const

for all i such that pi > 0.
Being more precise, the task is to find the equiprobable

constrained-input alphabet capacity of the channel with input-
alphabet with cardinality at most K, for some fixed number
K < |X |.

In what follows, we consider two different criteria to find
the best subset X ′ of given size K.

A. The capacity maximizing subset

The direct approach is to find the subset of equiprobable
input symbols that that maximizes the mutual information

max
X ′⊂X

∑
xi∈X ′

∫
pif(y |xi) log

f(y |xi)∑
xj∈X ′ pjf(y |xj)

dy.
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Fig. 1. Gap between the cutoff rate and the channel capacity

Using the assumption that pi = 1
K , equation (1) is equivalent

to solving

max
X ′⊂X

∑
xi∈X ′

∫
f(y |xi) log

f(y |xi)∑
xj∈X ′ f(y |xj)

dy. (1)

B. The cutoff rate maximizing subset

The second criterion we use is the maximization of the cut-
off rate, which is a lower bound of the channel capacity [12],

max
X ′⊂X

− log
∫ [ ∑

xi∈X ′

pi

√
f(y |xi)

]2

dy. (2)

Figure 1 depicts the gap between the cutoff rate and the
channel capacity using the setup given in Section IV. Using
again that pi = 1

K and that log is a monotone function,
problem (2) transforms to

min
X ′⊂X

∫ [ ∑
xi∈X ′

√
f(y |xi)

]2

dy. (3)

This problem is easier to handle, as shown in the next section.
We will use problem (3) to first generate a selection of subsets
and then choose the one that maximizes mutual information.
By doing so, we obtain a subset with reasonably high channel
capacity.

III. THE SUBSET SELECTION

In [13], a binary switching algorithm was introduced to
increase the cutoff rate in discrete memoryless channels. The
idea can be used to solve (3). As highest cutoff rate does not
always lead to highest capacity, we use the cutoff rate approach
to find distributions with relatively high capacity first, and
then choose the best one among them. Problem (3) can be
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Algorithm 1 Subset Selection Algorithm
1: Initialization:
n = M + 2,

A =
∫ 

√
f1(y)

...√
fM (y)

 ·

√
f1(y)

...√
fM (y)


T

dy,

B =
[

A 02×M

0M×2 02×2

]
,

define an empty vector r;
2: Solve the semi-definite problem:

Ŝ = argminS≥0 trace(BS) s.t.
Sii = Sin, ∀i,
Snn = 1,∑M

i=1 Sni = K,∑M
i=1 wiSni + Sn,M+1 = KW.

3: Adjustment:
n = M + 1,
delete the (M + 1)th row and (M + 1)th column of Ŝ,

B =
[

A 01×M

0M×1 0

]
.

4: Cholesky factorization:
Ŝ = V̂

T
V̂ .

5: Randomization:
6: for i = 1, . . . , Nrand do
7: randomly generate a vector u(i) uniformly distributed

on a n-dimensional unit sphere;
8: computer s̃(i) = V̂ T u(i), ∀i;
9: s̃

(i)
n ← sign(s̃(i)n );

10: s̃(i) ← s̃
(i)
n s̃(i);

11: quantize the K highest entries of
[
s̃
(i)
1 , . . . , s̃

(i)
M

]
to 1

and the others to 0;
12: if

∑
s̃
(i)
j =1

wj ≤ KW then

t = s̃(i)T Bs̃(i),
13: else continue
14: end if
15: if t is not yet in vector r then

ri = t,
calculate channel capacity Ci based on s̃(i).

16: end if
17: end for
18: Choose s̃ = argmaxs̃(i) Ci.
19: Take b = [s̃0, . . . , s̃M ]T as approximate solution.

reformulated as a constrained binary quadratic minimization
problem (BQP)

minb∈{0,1}M bT Ab

s.t. 1T
Mb = K

where the ij-th entry of A is
∫ √

fi(y)fj(y) dy. Vector b is
a binary vector where a one indicates that the corresponding
symbol is included in the subset, a zero that the corresponding
element is excluded.
We further assume that the power consumption of signaling

point i is wi. Introducing a total power constraint then
yields the additional constraint wT b ≤ W with w =
(w1, · · · , wM )T . By using slack variable bM+1 ≥ 0, the
inequality is replaced by equality wT b+bM+1 = W . To make
the optimization problem symmetrical, thus gaining access to a
formulation as a convex problem, we introduce another vector
s = (s1, · · · , sn)T with n = M + 2 and the meaning

b = sn(s1, · · · , sM )T ,

bM+1 = snsM+1

where sn ∈ {−1, 1}. Then, the above problem is equivalent
to

min
s

sT Bs (4)

s.t. sisn = s2i ∀i,
s2n = 1,

sn 1T
M (s1, . . . , sM )T = K,

sn wT (s1, . . . , sM )T + snsM+1 = KW,

with

B =
[

A 02×M

0M×2 02×2

]
.

Using substitution S = ssT it can be shown that the above
optimization problem can be rewritten as

Ŝ = argminS≥0 trace(BS) (5)

s.t. Sii = Sin∀i, Snn = 1,
∑M

i=1 Sni = K,∑M
i=1 wiSni + Sn,M+1 = KW, rank(S) = 1.

The semidefinite programming (SDP) relaxation of (5) can
be efficiently solved in polynomial time [14]. If the resulting
matrix Ŝ has rank one, then the relaxation is tight. Oth-
erwise, special techniques are required to convert the SDP
relaxation solution back into an approximate BQP solution,
see, e.g., [15], [16]. Using any of these relaxation techniques,
we then obtain the set of estimators {s̃}. Before remapping it
back to vector b, we have to examine whether the estimator
fulfills the average power constraint (see the comment in the
next paragraph) and find the one which maximizes the channel
capacity among all those. The resulting vector s̃ leads to
the approximate solution of the original binary vector b. The
algorithm is summarized in Algorithm 1.

For clarification, we would like to make some remarks
to Algorithm 1. Originally, s̃(i) fulfills the average power
constraint. However, after the quantization in Step 11, it is
very probable that the average power overflows. This is the
reason that rechecking in Step 12 is necessary even if the
average power constraint has been already added before. The
metric to choose s̃ differce from [13]. It is a traditional way
to use

s̃ = argmin s̃(i)s(i)T
Bs(i)

which directly maximizes the cutoff rate as expected. However,
there exists a gap between cutoff rate and channel capacity. To
keep always the best result among the randomizations alive, we
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Fig. 2. Heuristic method to improve the subset selection.

directly calculate capacity for each candidate of s̃ in Step 15.
Further, Step 15 helps to reduce the computational load since
sometimes different randomization loops result in the same
or equivalent selections due to a symmetric noise distribution.
We do not need to include any selection which has already
occured.

The solution can be further improved by applying the fol-
lowing heuristic method. For the sake of readability, we men-
tion this sub-algorithm separately from Algorithm 1. Consider
the not yet quantized vector s̃(i) in Step 10 of Algorithm 1 and
sort the first M entries in descending order. In Algorithm 1,
the highest K entries are chosen as a single lot. Obviously this
selection is not necessarily optimum. This holds as the order is
based on the weight of each signaling point and thus a higher
weight implies a higher probability to be a better point. As
exhaustive search is too complex to apply even for moderate
problem sizes, we use a simple heuristic method to reduce
computational complexity of an optimal exhaustive search. In
the method, the unquantized first M entries of s̃(i) are kept in
the buffer, adding s̃

(i)
un = [s̃(i)1 , · · · , s̃(i)M ] between Step 10 and

11. In Step 18, we obtain s̃ and the pair s̃un = s̃
(i)
un, which

we divide into four segments in descending order:
• the largest K −K1 entries,
• the second largest K1 entries,
• the third largest K2 entries and
• the smallest M −K −K2 entries

where K1,K2 ∈ Z and 0 ≤ K1 ≤ K, 0 ≤ K2 ≤M −K. The
first segment is included in the final subset, while the fourth
is excluded. From the second and third segment, we choose
the best K1 entries to obtain the new subset. Figure 2 depicts
how this method works. The solution is already improved by
rather small K1 and K2 such that the computational load of
this heuristic method is negligible.

IV. SIMULATION RESULTS

For our simulations, we use the following scenario . We aim
to choose K = 16 signaling points from a M -QAM scenario
with M = 64. 64-QAM points in the square [−3, 3]2 are used
as initial configuration. We consider 2-dimensional Gaussian
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Fig. 4. SDP relaxation comparison by changing ρ

noise with covariance matrix
(

1 ρ
ρ 1

)
with varying parameter

ρ. As outlined above, using a uniform distribution over the
selected subset provides a lower bound for the capacity-
achieving non-uniform distribution.

First, we compare different SDP relaxation techniques, see
Figure 3. The blue curve is the channel capacity obtained by
applying the dominant eigenvector approximation, see [16],
to acquire the SDP relaxation. The green and red curve use
randomization with 30 loops, i.e., an estimator of s is obtained
after each randomization loop. The red one aims at maximiz-
ing the cutoff rate, while the green one directly maximizes the
channel capacity. As can be seen in the figure and as expected,
maximizing the channel capacity with randomization always
performs best, though the difference is interestingly not very
large.

Figure 4 shows the capacity for different values of ρ for
the above two SDP techniques. Again, randomization with
maximizing channel capacity performs best. This plot also tells
us, that under certain average noise power, more correlated
noise with |ρ| large is better for finding a higher channel
capacity.

Concerning the number of randomization loops, Figure 5
shows both cutoff rate and capacity oriented methods for 10,
30 ad 100 loops. In the right plot, the curves become quite
smooth. This holds, because the a total power of the selected

935



0 0.2 0.4 0.6 0.8
1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

ρ

C
a
p
a
c
it
y

Cutoff Rate Oriented

 

 

Rand 10

Rand 30

Rand 100

0 0.2 0.4 0.6 0.8
1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

ρ

C
a
p
a
c
it
y

Capacity Oriented

 

 

Rand 10

Rand 30

Rand 100

Fig. 5. Influence of the number of randomizations
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signaling points depends on the specific selection and thus,
a larger cutoff rate does not imply a larger channel capacity.
We can conclude, that a reasonable number of randomizations,
e.g., Nrand = 30, is close to maximize capacity in all
considered cases.

The resulting signaling schemes will be changed when a
total power constraint is applied. Figure 6 shows the channel
capacity vs. the total power constraint for four different values
of the correlation parameter ρ for a given total power constraint
per dimension. The curves are monotone increasing when the
total power becomes larger. This holds, because the constraint
becomes much looser. As expected, each curve converges to its
maximum, which is the same as the channel capacity without
total power constraint.

V. CONCLUSIONS

In this paper, we contributed to the challenging problem
of finding a reduced, optimal set of signaling points. We
approached this problem by assuming a uniform distribution
on the selected signaling points. By doing this, we obtain a
lower bound for the unconstrained-channel capacity. We con-
sidered both an unconstraine-channel capacity and cutoff rate
maximizing subset selection. We investigated these problems
by forming a semidefinite programing problem and solving it
with two different relaxation techniques. The obtained lower

bound is close to the channel capacity of the full set of
signaling points. This shows that using only a small size subset
can indeed achieve a very high capacity even compared with
the large full input set. This approach helps to highly simplify
the receiver design while maintaining a high transmission rate
over the channel.
Future research will be devoted to finding the corresponding
optimal probability distribution which is the next step in
tackling the full problem. Further, the analysis will be extended
to non-regular constellation points, thereby allowing the I and
Q components to be demodulated independently.
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